1
|
Zhang XN, Li YY, Lyu SC, Jia QJ, Zhang JP, Liu LT. Shenmai Injection Reduces Cardiomyocyte Apoptosis Induced by Doxorubicin through miR-30a/Bcl-2. Chin J Integr Med 2025; 31:240-250. [PMID: 39809965 DOI: 10.1007/s11655-025-4005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE To explore the molecular mechanism of Shenmai Injection (SMI) against doxorubicin (DOX) induced cardiomyocyte apoptosis. METHODS A total of 40 specific pathogen-free (SPF) male Sprague Dawley (SD) male rats were divided into 5 groups based on the random number table, including the control group, the model group, miR-30a agomir group, SMI low-dose (SMI-L) group, and SMI high-dose (SMI-H) group, with 8 rats in each group. Except for the control group, the rats were injected weekly with DOX (2 mg/kg) in the tail vein for 4 weeks to induce myocardial injury, and were given different regimens of continuous intervention for 2 weeks. Cardiac function was detected by echocardiography and myocardial pathological changes were observed by Van Gieson (VG) staining. Myocardial injury serum markers, including creatine kinase (CK), lactate dehydrogenase (LDH), troponin T (cTnT), N-terminal pro-brain natriuretic peptide (NT-proBNP), soluble ST2 (sST2), and growth differentiation factor-15 (GDF-15) were detected by enzyme linked immunosorbent assay (ELISA). Cardiomyocyte apoptosis was observed by terminal deoxynucleotidyl transferase-mediated biotinylated dUTP triphosphate nick end labeling (TUNEL) and transmission electron microscopy, and the expressions of target proteins and mRNA were detected by Western blot and quantitative real time polymerase chain reaction (qRT-RCR), respectively. RESULTS The treatment with different doses of SMI reduced rat heart mass index and left ventricular mass index (P<0.05), significantly improved the left ventricular ejection fraction (P<0.05), decreased the levels of serum CK, LDH, cTnT, and NT-proBNP (P<0.05 or P<0.01), reduced the levels of serum sST2 and GDF-15 (P<0.05 or P<0.01), decreased the collagen volume fraction, reduced the expressions of rat myocardial type I and type III collagen (P<0.05 or P<0.01), and effectively alleviated myocardial fibrosis. And the study found that SMI promoted the expression levels of miR-30a and Bcl-2 in myocardium, and down-regulated the expression of Bax, which inhibited the activation of Caspase-3 and Caspase-9 (P<0.05 or P<0.01), and improved myocardial cell apoptosis. CONCLUSIONS SMI can alleviate myocardial injury and apoptosis caused by DOX, and its mechanism possibly by promoting the targeted expression of myocardial Bcl-2 protein through miR-30a.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yan-Yang Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Shi-Chao Lyu
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Department of Cardiovascular Medicine, Tianjin Key Laboratory of Traditional Research of Traditional Chinese Medicine Prescription and Syndrome, Tianjin, 300193, China
| | - Qiu-Jin Jia
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jun-Ping Zhang
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Long-Tao Liu
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
2
|
Qian C, Huang Y, Zhang S, Yang C, Zheng W, Tang W, Wan G, Wang A, Lu Y, Zhao Y. Integrated identification and mechanism exploration of bioactive ingredients from Salvia miltiorrhiza to induce vascular normalization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156427. [PMID: 39892310 DOI: 10.1016/j.phymed.2025.156427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The clinical management of ischemic disease and cancer is complex, with disruptions in local vascular function and tumor angiogenesis contributing to blood stasis, which complicates treatment strategies. Salvia miltiorrhiza, a natural product, is known to restore vascular structure and function. However, its specific roles in concurrently addressing ischemic disease and cancer within the same organism remain poorly understood. PURPOSE This study aimed to explore the material basis, pharmacological effects, and underlying mechanisms of Salvia miltiorrhiza extract (SME) in promoting blood flow recovery in ischemic hindlimbs and inducing tumor vascular normalization. METHODS The pharmacological effects of SME were evaluated in a mouse model combining ischemic hindlimbs and tumors. Mice were administered low (SME-L) or high (SME-H) doses of SME daily, and the gastrocnemius muscle mass and tumor vascular structure were assessed. Laser Doppler perfusion imaging (LDPI) was used to monitor hindlimb blood flow recovery and tumor vascular perfusion. The pharmacokinetics of the key bioactive constituents in SME were characterized by liquid chromatography-mass spectrometry (LC-MS). Interactions between SME's active compounds and predicted targets were investigated using molecular docking, microscale thermophoresis (MST), and luciferase reporter assays. The synergistic effects of the primary components, Tanshinone I (Tan I) and Salvianolic acid A (Sal A), were analyzed through tube formation assays, enzyme-linked immunosorbent assays (ELISA), immunofluorescence staining, and western blot. RESULTS Phytochemical profiling revealed that SME contains several active compounds, including Danshensu, Sal A, Sal B, Tan IIA, and Tan I. SME treatment reduced the frequency of necrotic toes, increased muscle mass, and alleviated hypoxia in the gastrocnemius muscle. SME significantly improved tumor vascular perfusion and notably enhanced pericyte coverage and basement membrane integrity. Pharmacokinetic analysis identified Tan I and Sal A as the key bioactive components that promote vascular normalization. Tan I inhibited FoxO1, preventing endothelial cell activation induced by angiopoietin 2 (Ang2), while Sal A bound to Ang2, facilitating Tie2 activation mediated by Ang1. Both in vitro and in vivo results demonstrated that the combination of Tan I and Sal A exerted a synergistic therapeutic effect on correcting abnormal blood vessels in ischemic hindlimbs and tumors. CONCLUSION Our study innovatively revealed a reliable mouse model wherein the Ang2/Tie2 signaling cascade disrupted the endothelial homeostasis to aggravate the progression of hindlimb ischemia and tumor angiogenesis. This balance can be rescued by the combination therapy of Tan I and Sal A that were both from SME, leading to the occurrence of vascular normalization.
Collapse
Affiliation(s)
- Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ying Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Shan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chunmei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Weiwei Tang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Guiping Wan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
3
|
Li L, Guan Y, Du Y, Chen Z, Xie H, Lu K, Kang J, Jin P. Exploiting omic-based approaches to decipher Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118936. [PMID: 39413937 DOI: 10.1016/j.jep.2024.118936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM), an ancient health system, faces significant research challenges due to the complexity of its active components and targets, as well as a historical lack of detailed annotation. However, recent advances in omics technologies have begun to unravel these complexities, providing a more informed and nuanced understanding of TCM's therapeutic potential in contemporary healthcare. AIM OF THE REVIEW This review summarizes the application of omics technologies in TCM modernization, emphasizing components analysis, quality control, biomarker discovery, target identification, and treatment optimization. In addition, future perspectives on using omics for precision TCM treatment are also discussed. MATERIALS AND METHODS We have explored several databases (including PubMed, ClinicalTrials, Google Scholar, and Web of Science) to review related articles, focusing on Traditional Chinese Medicine, Omics Strategy, Precision Medicine, Biomarkers, Quality Control, and Molecular Mechanisms. Paper selection criteria involved English grammar, publication date, high citations, and broad applicability, exclusion criteria included low credibility, non-English publications, and those full-text inaccessible ones. RESULTS TCM and the popularity of Chinese herbal medicines (CHMs) are gaining increasing attention worldwide. This is driven, in part, by a large number of technologies, especially omics strategy, which are aiding the modernization of TCM. They contribute to the quality control of CHMs, the identification of cellular targets, discovery of new drugs and, most importantly, the understanding of their mechanisms of action. CONCLUSION To fully integrate TCM into modern medicine, further development of robust omics strategies is essential. This vision includes personalized medicine, backed by advanced computational power and secure data infrastructure, to facilitate global acceptance and seamless integration of TCM practices.
Collapse
Affiliation(s)
- Lei Li
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yueyue Guan
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yongjun Du
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Zhen Chen
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Haoyang Xie
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Kejin Lu
- Yunnan Yunke Cheracteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China.
| | - Jian Kang
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
4
|
Zhuo FF, Li XQ, Zhang J, Zhang FM, Song ZH, He Y, Ding L, Liu D, Tu PF, Ma XH, Zeng KW. Total glucosides of Picrorhizae Rhizome alleviate non-alcoholic steatohepatitis (NASH) by specifically targeting acyl-CoA oxidase 1. Heliyon 2024; 10:e39874. [PMID: 39524810 PMCID: PMC11550611 DOI: 10.1016/j.heliyon.2024.e39874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH), a chronic liver disease characterized by the accumulation of fat in the liver, is highly prevalent on a global scale. In this study, we investigated the effects of total glucosides of Picrorhizae Rhizome (TGPR), the primary active ingredients in traditional Chinese herbal medicine derived from Picrorhiza scrophulariiflora Pennell. TGPR is known for its efficiency in attenuating NASH, in mouse models induced by methionine-choline deficient (MCD) diet or high-fat diet (HFD). Our findings indicated that TGPR exhibited efficacy in reducing hepatic steatosis and lowering serum lipid levels, specifically triglyceride and total cholesterol in the NASH model. Meanwhile, TGPR exhibited a suppressive effect on the production of pro-inflammatory cytokines. Mechanistically, we identified acyl-CoA oxidase 1 (Acox1) as a crucial cellular target of TGPR, influencing lipid metabolism and ATP production to treat NASH. Additionally, we found that the major components of TGPR, including Picroside I, Picroside II, and Picroside IV, exhibit significant binding abilities to the target Acox1 at its catalytic C-terminal α-domain, stabilizing its protein expression. TGPR binding to Acox1 facilitated the degradation of fatty acids via the Acox1-mediated MAPK signaling pathways, and consequently plays a role in regulating energy metabolism and reducing liver inflammation. In summary, our study demonstrates that TGPR effectively counteracts NASH by specifically targeting Acox1, thereby providing a significant clinical solution for the treatment of NASH.
Collapse
Affiliation(s)
- Fang-Fang Zhuo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiao-Qing Li
- National Key Laboratory of Chinese Medicine Modernization, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Jun Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Fu-Ming Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Zhao-Hui Song
- National Key Laboratory of Chinese Medicine Modernization, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Yi He
- National Key Laboratory of Chinese Medicine Modernization, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Li Ding
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiao-Hui Ma
- National Key Laboratory of Chinese Medicine Modernization, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
5
|
Jin Y, Zhu W, Dai H, He X. Chemotherapy combined with Shenmai injection alleviates inflammatory response and side effects in the patients with advanced colorectal cancer: A retrospective analysis. Pak J Med Sci 2024; 40:1953-1957. [PMID: 39416603 PMCID: PMC11476158 DOI: 10.12669/pjms.40.9.9881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 06/29/2024] [Indexed: 10/19/2024] Open
Abstract
Objective To assess the inflammatory response and side effects of chemotherapy combined with Shenmai injection (SMI) in the treatment of patients with advanced colorectal cancer (CRC). Methods This retrospective cohort study included the clinical data of 152 patients with advanced CRC admitted to the First Affiliated Hospital of Huzhou University from April 2020 to April 2023. The patients were divided into control group (patients received chemotherapy treatment, n=75) and observation group (patients received chemotherapy combined with SMI, n=77) based on the treatment received. Tumor control rate, levels of immune function indicators before and after treatment, levels of inflammatory factor indicators, and incidence of toxic side effects in two groups were analyzed. Results Tumor control rate in the observation group (89.61%) was higher than that in the control group (77.33%) (P<0.05). After the treatment, the levels of CD3+, CD4+, CD4+/CD8+in both groups were significantly higher than before the treatment, and significantly higher in the observation group compared to the control group (P<0.05). After the treatment, serum levels of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interleukin-8 (IL-8) in both groups decreased compared to pretreatment levels, and was significantly lower in the observation group (P<0.05). The incidence of adverse reactions in the observation group was significantly lower than that in the control group (P<0.05). Conclusions Compared with chemotherapy alone, chemotherapy combined with SMI better alleviates inflammatory response in patients with advanced CRC, enhance immune function, and improve tumor control rate, with a lower incidence of toxic side effects.
Collapse
Affiliation(s)
- Yude Jin
- Yude Jin, Department of General Surgery, The First Affiliated Hospital of Huzhou University, 158 Guangchang Hou Road, Huzhou, Zhejiang Province, P.R. China
| | - Wei Zhu
- Wei Zhu, Department of General Surgery, The First Affiliated Hospital of Huzhou University, 158 Guangchang Hou Road, Huzhou, Zhejiang Province, P.R. China
| | - Hanbin Dai
- Hanbin Dai, Department of General Surgery, The First Affiliated Hospital of Huzhou University, 158 Guangchang Hou Road, Huzhou, Zhejiang Province, P.R. China
| | - Xiaowei He
- Xiaowei He, Department of General Surgery, The First Affiliated Hospital of Huzhou University, 158 Guangchang Hou Road, Huzhou, Zhejiang Province, P.R. China
| |
Collapse
|
6
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
7
|
Zhang XY, Xia KR, Wang YN, Liu P, Shang EX, Liu CY, Liu YP, Qu D, Li WW, Duan JA, Chen Y, Zhang HQ. Unraveling the pharmacodynamic substances and possible mechanism of Trichosanthis Pericarpium in the treatment of coronary heart disease based on plasma pharmacochemistry, network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117869. [PMID: 38342153 DOI: 10.1016/j.jep.2024.117869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coronary heart disease (CHD) is a chronic disease that seriously threatens people's health and even their lives. Currently, there is no ideal drug without side effects for the treatment of CHD. Trichosanthis Pericarpium (TP) has been used for several years in the treatment of diseases associated with CHD. However, there is still a need for systematic research to unravel the pharmacodynamic substances and possible mechanism of TP in the treatment of coronary heart. AIM OF THE STUDY The purpose of current study was to explore the pharmacodynamic substances and potential mechanisms of TP in the treatment of CHD via integrating network pharmacology with plasma pharmacochemistry and experimental validation. MATERIALS AND METHODS The effect of TP intervention in CHD was firstly assessed on high-fat diet combined with isoprenaline-induced CHD rats and H2O2-induced H9c2 cells, respectively. Then, the LC-MS was utilized to identify the absorbed components of TP in the plasma of CHD rats, and this was used to develop a network pharmacology prediction to obtain the possible active components and mechanisms of action. Molecular docking and immunohistochemistry were used to explore the interaction between TP and key targets. Subsequently, the efficacy of the active ingredients was investigated by in vitro cellular experiments, and their metabolic pathways in CHD rats were further analyzed. RESULTS The effects of TP on amelioration of CHD were verified by in vivo and in vitro experiments. Plasma pharmacochemistry and network pharmacology screened six active components in plasma including apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin. The interaction of these compounds with potential key targets AKT1, IL-1β, IL-6, TNF-α and VEGFA were preliminarily verified by molecular docking. And immunohistochemical results showed that TP reduced the expression of AKT1, IL-1β, IL-6, TNF-α and VEGFA in CHD rat hearts. Then cellular experiments confirmed that apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin were able to reduce the ROS level in H2O2-induced HUVEC cells and promote the migration and tubule formation of HUVEC cells, indicating the pharmacodynamic effects of the active components. Meanwhile, the metabolites of TP in CHD rats suggested that the pharmacological effects of TP might be the result of the combined effects of the active ingredients and their metabolites. CONCLUSION Our study found that TP intervention in CHD is characterized by multi-component and multi-target regulation. Apigenin, phenylalanine, linoleic acid, quercetin, luteolin, and tangeretin are the main active components of TP. TP could reduce inflammatory response and endothelial damage by regulating AKT1, IL-1β, IL-6, TNF-α and VEGFA, reduce ROS level to alleviate the oxidative stress situation and improve heart disease by promoting angiogenesis to regulate endothelial function. This study also provides an experimental and scientific basis for the clinical application and rational development of TP.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Kai-Rou Xia
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ya-Ni Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pei Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cong-Yan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Yu-Ping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Wei-Wen Li
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Huang-Qin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
8
|
Qian C, Zhou Y, Zhang T, Dong G, Song M, Tang Y, Wei Z, Yu S, Shen Q, Chen W, Choi JP, Yan J, Zhong C, Wan L, Li J, Wang A, Lu Y, Zhao Y. Targeting PKM2 signaling cascade with salvianic acid A normalizes tumor blood vessels to facilitate chemotherapeutic drug delivery. Acta Pharm Sin B 2024; 14:2077-2096. [PMID: 38799619 PMCID: PMC11121179 DOI: 10.1016/j.apsb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 05/29/2024] Open
Abstract
Aberrant tumor blood vessels are prone to propel the malignant progression of tumors, and targeting abnormal metabolism of tumor endothelial cells emerges as a promising option to achieve vascular normalization and antagonize tumor progression. Herein, we demonstrated that salvianic acid A (SAA) played a pivotal role in contributing to vascular normalization in the tumor-bearing mice, thereby improving delivery and effectiveness of the chemotherapeutic agent. SAA was capable of inhibiting glycolysis and strengthening endothelial junctions in the human umbilical vein endothelial cells (HUVECs) exposed to hypoxia. Mechanistically, SAA was inclined to directly bind to the glycolytic enzyme PKM2, leading to a dramatic decrease in endothelial glycolysis. More importantly, SAA improved the endothelial integrity via activating the β-Catenin/Claudin-5 signaling axis in a PKM2-dependent manner. Our findings suggest that SAA may serve as a potent agent for inducing tumor vascular normalization.
Collapse
Affiliation(s)
- Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Teng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanglu Dong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiuhong Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jaesung P. Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney NSW 2050, Australia
| | - Juming Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, China
| | - Chongjin Zhong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wan
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jia Li
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney NSW 2109, Australia
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
9
|
Liu L, Chen Y, Zhu X, Zhao L, Chen B. HER2-positive advanced biliary tract cancer responds to second-line pyrotinib therapy: a case report. Anticancer Drugs 2024; 35:298-301. [PMID: 38037743 PMCID: PMC10833193 DOI: 10.1097/cad.0000000000001558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Biliary tract cancers are solid tumors with poor prognosis and over 70% of patients present in advanced stages. The efficacy of second-line treatment for patients who progressed on GC chemotherapy is limited. Median OS of these patients is less than 1 year with palliative treatment. Despite the success of anti-HER2 therapy in HER2-positive breast cancer, the targeted therapy of HER2 mutations in BTCs is still being explored. This case report is the first report suggesting a 15-month PFS and partial response of pyrotinib in HER2-positive BTC. We report a 64-year-old female with HER2-positive biliary tract cancer. She was diagnosed with AJCC clinical stage IV (cT3N1M1) intrahepatic biliary tract cancer and got PD after 3 cycles of systemic chemotherapy of gemcitabine plus cisplatin. Due to the HER2-positive signature, pyrotinib (400 mg daily in 21-day cycles), an oral irreversible pan-ErbB TKI was prescribed in September 2021, with her informed consent. The tumor shrank significantly after this treatment and imaging assessments conducted on 24 September 2022 showed PR. Until the writing of the case draft, the patient had achieved 15 months of PFS. The present case suggests that Pyrotinib might be a potential effective treatment for HER2-positive advanced BTC.
Collapse
Affiliation(s)
- Linger Liu
- Department of Oncology, Zhuji People’s Hospital, Zhuji, Zhejiang Province, China
| | - Yao Chen
- Department of Oncology, Zhuji People’s Hospital, Zhuji, Zhejiang Province, China
| | - Xiaolian Zhu
- Department of Oncology, Zhuji People’s Hospital, Zhuji, Zhejiang Province, China
| | - Lisha Zhao
- Department of Oncology, Zhuji People’s Hospital, Zhuji, Zhejiang Province, China
| | - Baisong Chen
- Department of Oncology, Zhuji People’s Hospital, Zhuji, Zhejiang Province, China
| |
Collapse
|
10
|
Ma W, Li L, Li Z, Guo J, Zhu Y, Ge L, Wang R, Lv L. Effects of Shenmai Injection on the Pharmacokinetics of Dasatinib: An In-Depth In vivo Analysis Utilizing UPLC-MS/MS Technique. Curr Drug Metab 2024; 25:670-676. [PMID: 39901553 DOI: 10.2174/0113892002336775250108112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/10/2024] [Accepted: 12/12/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND Dasatinib has been widely used in the treatment of a variety of cancers, such as lung cancer and acute myeloid leukemia. Shenmai injection is a traditional Chinese medicine injection that is often used in antitumor adjuvant therapy. In recent years, dasatinib combined with Shenmai injection has been increasingly used to treat tumors clinically. However, the potential risks and benefits of co-administering Shenmai injection and dasatinib are unclear. OBJECTIVE The study aimed to investigate the potential influence of Shenmai injection on dasatinib pharmacokinetics. METHODS Twelve rats were selected and randomly divided into two groups: dasatinib alone and a combination of dasatinib and Shenmai injection. To measure the concentration of dasatinib in rat plasma, blood samples were obtained from the orbital vein. Using ultra-performance liquid chromatography-tandem mass spectrometry, the concentration of dasatinib was determined to obtain pharmacokinetic parameters. RESULTS Compared to the dasatinib alone administration, the maximum concentration of the dasatinib plus Shenmai injection administration was decreased (355.9 ± 194.9 vs. 199.2 ± 73.8 ng·mL-1) (P < 0.05). Moreover, the area under the moment curve (3867.0 ± 2141.9 vs. 6355.3 ± 3311.6 ng·mL-1·h2) and mean residence time (3.7 ± 1.2 vs. 6.5 ± 3.1 h) showed a statistically significant increase (P < 0.05). CONCLUSION The study revealed that Shenmai injection might have the capacity to slow down the absorption rate of dasatinib and could extend the retention period of dasatinib in the body, resulting in stabilized blood drug concentrations and a reduction in adverse drug reactions.
Collapse
Affiliation(s)
- Weina Ma
- Department of Pharmacy, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Ling Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhihui Li
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jungang Guo
- Department of Thoracic Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yifei Zhu
- Department of Pharmacy, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Liye Ge
- Department of Pharmacy, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Lv
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
11
|
Zhang Y, Zhang J, Li M, Qiao Y, Wang W, Ma L, Liu K. Target discovery of bioactive natural products with native-compound-coupled CNBr-activated Sepharose 4B beads (NCCB): Applications, mechanisms and outlooks. Bioorg Med Chem 2023; 96:117483. [PMID: 37951136 DOI: 10.1016/j.bmc.2023.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/13/2023]
Abstract
Natural products (NPs) represent a treasure trove for drug discovery and development due to their chemical structural diversity and a broad spectrum of biological activities. Uncovering the biological targets and understanding their molecular mechanism of actions are crucial steps in the development of clinical therapeutics. However, the structural complexity of NPs and intricate nature of biological system present formidable challenges in target identification of NPs. Although significant advances have been made in the development of new chemical tools, these methods often require high levels of synthetic skills for preparing chemical probes. This can be costly and time-consuming relaying on operationally complicated procedures and instruments. In recent efforts, we and others have successfully developed an operationally simple and practical chemical tool known as native-compound-coupled CNBr-activated Sepharose 4B beads (NCCB) for NP target identification. In this approach, a native compound readily reacts with commercial CNBr-activated Sepharose 4B beads with a process that is easily performed in any biology laboratory. Based on NCCB, our group has identified the direct targets of more than 60 NPs. In this review, we will elucidate the application scopes, including flavonoids, quinones, terpenoids and others, characteristics, chemical mechanisms, procedures, advantages, disadvantages, and future directions of NCCB in specific target discovery.
Collapse
Affiliation(s)
- Yueteng Zhang
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junjie Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglong Li
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei Wang
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Lu Ma
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
12
|
Chen YR, Zhao RT, Xu YF, Ma YJ, Hu SB, Wang XH, Fan BB, Zhou YJ, Huang YB, Robinson N, Liu JP, Liu ZL. Chinese herbal injections in combination with radiotherapy for advanced pancreatic cancer: A systematic review and network meta-analysis. Integr Med Res 2023; 12:101004. [PMID: 38033651 PMCID: PMC10681939 DOI: 10.1016/j.imr.2023.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Background Advanced pancreatic cancer (APC) is a fatal disease with limited treatment options. This study aims to evaluate the effectiveness and safety of different Chinese herbal injections (CHIs) as adjuvants for radiotherapy (RT) in APC and compare their treatment potentials using network meta-analysis. Methods We systematically searched three English and four Chinese databases for randomized controlled trials (RCTs) from inception to July 25, 2023. The primary outcome was the objective response rate (ORR). Secondary outcomes included Karnofsky performance status (KPS) score, overall survival (OS), and adverse events (AEs). The treatment potentials of different CHIs were ranked using the surface under the cumulative ranking curve (SUCRA). The Cochrane RoB 2 tool and CINeMA were used for quality assessment and evidence grading. Results Eighteen RCTs involving 1199 patients were included. Five CHIs were evaluated. Compound Kushen injection (CKI) combined with RT significantly improved ORR compared to RT alone (RR 1.49, 95 % CrI 1.21-1.86). Kanglaite (KLT) plus RT (RR 1.58, 95 % CrI 1.20-2.16) and CKI plus RT (RR 1.49, 95 % CrI 1.16-1.95) were associated with improved KPS score compared to radiation monotherapy, with KLT+RT being the highest rank (SUCRA 72.28 %). Regarding AEs, CKI plus RT was the most favorable in reducing the incidence of leukopenia (SUCRA 90.37 %) and nausea/vomiting (SUCRA 85.79 %). Conclusions CKI may be the optimal choice of CHIs to combine with RT for APC as it may improve clinical response, quality of life, and reduce AEs. High-quality trials are necessary to establish a robust body of evidence. Protocol registration PROSPERO, CRD42023396828.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Centre for Evidence-based Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruo-Tong Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Fang Xu
- Department of Oncology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yin-Jie Ma
- Wangjing Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Shao-Bo Hu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Xue-Hui Wang
- Centre for Evidence-based Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bing-Bing Fan
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Ji Zhou
- Health Management Department, Aerospace Center Hospital, Beijing, China
| | - Yu-Bei Huang
- Department of Epidemiology and Biostatistics, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Nicola Robinson
- Centre for Evidence-based Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Health and Social Care, London South Bank University, London, UK
| | - Jian-Ping Liu
- Centre for Evidence-based Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhao-Lan Liu
- Centre for Evidence-based Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Hou X, Chen D, Wang Y, Cui B, Xu H, Wang Y, Chen H, Wang D, Chen Y, Cheng T, Dai X. Network analysis to explore the pharmacological mechanism of Shenmai injection in treating granulocytopenia and evidence-based medicine approach validation. Medicine (Baltimore) 2023; 102:e33825. [PMID: 37335746 PMCID: PMC10194581 DOI: 10.1097/md.0000000000033825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/01/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Shenmai injection is frequently utilized in China to clinically treat granulocytopenia in oncology patients following chemotherapy. Despite this, the drug's therapeutic benefits remain a topic of contention, and its active components and potential treatment targets have yet to be established. The present study utilizes a network pharmacology approach to investigate the drug's active ingredients and possible therapeutic targets, and to evaluate the effectiveness of Shenmai injection in treating granulocytopenia through meta-analysis. METHODS In our subject paper, we utilized the TCMID database to investigate the active ingredients present in red ginseng and ophiopogon japonicus. To further identify molecular targets, we employed SuperPred, as well as OMIM, Genecards, and DisGeNET databases. Our focus was on targets associated with granulocytopenia. The DAVID 6.8 database was utilized to perform gene ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Additionally, a protein-protein interaction network was established. The resulting "drug-key component-potential target-core pathway" network was used to predict the mechanism of action of Shenmai injection in the treatment of granulocytopenia. In order to evaluate the quality of the studies included in our analysis, we utilized the Cochrane Reviewers' Handbook. We then conducted a meta-analysis of the clinical curative effect of Shenmai injection for granulocytopenia, utilizing the Cochrane Collaboration's RevMan 5.3 software. RESULTS After conducting a thorough screening, the study identified 5 primary ingredients of Shenmai injection - ophiopogonoside a, β-patchoulene, ginsenoside rf, ginsenoside re, and ginsenoside rg1-that can potentially target 5 essential proteins: STAT3, TLR4, PIK3CA, PIK3R1, and GRB2. Additionally, Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that Shenmai injection can be beneficial in treating granulocytopenia by interacting with pathways such as HIF-1 signaling, T-cell receptor signaling, PI3K-Akt signaling, chemokine signaling, and FoxO signaling. The results of meta-analysis indicate that the treatment group exhibited superior performance in terms of both efficiency and post-treatment leukocyte count when compared to the control group. CONCLUSION In summary, studies in network pharmacology demonstrate that Shenmai injection exerts an impact on granulocytopenia via various components, targets, and mechanisms. Additionally, evidence-based studies provide strong support for the effectiveness of Shenmai injection in preventing and treating granulocytopenia.
Collapse
Affiliation(s)
- Xianbing Hou
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Dandan Chen
- Department of Rehabilitation, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Yao Wang
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Bixian Cui
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Hui Xu
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Yuanyuan Wang
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Hongzhou Chen
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Dan Wang
- Department of Nursing, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Ying Chen
- Department of Nursing, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Tongfei Cheng
- Department of Nursing, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Xiaojun Dai
- Department of Nursing, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| |
Collapse
|
14
|
Xu H, Wang J, Chen Y, Du Y, Chen L, Wu C, Wang L, Chen G. Design, synthesis and evaluation of the novel chalcone derivatives with 2,2-dimethylbenzopyran as HIF-1 inhibitors that possess anti-angiogenic potential. Eur J Med Chem 2023; 250:115171. [PMID: 36774697 DOI: 10.1016/j.ejmech.2023.115171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) as a key mediator in tumor metastasis, angiogenesis and poor patient prognosis, has been recognized as an important cancer drug target. Up to now, some HIF-1 inhibitors with diverse skeletal structures were reported as anticancer agents, mostly natural product-derived compounds. In this study, we designed and synthesized a series of chalcone-based compounds with 2,2-dimethylbenzopyran using the combination principles to select benzopyrans and chalcones natural products. A novel series of chalcone-based compounds with 2,2-dimethylbenzopyran were evaluated as HIF-1 inhibitor. HRE luciferase reporter assay demonstrated compounds showed superior HIF-1 inhibitory activity. Among them, compound 16e exhibited the best features: the strongest HIF-1 inhibitory activity (IC50 = 2.38 μM, 3-fold higher than that of LXH-SYP-7). Meanwhile, it also significantly suppressed migration and VEGF-induced invasion of A549 cells in nontoxic concentrations. Additionally, tube formation assay demonstrated its anti-angiogenesis activity. Moreover, the in vivo study indicated that compound 16e could retard angiogenesis in the matrigel plug assay model, and almost no new blood vessels were formed in the suppository when it reached 20 μM. Finally, we also performed a subchronic toxicity test in which doses up to 50 mg/kg were administered orally for 10 days in Kunming mice with no toxic adverse effects and were well tolerated. These findings support the further investigation on the anti-invasive and anti-angiogenic potential of this class of compounds as HIF-1 inhibitor.
Collapse
Affiliation(s)
- Huashen Xu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Jianmin Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, PR China
| | - Yuanguang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yang Du
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, PR China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, PR China.
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
15
|
Huajuan J, Xulong H, Bin X, Yue W, Yongfeng Z, Chaoxiang R, Jin P. Chinese herbal injection for cardio-cerebrovascular disease: Overview and challenges. Front Pharmacol 2023; 14:1038906. [PMID: 36909150 PMCID: PMC9998719 DOI: 10.3389/fphar.2023.1038906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Cardio-cerebrovascular diseases are the leading cause of death worldwide and there is currently no optimal treatment plan. Chinese herbal medicine injection (CHI) is obtained by combining traditional Chinese medicine (TCM) theory and modern production technology. It retains some characteristics of TCM while adding injection characteristics. CHI has played an important role in the treatment of critical diseases, especially cardio-cerebrovascular diseases, and has shown unique therapeutic advantages. TCMs that promote blood circulation and remove blood stasis, such as Salvia miltiorrhiza, Carthami flos, Panax notoginseng, and Chuanxiong rhizoma, account for a large proportion of CHIs of cardio-cerebrovascular disease. CHI is used to treat cardio-cerebrovascular diseases and has potential pharmacological activities such as anti-platelet aggregation, anti-inflammatory, anti-fibrosis, and anti-apoptosis. However, CHIs have changed the traditional method of administering TCMs, and the drugs directly enter the bloodstream, which may produce new pharmacological effects or adverse reactions. This article summarizes the clinical application, pharmacological effects, and mechanism of action of different varieties of CHIs commonly used in the treatment of cardio-cerebrovascular diseases, analyzes the causes of adverse reactions, and proposes suggestions for rational drug use and pharmaceutical care methods to provide a reference for the rational application of CHIs for cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Jiang Huajuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huang Xulong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Bin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhou Yongfeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren Chaoxiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei Jin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Wang R, Lai Y, Fang Q, Chen M, Lei H, Song C. Discovery of enzymes to biotransform ginsenoside Rd into ginsenosides F2 and CK using metagenomics and genomic mining. Arch Microbiol 2022; 204:694. [DOI: 10.1007/s00203-022-03315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
|
17
|
Peng C, Chen J, Cui W, Li S, Li J, Peng L. Comparative efficacy of various CHIs combined with western medicine for non-small cell lung cancer: A bayesian network meta-analysis of randomized controlled trials. Front Pharmacol 2022; 13:1037620. [PMID: 36438813 PMCID: PMC9686447 DOI: 10.3389/fphar.2022.1037620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Given the limitations of Western medicine (WM) for the treatment of non-small cell lung cancer (NSCLC) and the wide exploration of Chinese herbal injections (CHIs), systematically evaluate the efficacy of Various CHIs Combined with WM for Non-small Cell Lung Cancer. In this study, we performed a network meta-analysis to evaluate the comparative efficacy of 16 CHIs combined with WM regimens for the treatment of NSCLC. Methods: Literature databases were searched from their inception to November 2021, and all randomized control trials (RCTs) involving NSCLC patients treated with a combination of Chinese and WM were retrieved. Outcomes, including disease control rate, survival quality score, incidence of gastrointestinal adverse reactions, incidence of leukopenia, and incidence of thrombocytopenia, were analyzed using RevMan (5.3), Stata17, and R software. Surface under the cumulative ranking curve (SUCRA) probability values were calculated to rank the treatments examined, and clustering analysis was used to compare the effects of CHIs on different outcomes. Results: A total of 389 studies involving 31,263 patients and 16 CHIs were included. The 16 CHIs were: Aidi injection (ADI), Huachansu injection (HCSI), oil of Ophiopogon injection (OOMI), disodium cantharidinate and vitamin B6 injection (DCI), Shenfu injection (SFI), Shenmai injection (SMI), Shenqi Fuzheng injection (SQFZI), Chansu injection (CSI), Delisheng injection (DLSI), Fufang Kushen injection (FFKSI), Huangqi injection (HQI), Kangai injection (KAI), Kanglaite injection (KLTI), Shengmai injection (SI), Xiangguduotang injection (XGDTI), and Xiaoaiping injection (XAPI). The results of the network meta-analysis showed that, with WM treatment as a co-intervention, CSI was most likely to improve the disease control rate (SUCRA = 80.90%), HQI had the highest probability of being the best option for improving the survival quality score (SUCRA = 82.60%), DCI had the highest probability of reducing the incidence of gastrointestinal adverse reactions (SUCRA = 85.50%), HCSI + WM had the highest probability of reducing the incidence of thrombocytopenia (SUCRA = 91.30%), while SMI had the highest probability of reducing the incidence of leukopenia (SUCRA = 79.10%). Conclusion: CHIs combined with WM is proved to be more effective than WM alone, which may be beneficial to NSCLC patients. SMI + WM and DCI + WM are most likely the optimal CHI to improve disease control rates, survival quality score, and reduce adverse effects. This study has limitations; therefore, higher quality RCTs and real-world evidence are required to support our conclusions.
Collapse
Affiliation(s)
- Ciyan Peng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Chen
- Department of Pharmacy, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Cui
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sini Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianhe Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liubao Peng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liubao Peng,
| |
Collapse
|
18
|
Zhou K, Chen H, Wang XY, Xu YM, Liao YF, Qin YY, Ge XW, Zhang TT, Fang ZL, Fu BB, Xiao QZ, Zhu FQ, Chen SR, Liu XS, Luo QC, Gao S. Targeted pharmacokinetics and bioinformatics screening strategy reveals JAK2 as the main target for Xin-Ji-Er-Kang in treatment of MIR injury. Biomed Pharmacother 2022; 155:113792. [PMID: 36271569 DOI: 10.1016/j.biopha.2022.113792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Xin-Ji-Er-Kang (XJEK) is traditional Chinese formula presented excellent protective effects on several heart diseases, but the potential components and targets are still unclear. The aim of this study is to elucidate the effective components of XJEK and reveal its potential mechanism of cardioprotective effect in myocardial ischemia-reperfusion (MIR) injury. EXPERIMENTAL APPROACH Firstly, the key compounds in XJEK, plasma and heart tissue were analyzed by high resolution mass spectrometry. Bioinformatics studies were also involved to disclose the potential targets and the binding sites for the key compounds. Secondly, to study the protective effect of XJEK on MIR injury and related mechanism, mice subjected to MIR surgery and gavage administered with XJEK for 6 weeks. Cardiac function parameters and apoptosis level of cardiac tissue were assessed. The potential mechanism was further verified by knock down of target protein in vitro. RESULTS Pharmacokinetics studies showed that Sophora flavescens alkaloids, primarily composed with matrine, are the key component of XJEK. And, through bioinformatic analysis, we speculated JAK2 could be the potential target for XJEK, and could form stable hydrogen bonds with matrine. Administration of XJEK and matrine significantly improved heart function and reduced apoptosis of cardiomyocytes by increasing the phosphorylation of JAK2 and STAT3. The anti-apoptosis effect of XJEK and matrine was also observed on AC16 cells, and could be reversed by co-treatment with JAK2 inhibitor AG490 or knock-down of JAK2. CONCLUSION XJEK exerts cardioprotective effect on MIR injury, which may be associated with the activation of JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hua Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yan-Mei Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yu-Feng Liao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuan-Yuan Qin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xue-Wan Ge
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ting-Ting Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhong-Lin Fang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Bei-Bei Fu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Qing-Zhong Xiao
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Feng-Qin Zhu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230032, China
| | - Si-Rui Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR China
| | - Xue-Sheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Qi-Chao Luo
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Shan Gao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
19
|
Unraveling the mystery of efficacy in Chinese medicine formula: New approaches and technologies for research on pharmacodynamic substances. ARAB J CHEM 2022; 15:104302. [PMID: 36189434 PMCID: PMC9514000 DOI: 10.1016/j.arabjc.2022.104302] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 12/25/2022] Open
Abstract
Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble "mystery boxes". Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.
Collapse
Key Words
- 2D, Two Dimensional
- 3D, Three Dimensional
- ADME, Absorption, Distribution, Metabolism, and Excretion
- AFA DESI-MSI, Air flow-assisted desorption electrospray ionization mass spectrometry imaging
- AI, Artificial Intelligence
- Active ingredient
- CDE, Center for Drug Evaluation
- COX-2, Cyclooxygenase 2
- Chemical components
- Chinese medicine formula
- Compound
- Disease Targets
- GC-MS, Gas chromatography-mass spectrometry
- HPLC, High Performance Liquid Chromatography
- HR-MS, High Resolution Mass Spectrometry
- HTS, High Throughput Screening
- HUA, hyperuricemia
- ICPMS, inductively coupled plasma mass spectrometry
- MALDI MS, Matrix for surface-assisted laser desorption/ionization mass spectrometry
- MD, Microdialysis
- MI, Molecular imprinting
- MSI, Mass spectrometry imaging
- Mass Spectrometry
- NL/PR, Neutral loss/precursor ion
- NMPA, National Medical Products Administration
- OPLS-DA, Orthogonal partial least squares discriminant analysis
- PD, Pharmacodynamic
- PK, Pharmacokinetic
- Q-TOF/MS, Quadrupole time-of-flight mass spectrometry
- QSAR, Quantitative structure-activity relationship
- QqQ-MS, Triple quadruple mass spectrometry
- R-strategy, Reduce strategy
- TCM, Traditional Chinese medicine
- UF, Affinity ultrafiltration
- UPLC, Ultra Performance Liquid Chromatography
- XO, Xanthine oxidase
Collapse
|
20
|
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12:4011-4039. [PMID: 36386472 PMCID: PMC9643300 DOI: 10.1016/j.apsb.2022.08.022] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Natural products, and especially the active ingredients found in traditional Chinese medicine (TCM), have a thousand-year-long history of clinical use and a strong theoretical basis in TCM. As such, traditional remedies provide shortcuts for the development of original new drugs in China, and increasing numbers of natural products are showing great therapeutic potential in various diseases. This paper reviews the molecular mechanisms of action of natural products from different sources used in the treatment of inflammatory diseases and cancer, introduces the methods and newly emerging technologies used to identify and validate the targets of natural active ingredients, enumerates the expansive list of TCM used to treat inflammatory diseases and cancer, and summarizes the patterns of action of emerging technologies such as single-cell multiomics, network pharmacology, and artificial intelligence in the pharmacological studies of natural products to provide insights for the development of innovative natural product-based drugs. Our hope is that we can make use of advances in target identification and single-cell multiomics to obtain a deeper understanding of actions of mechanisms of natural products that will allow innovation and revitalization of TCM and its swift industrialization and internationalization.
Collapse
Affiliation(s)
- Yuyu Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Jiaojiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
21
|
Chang L, Wang D, Kan S, Hao M, Liu H, Yang Z, Xia Q, Liu W. Ginsenoside Rd inhibits migration and invasion of tongue cancer cells through H19/miR-675-5p/CDH1 axis. J Appl Oral Sci 2022; 30:e20220144. [PMID: 36074434 PMCID: PMC9444189 DOI: 10.1590/1678-7757-2022-0144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Tongue squamous cell carcinoma (TSCC) is an oral cancer, with high malignancy and frequent early migration and invasion. Only a few drugs can treat tongue cancer. Ginsenoside Rd is a ginseng extract with anti-cancer effects. Many noncoding RNAs are abnormally expressed in tongue cancer, thus influencing its occurrence and development. H19 and miR-675-5p can promote cancer cell growth. This study aimed to analyze the regulation effect of ginsenoside Rd on H19 and miR-675-5p in tongue cancer. Methodology We used CCK8 and flow cytometry to study the growth and apoptosis. Transwell assay was used to assess invasion; wound-healing assay to assess migration; and colony formation assays to test the ability of cells to form colonies. H19, miR-675-5p, and CDH1 expressions were analyzed by qPCR. E-cadherin expression was detected using western blot. CRISPR/cas9 system was used for CDH1 knockout. Results Ginsenoside Rd inhibited the growth and increased the apoptosis of SCC9 cells. Ginsenoside Rd also inhibited the migration and invasion of SCC9 cells. H19 and miR-675-5p were highly expressed, while CDH1 and E-cadherin expressions were low. H19 and miR-675-5p promoted SCC9 metastasis. In contrast, CDH1 and E-cadherin inhibited the metastasis of SCC9 cells. Bioinformatics analysis showed that miR-675-5p was associated with CDH1. H19 and miR-675-5p expressions decreased after ginsenoside Rd treatment, while CDH1 and E-cadherin expressions increased. Conclusions Ginsenoside Rd inhibits tongue cancer cell migration and invasion via the H19/miR-675-5p/CDH1 axis.
Collapse
Affiliation(s)
- Lu Chang
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China.,Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China.,Jilin University, Hospital of Stomatology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Dongxu Wang
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Shaoning Kan
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Ming Hao
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Huimin Liu
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Zhijing Yang
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Qianyun Xia
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Weiwei Liu
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| |
Collapse
|
22
|
Zou F, Wang Y, Yu D, Liu C, Lu J, Zhao M, Ma M, Wang W, Jiang W, Gao Y, Zhang R, Zhang J, Ye L, Tian J. Discovery of the thieno[2,3-d]pyrimidine-2,4-dione derivative 21a: A potent and orally bioavailable gonadotropin-releasing hormone receptor antagonist. Eur J Med Chem 2022; 242:114679. [PMID: 35998545 DOI: 10.1016/j.ejmech.2022.114679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
The gonadotropin releasing hormone receptor (GnRH-R) is a G protein-coupled receptor (GPCR) belonging to the rhodopsin family. GnRH-R antagonists suppress testosterone to castrate level more rapidly than gonadotropin releasing hormone agonists but lack the flare phenomenon often seen during the early period of GnRH-R agonist treatment. Recently orgovyx (relugolix) was approved as the first oral GnRH-R antagonist for the treatment of advanced prostate cancer. However, orgovyx has demonstrated poor pharmacokinetic profile with low oral bioavailability and high efflux. Here, we rationally designed and synthesized a series of derivatives (13a-m, 21a-i) through the modification and structure-activity relationship study of relugolix, which led to the discovery of 21a as a highly potent GnRH-R antagonist (IC50 = 2.18 nM) with improved membrane permeability (Papp, A-B = 0.98 × 10-6 cm/s) and oral bioavailability (F % = 44.7). Compound 21a showed high binding affinity (IC50 = 0.57 nM) and potent in vitro antagonistic activity (IC50 = 2.18 nM) at GnRH-R. 21a was well tolerated and efficacious in preclinical studies to suppress blood testosterone levels, which merits further investigation as a candidate novel GnRH-R antagonist for clinical studies.
Collapse
Affiliation(s)
- Fangxia Zou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yao Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Dawei Yu
- Medicinal Chemistry Research Department, R & D Center (Luye Pharma Group Ltd.), Yantai, 264003, PR China
| | - Chunjiao Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Min Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Mingxu Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wanglin Jiang
- School of Public Health and Management, Binzhou Medical University, Yantai, PR China
| | - Yonglin Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Rui Zhang
- Medicinal Chemistry Research Department, R & D Center (Luye Pharma Group Ltd.), Yantai, 264003, PR China
| | - Jianzhao Zhang
- College of Life Sciences, Yantai University, Yantai, Shangdong, 264005, PR China.
| | - Liang Ye
- School of Public Health and Management, Binzhou Medical University, Yantai, PR China.
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
23
|
Pharmacological manipulation of Ezh2 with salvianolic acid B results in tumor vascular normalization and synergizes with cisplatin and T cell-mediated immunotherapy. Pharmacol Res 2022; 182:106333. [PMID: 35779815 DOI: 10.1016/j.phrs.2022.106333] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
Tumor vasculature is characterized by aberrant structure and function, resulting in immune suppressive profiles of tumor microenvironment (TME) through limiting immune cell infiltration into tumors. The defective vascular perfusion in tumors also impairs the delivery and efficacy of chemotherapeutic agents. Targeting abnormal tumor blood vessels has emerged as an effective therapeutic strategy to improve the outcome of chemotherapy and immunotherapy. In this study, we demonstrated that Salvianolic acid B (SalB), one of the major ingredients of Salvia miltiorriza elicited vascular normalization in the mouse models of breast cancer, contributing to improved delivery and response of chemotherapeutic agent cisplatin as well as attenuated metastasis. Moreover, SalB in combination with anti-PD-L1 blockade retarded tumor growth, which was mainly due to elevated infiltration of immune effector cells and boosted delivery of anti-PD-L1 into tumors. Mechanistically, tumor cell enhancer of zeste homolog 2 (Ezh2)-driven cytokines disrupted the endothelial junctions with diminished VE-cadherin expression, which could be rescued in the presence of SalB. The restored vascular integrity by SalB via modulating the interactions between tumor cells and endothelial cells (ECs) offered a principal route for achieving vascular normalization. Taken together, our data elucidated that SalB enhanced sensitivity of tumor cells to chemotherapy and immunotherapy through triggering tumor vascular normalization, providing a potential therapeutic strategy of combining SalB and chemotherapy or immunotherapy for patients with breast cancer.
Collapse
|
24
|
Ao L, Fang S, Zhang K, Gao Y, Cui J, Jia W, Shan Y, Zhang J, Wang G, Liu J, Zhou F. Sequence-dependent synergistic effect of aumolertinib-pemetrexed combined therapy on EGFR-mutant non-small-cell lung carcinoma with pre-clinical and clinical evidence. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:163. [PMID: 35501907 PMCID: PMC9063085 DOI: 10.1186/s13046-022-02369-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Inevitably developed resistance of the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) limited its clinical benefit on non-small cell lung cancer (NSCLC). Upfront combination therapy is promising to prevent this resistance. Compelling clinical evidence indicated the failure of third-generation EGFR TKIs combined with either immunotherapy or antiangiogenic agents. In comparison, combined treatment of third-generation EGFR TKIs and chemotherapy might be a favorable choice. Herein, we systematically analyzed and compared the effects of pemetrexed and a novel third-generation EGFR TKI aumolertinib combined in different sequences, subsequently revealed the potential mechanisms and proved the optimal combination schedule with clinical retrospective study. METHODS Three combination schedules involving pemetrexed and aumolertinib in different sequences were developed. Their inhibition effects on cell proliferation and metastasis were firstly compared upon three human NSCLC cell lines in vitro, by cell counting kit-8, colony formation, wound healing and transwell assays respectively. Further evaluation in vivo was proceeded upon H1975 and HCC827 xenograft model. Gene and protein expression were detected by Q-PCR and western blot. Drug concentration was determined by LC-MS/MS. VEGF secretion was determined by ELISA. Tumor vessel was visualized by immunofluorescence. Lastly, a clinical retrospective study was raised with 65 patients' data. RESULTS The combination of pemetrexed and aumolertinib exhibited a sequence-dependent and EGFR mutant-dependent synergistic effect in vitro and in vivo. Only treatment with aumolertinib following pemetrexed (P-A) exhibited synergistic effect with stronger anti-tumor growth and anti-metastasis ability than monotherapy and also other combination sequences. This synergism could exclusively be observed in H1975 and HCC827 but not A549. Pathway analysis showed that P-A significantly enhanced the suppression of EGFR pathway. In addition, our results intriguingly found an obvious reduction of VEGF secretion and the accompanying normalization of the intratumor vessel, consequently increasing intratumoral accumulation of pemetrexed in P-A group. Finally, the clinical retrospective study verified the synergistic effect of P-A combination by significantly superior tumor response than aumolertinib monotherapy. CONCLUSION Aumolertinib-pemetrexed combined therapy is promising for EGFR mutant NSCLC but only in right administration sequence. P-A could become an advantageous combination strategy in clinical with synergistic inhibition of tumor growth and metastasis.
Collapse
Affiliation(s)
- Luyao Ao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, 210009, Jiangsu, China
| | - Shencun Fang
- Department of Respiratory Medicine, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, 215 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Kexin Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, 210009, Jiangsu, China
| | - Yang Gao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, 210009, Jiangsu, China
| | - Jiawen Cui
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, 210009, Jiangsu, China
| | - Wenjing Jia
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, 210009, Jiangsu, China
| | - Yunlong Shan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, 210009, Jiangsu, China
| | - Jingwei Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, 210009, Jiangsu, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, 210009, Jiangsu, China.
| | - Jiali Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, 210009, Jiangsu, China.
| | - Fang Zhou
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
25
|
Insights into Recent Studies on Biotransformation and Pharmacological Activities of Ginsenoside Rd. Biomolecules 2022; 12:biom12040512. [PMID: 35454101 PMCID: PMC9031344 DOI: 10.3390/biom12040512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
It is well known that ginsenosides—major bioactive constituents of Panax ginseng—are attracting more attention due to their beneficial pharmacological activities. Ginsenoside Rd, belonging to protopanaxadiol (PPD)-type ginsenosides, exhibits diverse and powerful pharmacological activities. In recent decades, nearly 300 studies on the pharmacological activities of Rd—as a potential treatment for a variety of diseases—have been published. However, no specific, comprehensive reviews have been documented to date. The present review not only summarizes the in vitro and in vivo studies on the health benefits of Rd, including anti-cancer, anti-diabetic, anti-inflammatory, neuroprotective, cardioprotective, ischemic stroke, immunoregulation, and other pharmacological effects, it also delves into the inclusion of potential molecular mechanisms, providing an overview of future prospects for the use of Rd in the treatment of chronic metabolic diseases and neurodegenerative disorders. Although biotransformation, pharmacokinetics, and clinical studies of Rd have also been reviewed, clinical trial data of Rd are limited; the only data available are for its treatment of acute ischemic stroke. Therefore, clinical evidence of Rd should be considered in future studies.
Collapse
|
26
|
Shan Y, Ni Q, Zhang Q, Zhang M, Wei B, Cheng L, Zhong C, Wang X, Wang Q, Liu J, Zhang J, Wu J, Wang G, Zhou F. Targeting tumor endothelial hyperglycolysis enhances immunotherapy through remodeling tumor microenvironment. Acta Pharm Sin B 2022; 12:1825-1839. [PMID: 35847509 PMCID: PMC9279856 DOI: 10.1016/j.apsb.2022.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Vascular abnormality is a hallmark of most solid tumors and facilitates immune evasion. Targeting the abnormal metabolism of tumor endothelial cells (TECs) may provide an opportunity to improve the outcome of immunotherapy. Here, in comparison to vascular endothelial cells from adjacent peritumoral tissues in patients with colorectal cancer (CRC), TECs presented enhanced glycolysis with higher glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. Then an unbiased screening identified that osimertinib could modify the GAPDH and thus inhibit its activity in TECs. Low-dose osimertinib treatment caused tumor regression with vascular normalization and increased infiltration of immune effector cells in tumor, which was due to the reduced secretion of lactate from TECs by osimertinib through the inhibition of GAPDH. Moreover, osimertinib and anti-PD-1 blockade synergistically retarded tumor growth. This study provides a potential strategy to enhance immunotherapy by targeting the abnormal metabolism of TECs.
Collapse
|
27
|
Chen B, Luo H, Chen W, Huang Q, Zheng K, Xu D, Li S, Liu A, Huang L, Zheng Y, Lin X, Yao H. Pharmacokinetics, Tissue Distribution, and Human Serum Albumin Binding Properties of Delicaflavone, a Novel Anti-Tumor Candidate. Front Pharmacol 2021; 12:761884. [PMID: 34867382 PMCID: PMC8635734 DOI: 10.3389/fphar.2021.761884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 01/12/2023] Open
Abstract
Delicaflavone (DF), a natural active ingredient from Selaginella doederleinii Hieron, has been reported to have favorable anticancer effects and is thus considered a potential anticancer agent. However, its pharmacokinetics and plasma protein binding properties remain unknown. Here, we investigated the pharmacokinetic profile of DF in rats using a validated HPLC-MS/MS methods, as well as its human serum albumin (HSA) binding properties through multi-spectroscopic and in silico methods. The results showed that DF was rapidly eliminated and had a widespread tissue distribution after intravenous administration. DF showed linear dynamics in the dose range of 30–60 mg/kg and poor oral bioavailability. The major distribution tissues of DF were the liver, lungs, and kidneys. Ultraviolet and fluorescence spectroscopy and molecular docking demonstrated that DF had a static quenching effect on HSA, with one binding site, and relatively strong binding constants. Thermodynamic analysis of the binding data revealed that hydrogen bonding and van der Waals interactions played major roles in binding. The results of this study further our understanding of the pharmacokinetic and plasma protein binding properties of the potential anticancer agent DF and shed light on pharmacological strategies that may be useful for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Bing Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hongbin Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Department of Orthopedic, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Weiying Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Department of Pharmacy, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Qishu Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kaifan Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dafen Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yanjie Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Chen Y, Zhang C, Pan C, Yang Y, Liu J, Lv J, Pan G. Effects of Shenmai injection combined with platinum-containing first-line chemotherapy on quality of life, immune function and prognosis of patients with nonsmall cell lung cancer: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27524. [PMID: 34871214 PMCID: PMC8568423 DOI: 10.1097/md.0000000000027524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of death among cancer patients worldwide. Close to 85% of lung cancer pathology types are nonsmall cell lung cancer (NSCLC). With advances in medicine, the survival rate of early-stage NSCLC has improved. Nevertheless, about 70% of patients are diagnosed at an advanced stage, and chemotherapy is the primary treatment option. Chemotherapy causes toxic side effects such as bone marrow suppression, gastrointestinal reactions, and damage to vital organs, which are difficult for patients to tolerate. Many published literatures have reported that Shenmai injection (SMI) combined with platinum-containing first-line chemotherapy regimen for NSCLC can improve the recent efficacy, reduce toxic side effects and improve the quality of life. However, most of the studies were small samples and lacked persuasive power, while controversies existed among individual studies. Therefore, this study used meta-analysis to further evaluate the effects of SMI combined with platinum-containing first-line chemotherapy on the quality of life, immune function and prognosis of patients with NSCLC. METHODS Wanfang, Chinese Biomedical Literature Database, Chinese National Knowledge Infrastructure, the Chongqing VIP Chinese Science and Technology Periodical Database, PubMed, Embase, and Web of Science databases were searched. The search was scheduled from the establishment of the database to September 2021. All randomized controlled trials comparing SMI in combination with platinum-containing first-line chemotherapy to platinum-containing first-line chemotherapy alone for the treatment of NSCLC were searched and evaluated for inclusion. Two investigators independently performed study selection, data extraction and synthesis. The Cochrane Risk of Bias tool was used to assess the risk of bias in the randomized controlled trials. Stata 16.0 software was used for meta-analysis. RESULTS The results of this meta-analysis will be submitted to a peer-reviewed journal for publication. CONCLUSION This study comprehensively evaluated the effects of SMI combined with platinum-containing first-line chemotherapy on quality of life, immune function and prognosis in patients with NSCLC to provide an evidence-based basis for clinical practice. ETHICS AND DISSEMINATION The private information from individuals will not be published. This systematic review should also not damage participants' rights. Ethical approval was not available. The results may be published in a peer-reviewed journal or disseminated in relevant conferences.OSF Registration number: DOI 10.17605/OSF.IO/AMKDC.
Collapse
Affiliation(s)
- Yanqiong Chen
- Qujing No. 1 Hospital, Qujing, Yunnan Province, China
| | - Chao Zhang
- Qujing No. 1 Hospital, Qujing, Yunnan Province, China
| | - Cheng Pan
- Kunming Medical University, Kunming, Yunnan Province, China
| | - Yunkui Yang
- Qujing No. 1 Hospital, Qujing, Yunnan Province, China
| | - Jin Liu
- Qujing No. 1 Hospital, Qujing, Yunnan Province, China
| | - Jialing Lv
- Qujing No. 1 Hospital, Qujing, Yunnan Province, China
| | - Guilin Pan
- Qujing No. 1 Hospital, Qujing, Yunnan Province, China
| |
Collapse
|
29
|
Pu Z, Zhang W, Wang M, Xu M, Xie H, Zhao J. Schisandrin B Attenuates Colitis-Associated Colorectal Cancer through SIRT1 Linked SMURF2 Signaling. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1773-1789. [PMID: 34632965 DOI: 10.1142/s0192415x21500841] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Colon cancer, a common type of malignant tumor, seriously endangers human health. However, due to the relatively slow progress in diagnosis and treatment, the clinical therapeutic technology of colon cancer has not been substantially improved in the past three decades. The present study was designed to investigate the effects and involved mechanisms of schisandrin B in cell growth and metastasis of colon cancer. C57BL/6 mice received AOM and dextran sulfate sodium. Mice in treatment groups were gavaged with 3.75-30 mg/kg/day of schisandrin B. Transwell chamber migration, enzyme-linked immunosorbent assay (ELISA), Western blot analysis, immunoprecipitation (IP) and immunofluorescence were conducted, and HCT116 cell line was employed in this study. Data showed that schisandrin B inhibited tumor number and tumor size in the AOD+DSS-induced colon cancer mouse model. Schisandrin B also inhibited cell proliferation and metastasis of colon cancer cells. We observed that schisandrin B induced SMURF2 protein expression and affected SIRT1 in vitro and in vivo. SMURF2 interacted with SIRT1 protein, and there was a negative correlation between SIRT1 and SMURF2 expressions in human colorectal cancer. The regulation of SMURF2 was involved in the anticancer effects of schisandrin B in both in vitro and in vivo models. In conclusion, the present study revealed that schisandrin B suppressed SIRT1 protein expression, and SIRT1 is negatively correlated with the induction of SMURF2, which inhibited cell growth and metastasis of colon cancer. Schisandrin B could be a leading compound, which will contribute to finding novel potential agents and therapeutic targets for colon cancer.
Collapse
Affiliation(s)
- Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, P. R. China.,State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Weiwei Zhang
- Department of Pharmacy, Second affiliated hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Minhui Wang
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Maodi Xu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Haitang Xie
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Jun Zhao
- Department of Pharmacy, Second affiliated hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China.,Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| |
Collapse
|
30
|
Fang Y, He Y, Wu C, Zhang M, Gu Z, Zhang J, Liu E, Xu Q, Asrorov AM, Huang Y. Magnetism-mediated targeting hyperthermia-immunotherapy in "cold" tumor with CSF1R inhibitor. Am J Cancer Res 2021; 11:6860-6872. [PMID: 34093858 PMCID: PMC8171105 DOI: 10.7150/thno.57511] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Immunotherapy has profoundly changed the landscape of cancer management and represented the most significant breakthrough. Yet, it is a formidable challenge that the majority of cancers - the so-called “cold” tumors - poorly respond to immunotherapy. To find a general immunoregulatory modality that can be applied to a broad spectrum of cancers is an urgent need. Methods: Magnetic hyperthermia (MHT) possesses promise in cancer therapy. We develop a safe and effective therapeutic strategy by using magnetism-mediated targeting MHT-immunotherapy in “cold” colon cancer. A magnetic liposomal system modified with cell-penetrating TAT peptide was developed for targeted delivery of a CSF1R inhibitor (BLZ945), which can block the CSF1-CSF1R pathway and reduce M2 macrophages. The targeted delivery strategy is characterized by its magnetic navigation and TAT-promoting intratumoral penetration. Results: The liposomes (termed TAT-BLZmlips) can induce ICD and cause excessive CRT exposure on the cell surface, which transmits an “eat-me” signal to DCs to elicit immunity. The combination of MHT and BLZ945 can repolarize M2 macrophages in the tumor microenvironment to relieve immunosuppression, normalize the tumor blood vessels, and promote T-lymphocyte infiltration. The antitumor effector CD8+ T cells were increased after treatment. Conclusion: This work demonstrated that TAT-BLZmlips with magnetic navigation and MHT can remodel tumor microenvironment and activate immune responses and memory, thus inhibiting tumor growth and recurrence.
Collapse
|
31
|
Zheng Z, Zhou Z, Zhang Q, Zhou X, Yang J, Yang MR, Zhu GY, Jiang ZH, Li T, Lin Q, Bai LP. Non-classical cardenolides from Calotropis gigantea exhibit anticancer effect as HIF-1 inhibitors. Bioorg Chem 2021; 109:104740. [PMID: 33626453 DOI: 10.1016/j.bioorg.2021.104740] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Six new non-classical cardenolides (1-6), and seventeen known ones (7-23) were isolated from Calotropis gigantea. All cardenolides showed inhibitory effect on hypoxia inducible factor-1 (HIF-1) transcriptional activity with IC50 of 8.85 nM-16.69 µM except 5 and 7. The novel 19-dihydrocalotoxin (1) exhibited a comparable HIF-1 inhibitory activity (IC50 of 139.57 nM) to digoxin (IC50 of 145.77 nM), a well-studied HIF-1 inhibitor, and 11, 12, 14, 16 and 19 presented 1.4-15.4 folds stronger HIF-1 inhibition than digoxin. 1 and 11 showed a dose-dependent inhibition on HIF-1α protein, which led to their HIF-1 suppressing effects. Compared with LO2 and H9c2 normal cell lines, both 1 and 11 showed selective cytotoxicity against various cancer cell lines including HCT116, HeLa, HepG2, A549, MCF-7, A2780 and MDA-MB-231. Moreover, a comprehensive structure-activity relationship was concluded for these non-classical cardenolides as HIF-1 inhibitors, which may shed some light on the rational design and development of cardenolide-based anticancer drugs.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Zhongbo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China; School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| | - Qiulong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Xiaobo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Ji Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Ming-Rong Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Macau 999078, People's Republic of China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Macau 999078, People's Republic of China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Macau 999078, People's Republic of China
| | - Qianyu Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Macau 999078, People's Republic of China.
| |
Collapse
|
32
|
Jeevanandam J, Sabbih G, Tan KX, Danquah MK. Oncological Ligand-Target Binding Systems and Developmental Approaches for Cancer Theranostics. Mol Biotechnol 2021; 63:167-183. [PMID: 33423212 DOI: 10.1007/s12033-020-00296-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Targeted treatment of cancer hinges on the identification of specific intracellular molecular receptors on cancer cells to stimulate apoptosis for eventually inhibiting growth; the development of novel ligands to target biomarkers expressed by the cancer cells; and the creation of novel multifunctional carrier systems for targeted delivery of anticancer drugs to specific malignant sites. There are numerous receptors, antigens, and biomarkers that have been discovered as oncological targets (oncotargets) for cancer diagnosis and treatment applications. Oncotargets are critically important to navigate active anticancer drug ingredients to specific disease sites with no/minimal effect on surrounding normal cells. In silico techniques relating to genomics, proteomics, and bioinformatics have catalyzed the discovery of oncotargets for various cancer types. Effective oncotargeting requires high-affinity probes engineered for specific binding of receptors associated with the malignancy. Computational methods such as structural modeling and molecular dynamic (MD) simulations offer opportunities to structurally design novel ligands and optimize binding affinity for specific oncotargets. This article proposes a streamlined approach for the development of ligand-oncotarget bioaffinity systems via integrated structural modeling and MD simulations, making use of proteomics, genomic, and X-ray crystallographic resources, to support targeted diagnosis and treatment of cancers and tumors.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Kei X Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, USA.
| |
Collapse
|
33
|
Chen X, Wang Y, Ma N, Tian J, Shao Y, Zhu B, Wong YK, Liang Z, Zou C, Wang J. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduct Target Ther 2020; 5:72. [PMID: 32435053 PMCID: PMC7239890 DOI: 10.1038/s41392-020-0186-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Natural products are an important source of new drugs for the treatment of various diseases. However, developing natural product-based new medicines through random moiety modification is a lengthy and costly process, due in part to the difficulties associated with comprehensively understanding the mechanism of action and the side effects. Identifying the protein targets of natural products is an effective strategy, but most medicines interact with multiple protein targets, which complicate this process. In recent years, an increasing number of researchers have begun to screen the target proteins of natural products with chemical proteomics approaches, which can provide a more comprehensive array of the protein targets of active small molecules in an unbiased manner. Typically, chemical proteomics experiments for target identification consist of two key steps: (1) chemical probe design and synthesis and (2) target fishing and identification. In recent decades, five different types of chemical proteomic probes and their respective target fishing methods have been developed to screen targets of molecules with different structures, and a variety of protein identification approaches have been invented. Presently, we will classify these chemical proteomics approaches, the application scopes and characteristics of the different types of chemical probes, the different protein identification methods, and the advantages and disadvantages of these strategies.
Collapse
Affiliation(s)
- Xiao Chen
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yutong Wang
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nan Ma
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Tian
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yurou Shao
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bo Zhu
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yin Kwan Wong
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Zhen Liang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|