1
|
Lv W, Jia X, Tang B, Ma C, Fang X, Jin X, Niu Z, Han X. In silico modeling of targeted protein degradation. Eur J Med Chem 2025; 289:117432. [PMID: 40015161 DOI: 10.1016/j.ejmech.2025.117432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Targeted protein degradation (TPD) techniques, particularly proteolysis-targeting chimeras (PROTAC) and molecular glue degraders (MGD), have offered novel strategies in drug discovery. With rapid advancement of computer-aided drug design (CADD) and artificial intelligence-driven drug discovery (AIDD) in the biomedical field, a major focus has become how to effectively integrate these technologies into the TPD drug discovery pipeline to accelerate development, shorten timelines, and reduce costs. Currently, the main research directions for applying CADD and AIDD in TPD include: 1) ternary complex modeling; 2) linker generation; 3) strategies to predict degrader targets, activities and ADME/T properties; 4) In silico degrader design and discovery. Models developed in these areas play a crucial role in target identification, drug design, and optimization at various stages of the discovery process. However, the limited size and quality of datasets related to TPD present challenges, leaving room for further improvement in these models. TPD involves the complex ubiquitin-proteasome system, with numerous factors influencing outcomes. Most current models adopt a static perspective to interpret and predict relevant tasks. In the future, it may be necessary to shift toward dynamic approaches that better capture the intricate relationships among these components. Furthermore, incorporating new and diverse chemical spaces will enhance the precision design and application of TPD agents.
Collapse
Affiliation(s)
- Wenxing Lv
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China; Hangzhou Institute of Advanced Technology, Hangzhou, 310000, China.
| | - Xiaojuan Jia
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Bowen Tang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Guangzhou New Block Technology Co., Ltd., Guangzhou, 510000, China.
| | - Chao Ma
- Guangzhou New Block Technology Co., Ltd., Guangzhou, 510000, China.
| | - Xiaopeng Fang
- Hangzhou Institute of Advanced Technology, Hangzhou, 310000, China.
| | - Xurui Jin
- MindRank AI, Hangzhou, 310000, China.
| | - Zhangming Niu
- MindRank AI, Hangzhou, 310000, China; National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, 541004, China.
| |
Collapse
|
2
|
M S, Joga R, Gandhi K, Yerram S, Raghuvanshi RS, Srivastava S. Exploring the clinical trials, regulatory insights, and challenges of PROTACs in oncology. Semin Oncol 2025; 52:152339. [PMID: 40253775 DOI: 10.1016/j.seminoncol.2025.152339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 04/22/2025]
Abstract
While various targeted therapies exist for cancer, resistance mechanisms remain a significant challenge. Recent advancements in cancer treatment have led to the emergence of proteolysis-targeting chimeras (PROTACs), a promising technology utilizing hetero-bifunctional molecules to target and degrade proteins implicated in cancer progression through the ubiquitin-proteasome system (UPS). PROTACs offer a novel approach, with recent studies and clinical trials demonstrating promising outcomes in degrading endogenous proteins linked to cancer. This work explores classification, regulatory approvals, and ongoing clinical trials of PROTAC technology in cancer management. It emphasizes the importance of regulatory compliance to expedite approvals from relevant authorities. It also highlights challenges and opportunities associated with their implementation. Despite these preliminary efforts, PROTACs show immense potential in effectively addressing cancer. Their ability to target specific proteins for degradation represents a significant advancement in cancer therapeutics, offering new hope for improved outcomes in patient care.
Collapse
Affiliation(s)
- Sowndharya M
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Kajal Gandhi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sravani Yerram
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rajeev Singh Raghuvanshi
- Central Drug Standard Control Organization (CDSCO), Ministry of Health & Family Welfare, Government of India, New Delhi, India
| | - Saurabh Srivastava
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
3
|
He S, Dong G, Sheng C. Strategies for Precise Modulation of Protein Degradation. Acc Chem Res 2025; 58:1236-1248. [PMID: 40132213 DOI: 10.1021/acs.accounts.5c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
ConspectusTargeted protein degradation (TPD) technologies, exemplified by proteolysis-targeting chimeras (PROTACs), have revolutionized therapeutic strategies by facilitating the selective degradation of pathogenic proteins instead of simply inhibiting their functions. This degradation-based strategy offers significant advantages over traditional small-molecule inhibitors, which often block protein activity without eliminating the target. PROTACs function by leveraging the ubiquitin-proteasome system to selectively degrade target proteins, thus enabling the modulation of a broader range of disease-causing proteins including those that were previously considered undruggable. As a result, PROTAC-based therapies have gained considerable attention in drug discovery, especially in oncology, immunology, and neurodegenerative diseases. However, clinical translation of conventional PROTACs remains challenging due to issues such as limited target specificity, poor solubility, inadequate cellular permeability, unfavorable pharmacokinetic profiles, and the absence of spatiotemporal resolution.To address these hurdles, various innovative strategies have been developed to enhance the precision of protein degradation. These approaches focus on improving targeted delivery, solubility, membrane permeability, and spatiotemporal control with the goal of overcoming the inherent limitations of traditional PROTAC designs. For instance, aptamer-conjugated PROTACs have shown great promise by improving tumor selectivity and reducing off-target effects through tumor-specific receptor recognition and subsequent internalization. Moreover, the development of drugtamer-PROTAC conjugates enables more precise codelivery with small-molecule agents, optimizing the synergistic effects of both modalities while minimizing systemic toxicity. Additionally, RGD peptide-based PROTAC conjugation strategies capitalize on the use of tumor-homing peptides to enhance cellular uptake, improve tumor penetration, and increase degradation specificity in tumor cells, further reducing off-target toxicities in healthy tissues.Another critical advancement is the development of photocontrolled PROTACs, which allow for precise temporal regulation of protein degradation in vivo. By leveraging light-responsive molecules, these systems provide the ability to trigger protein degradation at specific time points, offering unparalleled control over therapeutic interventions. Furthermore, theranostic PROTACs, which combine both diagnostic and therapeutic functions, facilitate real-time monitoring of protein degradation events in living cells and animal models, enabling simultaneous assessment of the therapeutic efficacy and biomarker visualization.This Account reviews recent advancements in the design of smart PROTACs, highlighting strategies that improve their tumor specificity, solubility, permeability, and spatiotemporal control. These innovations provide promising solutions to address the limitations of traditional PROTACs, paving the way for progress in drug discovery and the evolution of precision medicine. While the discussed strategies present significant opportunities, we also explore the challenges, limitations, and future directions for clinical translation, offering insights into the potential for degrader-based precision therapies in a clinical setting.
Collapse
Affiliation(s)
- Shipeng He
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, P. R. China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, P. R. China
| |
Collapse
|
4
|
Cao G, Li Z, Wang Z, Yang Y, Li J, Qi H. High-throughput optimization of peptide-linker for fusing function protein with GFP. Protein Expr Purif 2025; 231:106718. [PMID: 40239936 DOI: 10.1016/j.pep.2025.106718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Fusion proteins are pivotal in bioengineering, with applications in purification, delivery, and imaging. However, the development of specialized peptide linkers tailored for target fusion proteins remains an unmet challenge. In this study, we demonstrate the optimization of fusing a functional protein with green fluorescent protein (GFP) through the screening of peptide linker sequences. Using seamless cloning methodology, a nanobody protein was fused to the N-terminus of GFP via a randomized 18-amino acid peptide linker library. Initial screening of fusion protein clones was conducted on solid plates to identify those expressing robust GFP fluorescence. A total of 153 clones with unique linker sequences were identified using Sanger sequencing. A wide range of normalized fluorescence signals was observed, revealing significant variability in linker performance. Among the screened linkers, one exhibited high fluorescence activity, outperforming commonly used flexible and rigid linkers. This finding underscores the necessity of optimize linker sequences for specific fusion proteins. Furthermore, the results demonstrated that the screened linker is compatible with diverse N-terminal proteins while maintaining GFP functionality. Additionally, to investigate the effect of linker on the function of target protein, we determined the reverse transcription efficiency of the murine leukemia virus reverse transcriptase (MLV-RT) in the fusion proteins by a two-step RT-qPCR method. In conclusion, this study presents an efficient optimization of peptide linkers, offering a novel methodology for the engineering and application of specialized linkers for fusion proteins.
Collapse
Affiliation(s)
- Gaili Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
| | - Zhong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
| | - Youhui Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
| | - Jiawei Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
5
|
Li Y, Zhang X, Xie J, Meng D, Liu M, Chang Y, Feng G, Jiang J, Deng P. Analyzing the Linker Structure of PROTACs throughout the Induction Process: Computational Insights. J Med Chem 2025; 68:3420-3432. [PMID: 39881546 DOI: 10.1021/acs.jmedchem.4c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Linker structures are a crucial component of proteolysis-targeting chimeras (PROTACs) and have traditionally been designed based on empirical methods, which presents significant challenges in the development of PROTACs. Current optimization strategies typically focus on reducing the number of rotatable bonds in the linker to limit conformational freedom. However, this approach overlooks the complexity of the target protein degradation process. Retrospective analyses suggest that merely adjusting the rotatable bonds in the linker is insufficient to control the conformational freedom of the PROTACs, indicating the need for new optimization strategies. By integration of computational methods such as molecular dynamics simulations, this study investigates the role of the linker throughout the induction process, particularly its impact on the formation and stability of the ternary complex. This approach offers potential for overcoming the limitations of traditional strategies, reducing reliance on empirical methods, and enhancing the overall efficiency and effectiveness of PROTAC design.
Collapse
Affiliation(s)
- Yihao Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing 400016, China
| | - Xiaoxuan Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing 400016, China
| | - Jiali Xie
- Department of Pharmacy, Mianyang Third People of Hospital, Mianyang 621000 Sichuan, China
| | - Dan Meng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ming Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yuxiang Chang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Guangrong Feng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Junhao Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing 400016, China
| | - Ping Deng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing 400016, China
| |
Collapse
|
6
|
Wang L, Chen Y, Zhang M, Liu J, Li H, Liu M, Wu S, Zhang Y, Li W, Wang B. Chemical dissection of selective myeloid leukemia-1 inhibitors: How they were found and evolved. Eur J Med Chem 2025; 283:117168. [PMID: 39708769 DOI: 10.1016/j.ejmech.2024.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Myeloid cell leukemia-1 (MCL-1), a key anti-apoptotic protein within the BCL-2 family, is essential in regulating cell survival, particularly in cancer, where its overexpression is often linked to therapeutic resistance. This review begins with an overview of BCL-2-mediated apoptosis, highlighting the pivotal role of MCL-1 in cellular homeostasis. We then focus on the structure and function of MCL-1, elucidating how its unique structural features contribute to its function and interaction with pro-apoptotic proteins. The core of this review is a detailed structural analysis of selective MCL-1 inhibitors, tracing their development from initial discovery to stepwise optimization. We explore various classes of inhibitors, including those with distinct core structures, covalent inhibitors that reversibly/irreversibly bind to MCL-1, and innovative approaches such as metal-based inhibitors and proteolysis-targeting chimeras (PROTACs). The structural evolution of these inhibitors is discussed, with particular emphasis on the modifications that have enhanced their selectivity, potency, and pharmacokinetic profiles. Additionally, we summarize the synergistic potential of MCL-1 inhibitors when used in combination with other therapeutic agents, emphasizing their role in overcoming drug resistance. The review concludes with a discussion of current challenges in MCL-1 modulation and future perspectives, proposing alternative strategies for targeting this critical protein for cancer therapy.
Collapse
Affiliation(s)
- Luyao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxiang Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Maoqian Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin Liu
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing 211162, China
| | - Haozhe Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Menghui Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuyun Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongmin Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China; Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311422, Zhejiang, China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
7
|
Li S, Zeng T, Wu Z, Huang J, Cao X, Liu Y, Bai S, Chen Q, Li C, Lu C, Yang H. DNA Tetrahedron-Driven Multivalent Proteolysis-Targeting Chimeras: Enhancing Protein Degradation Efficiency and Tumor Targeting. J Am Chem Soc 2025; 147:2168-2181. [PMID: 39749585 DOI: 10.1021/jacs.4c16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) are dual-functional molecules composed of a protein of interest (POI) ligand and an E3 ligase ligand connected by a linker, which can recruit POI and E3 ligases simultaneously, thereby inducing the degradation of POI and showing great potential in disease treatment. A challenge in developing PROTACs is the design of linkers and the modification of ligands to establish a multifunctional platform that enhances degradation efficiency and antitumor activity. As a programmable and modifiable nanomaterial, DNA tetrahedron can precisely assemble and selectively recognize molecules and flexibly adjust the distance between molecules, making them ideal linkers. Herein, we developed a multivalent PROTAC based on a DNA tetrahedron, named AS-TD2-PRO. Using DNA tetrahedron as a linker, we combined modules targeting tumor cells, recognizing E3 ligases, and multiple POI together. We took the undruggable target protein signal transducer and activator of transcription 3 (STAT3), associated with the etiology and progression in a variety of malignant tumors, as an example in this study. AS-TD2-PRO with two STAT3 recognition modules demonstrated good potential in enhancing tumor-specific targeting and degradation efficiency compared to traditional bivalent PROTACs. Furthermore, in a mouse tumor model, the superior therapeutic activity of AS-TD2-PRO was observed. Overall, DNA tetrahedron-driven multivalent PROTACs both serve as a proof of principle for multifunctional PROTAC design and introduce a promising avenue for cancer treatment strategies.
Collapse
Affiliation(s)
- Shiqing Li
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhixing Wu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jiabao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiuping Cao
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shiyan Bai
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- School of Medicine, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- School of Medicine, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
8
|
Malarvannan M, Unnikrishnan S, Monohar S, Ravichandiran V, Paul D. Design and optimization strategies of PROTACs and its Application, Comparisons to other targeted protein degradation for multiple oncology therapies. Bioorg Chem 2025; 154:107984. [PMID: 39591691 DOI: 10.1016/j.bioorg.2024.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Recent years have witnessed notable breakthroughs in the field of biotherapeutics. Proteolysis Targeting Chimeras (PROTACs) are novel molecules which used to degrade particular proteins despite the blockage by small drug molecules, which leads to a predicted therapeutic activity. This is a unique finding, especially at the cellular level targets degradations. Clinical trials and studies on PROTACs are in progress for oncology indications for demonstration of high potency and activity. PROTAC molecules are having excellent tissue distribution properties and their capacity to mutate the proteins and target overexpressed. This concept has attained wide attention from modern researchers in oncological drug discovery with particular physical qualities not offered by other therapeutic approaches. The modular nature of the PROTACs enables their methodical optimization and logical design. A thorough review was conducted in order to delve deeper into the subject and gain a better understanding of its development, computational supports, important factors for the optimization of developed PROTAC candidates, pharmacokinetic and pharmacodynamic (PK-PD) aspects, safety risks such as the degradation of undesired proteins, and other PROTAC-related issues and their target immunotherapeutic response. Furthermore discussed about the benefits, possible challenges, viewpoints, comparison with other targeted protein degraders (LYTACs, AUTOTACs) and the most current research results of PROTACs technology in multiple oncology therapies. Abbreviations: PROTACs, Proteolysis Targeting Chimeras; PK, Pharmacokinetic; PD, Pharmacodynamic; MetAP-2, (methionine aminopeptidase 2); BCL6, B-cell lymphoma 6; GCN5, General Control Nonderepressible 5; BKT, Bruton's tyrosine kinase; BET, Bromodomain and extra-terminal; AR, Androgen or Androgen receptor; ER, Estrogen or Estrogen receptor; FDA, Food and Drug Administration; mCRPC, Metastatic castration-resistant prostate cancer; STAT3, Signal Transducer and Activator of Transcription 3; FAK, Focal adhesion kinase; POI, Protein of interest; PEG, Polyethylene glycol; UPS, Ubiquitin-Proteasome System; VHL, Von Hippel-Lindau; CRBN, Cereblon; MDM2, Mouse Double Minute 2 homologue; cIAP, Cellular Inhibitor of Apoptosis; RNF, Ring Finger Protein; BRD, Bromodomain; CDK, Cyclin-dependent kinase; PAMPA, Parallel Artificial Membrane Permeability studies; BRET, Bioluminescence Resonance Energy Transfer; MCL, Mantle cell lymphoma; MCL-1, Myeloid Cell Leukemia 1; BCL-XL, B-cell lymphoma extra-large; TRK, Tropomyosin Receptor Kinase; RTKs, Transmembrane Receptor Tyrosine Kinase; NTRK, Neurotrophic Tyrosine Receptor Kinase; DHT, Dihydrotestosterone; EGFR, Epidermal Growth Factor Receptor; EGFR-TKIs, EGFR tyrosine kinase inhibitors; NSCLC, non-small cell lung cancer; BCR, B-cell receptor; CML, Chronic myelogenous leukemia; TKI, Tyrosine kinase inhibitors; MoA, Mechanism of action; TPD, Targetted protein degraders; LYTACs, Lysosome targeting chimeras; ASGPR, Asialoglycoprotein receptor; AUTOTACs, Autophagy-Targeting Chimeras; ATTECs, Autophagy-tethering compounds; CRISPR-Cas9, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9; TALEN, Transcription Activator-Like Effector Nuclease; ZFN, Zinc Finger Nuclease.
Collapse
Affiliation(s)
- M Malarvannan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Sujith Unnikrishnan
- Department of Pharmaceutical Analysis, Al Shifa College of Pharmacy, Perinthalmanna, Kerala 679325, India
| | - S Monohar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - V Ravichandiran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| |
Collapse
|
9
|
Ai M, Ma H, He J, Xu F, Ming Y, Ye Z, Zheng Q, Luo D, Yang K, Li J, Nie C, Pu W, Peng Y. Targeting oncogenic transcriptional factor c-myc by oligonucleotide PROTAC for the treatment of hepatocellular carcinoma. Eur J Med Chem 2024; 280:116978. [PMID: 39447458 DOI: 10.1016/j.ejmech.2024.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, but effective therapeutic strategies are limited. Transcriptional factor c-Myc plays an oncogenic role in tumorigenesis and is an attractive target for HCC treatment. However, targeted therapy against c-Myc remains challenging. Herein, by conjugating VH032 with an optimized DNA sequence that recognized c-Myc complex, we discovered oligonucleotide-based proteolysis targeting chimeras (PROTACs), termed as MP-16 and MP-17, which effectively induced degradation of c-Myc. Mechanically, MP-16 or MP-17 directly interacted with c-Myc complex to form VHL/PROTAC/c-Myc ternary complex, and triggered c-Myc degradation by recruiting ubiquitin-proteasome system, suppressing cell proliferation of HCC cells. In mice model, MP-16 or MP-17 significantly inhibited HCC tumor growth and exhibited promising drug safety. This work provided novel oligonucleotide PROTACs that degraded c-Myc, giving a new lead structure for HCC therapy.
Collapse
Affiliation(s)
- Min Ai
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Hulin Ma
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Jianhua He
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Fuyan Xu
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Yue Ming
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Zixia Ye
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Qingquan Zheng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Dongdong Luo
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Kaichuan Yang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610052, China
| | - Jiao Li
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Chunlai Nie
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China.
| | - Wenchen Pu
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China.
| | - Yong Peng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
10
|
Vikal A, Maurya R, Patel BB, Sharma R, Patel P, Patil UK, Das Kurmi B. Protacs in cancer therapy: mechanisms, design, clinical trials, and future directions. Drug Deliv Transl Res 2024:10.1007/s13346-024-01754-z. [PMID: 39614036 DOI: 10.1007/s13346-024-01754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Cancer develops as a result of changes in both genetic and epigenetic mechanisms, which lead to the activation of oncogenes and the suppression of tumor suppressor genes. Despite advancements in cancer treatments, the primary approach still involves a combination of chemotherapy, radiotherapy, and surgery, typically providing a median survival of approximately five years for patients. Unfortunately, these therapeutic interventions often bring about substantial side effects and toxicities, significantly impacting the overall quality of life for individuals undergoing treatment. Therefore, urgent need of research required which comes up with effective treatment of cancer. This review explores the transformative role of Proteolysis-Targeting Chimeras (PROTACs) in cancer therapy. PROTACs, an innovative drug development strategy, utilize the cell's protein degradation machinery to selectively eliminate disease-causing proteins. The review covers the historical background, mechanism of action, design, and structure of PROTACs, emphasizing their precision in targeting oncogenic proteins. The discussion extends to the challenges, nanotechnology applications, and ongoing clinical trials, showcasing promising results and clinical progress. The review concludes with insights into patents, future directions, and the potential impact of PROTACs in addressing dysregulated protein expression across various diseases. Overall, it provides a concise yet comprehensive overview for researchers, clinicians, and industry professionals involved in developing targeted therapies.
Collapse
Affiliation(s)
- Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Brij Bihari Patel
- Department of Respiratory Medicine, School of Excellence in Pulmonary Medicines, Netaji Subhash Chandra Bose Medical College, Jabalpur, 482003, Madhya Pradesh, India
| | - Rajeev Sharma
- Department of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, 470003, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
11
|
Cai L, Yue G, Chen Y, Wang L, Yao X, Zou Q, Fu X, Cao D. ET-PROTACs: modeling ternary complex interactions using cross-modal learning and ternary attention for accurate PROTAC-induced degradation prediction. Brief Bioinform 2024; 26:bbae654. [PMID: 39783892 PMCID: PMC11713031 DOI: 10.1093/bib/bbae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
MOTIVATION Accurately predicting the degradation capabilities of proteolysis-targeting chimeras (PROTACs) for given target proteins and E3 ligases is important for PROTAC design. The distinctive ternary structure of PROTACs presents a challenge to traditional drug-target interaction prediction methods, necessitating more innovative approaches. While current state-of-the-art (SOTA) methods using graph neural networks (GNNs) can discern the molecular structure of PROTACs and proteins, thus enabling the efficient prediction of PROTACs' degradation capabilities, they rely heavily on limited crystal structure data of the POI-PROTAC-E3 ternary complex. This reliance underutilizes rich PROTAC experimental data and neglects intricate interaction relationships within ternary complexes. RESULTS In this study, we propose a model based on cross-modal strategy and ternary attention technology, ET-PROTACs, to predict the targeted degradation capabilities of PROTACs. Our model capitalizes on the strengths of cross-modal methods by using equivariant GNN graph neural networks to process the graph structure and spatial coordinates of PROTAC molecules concurrently while utilizing sequence-based methods to learn the protein sequence information. This integration of cross-modal information is cohesively harnessed and channeled into a ternary attention mechanism, specially tailored for the unique structure of PROTACs, enabling the congruent modeling of both PROTAC and protein modalities. Experimental results demonstrate that the ET-PROTACs model outperforms existing SOTA methods. Moreover, visualizing attention scores illuminates crucial residues and atoms pivotal in specific POI-PROTAC-E3 interactions, thus offering invaluable insights and guidance for future pharmaceutical research. AVAILABILITY AND IMPLEMENTATION The codes of our model are available at https://github.com/GuanyuYue/ET-PROTACs.
Collapse
Affiliation(s)
- Lijun Cai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Guanyu Yue
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yifan Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Li Wang
- Degree Programs in Systems and Information Engineering, Graduate School of Science and Technology Doctoral Program in Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Xiaojun Yao
- Faculty of Applied Sciences, Centre for Artificial Intelligence Driven Drug Discovery, Macao Polytechnic University, Macao 999078, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
- Research Institute of Hunan University in Chongqing, Chongqing 401120, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410003, China
| |
Collapse
|
12
|
Mo WT, Huang CF, Sun ZJ. Erythroid progenitor cell modulates cancer immunity: Insights and implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189209. [PMID: 39549879 DOI: 10.1016/j.bbcan.2024.189209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
The emergence of immunotherapies such as immune checkpoint blockade (ICB) has markedly enhanced cancer treatment outcomes for numerous patients. Nevertheless, the effectiveness of immunotherapy demonstrates substantial variation across different cancer types and individual patients. The immunosuppressive characteristics of the tumor microenvironment (TME) play a crucial role in contributing to this variation. Typically, people focus on cells with immunosuppressive functions in the TME, such as tumor-associated macrophages (TAMs), but research on TAMs alone cannot fully explain the complex structure and composition of the TME. Recent studies have reported that tumors can induce erythroid progenitor cells (EPCs) to exert immunosuppressive functions, not only acting within the TME but also secreting artemin in the spleen to promote tumor progression. In this review, we summarize the recent research on EPCs and tumors in recent years. We elucidate the mechanisms by which EPCs exert immunosuppressive functions in tumor-bearing conditions. In this review, we further propose potential therapeutic strategies targeting EPCs and emphasize the importance of in-depth exploration of the mechanisms by which EPCs regulate tumors and the immune system, as well as the significant clinical value of developing corresponding drugs.
Collapse
Affiliation(s)
- Wen-Tao Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Cong-Fa Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
13
|
Xiang F. Therapeutic compounds targeting interleukin-1 receptor-associated kinase 4 (IRAK4): an updated patent review (2019 to present). Expert Opin Ther Pat 2024; 34:1137-1166. [PMID: 39327780 DOI: 10.1080/13543776.2024.2406825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND It is more than two decades since IRAK4, a promising target for therapies against various medical conditions, was first reported, but no compounds targeting this enzyme are active on the market or under late-stage clinical development. So it is necessary to continue exploring new and/or improved chemotypes for IRAK4-targeting compounds, to which updated patent reviews are supposed to be of considerable contribution. AREAS COVERED PCT patents claiming IRAK4-targeting compounds and published through 2019 to present were retrieved, screened and reviewed for the title compounds disclosed therein, where chemotype-specific strategies were adopted for the said reviewing process. Included patents featuring non-Protac compounds were described in terms of generic formulas and variable-indicated moieties of the title compounds, as well as selected title compounds and relevant prior documents. Included patents featuring Protac-based compounds were described in terms of general examples of IRAK-binding moieties and ligase-binding moieties, as well as the presence of conventional linker types. Insights were finally extracted from the patent review. EXPERT OPINION The last five years has seen a steady increase in the number of PCT patents claiming IRAK4-targeting therapeutic compounds, with some of them being based on new chemotypes and/or discovered by new organizations as potential new players.
Collapse
Affiliation(s)
- Fei Xiang
- Department of Intellectual Property and Intelligence, Zhongshan Wanhan Pharmaceuticals Co., Ltd., Zhongshan, Guangdong, China
| |
Collapse
|
14
|
Thapa R, Bhat AA, Gupta G, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Prasad GVS, Pramanik A, Ali H. CRBN-PROTACs in Cancer Therapy: From Mechanistic Insights to Clinical Applications. Chem Biol Drug Des 2024; 104:e70009. [PMID: 39496477 DOI: 10.1111/cbdd.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024]
Abstract
Cereblon (CRBN), a member of the E3 ubiquitin ligase complex, has gained significant attention as a therapeutic target in cancer. CRBN regulates the degradation of various proteins in cancer progression, including transcription factors and signaling molecules. PROTACs (proteolysis-targeting chimeras) are a novel approach that uses the cell's degradation system to remove disease-causing proteins selectively. CRBN-dependent PROTACs work by tagging harmful proteins for destruction through the ubiquitin-proteasome system. This strategy offers several advantages over traditional protein inhibition methods, including the potential to overcome drug resistance. Recent progress in developing CRBN-based PROTACs has shown promising preclinical results in both hematologic malignancies and solid tumors. Additionally, CRBN-based PROTACs have enhanced our understanding of CRBN's role in cancer, potentially serving as biomarkers for patient stratification and predicting therapeutic responses. In this review, we delineate the mechanisms of action for CRBN-dependent PROTACs (CRBN-PROTACs), summarize recent advances in preclinical and clinical applications, and provide our perspective on future development.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
15
|
Qiu Y, Wiewiora RP, Izaguirre JA, Xu H, Sherman W, Tang W, Huang X. Non-Markovian Dynamic Models Identify Non-Canonical KRAS-VHL Encounter Complex Conformations for Novel PROTAC Design. JACS AU 2024; 4:3857-3868. [PMID: 39483225 PMCID: PMC11522902 DOI: 10.1021/jacsau.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
Targeted protein degradation (TPD) is emerging as a promising therapeutic approach for cancer and other diseases, with an increasing number of programs demonstrating its efficacy in human clinical trials. One notable method for TPD is Proteolysis Targeting Chimeras (PROTACs) that selectively degrade a protein of interest (POI) through E3-ligase induced ubiquitination followed by proteasomal degradation. PROTACs utilize a warhead-linker-ligand architecture to bring the POI (bound to the warhead) and the E3 ligase (bound to the ligand) into proximity. The resulting non-native protein-protein interactions (PPIs) formed between the POI and E3 ligase lead to the formation of a stable ternary complex, enhancing cooperativity for TPD. A significant challenge in PROTAC design is the screening of the linkers to induce favorable non-native PPIs between POI and E3 ligase. Here, we present a physics-based computational protocol to predict noncanonical and metastable PPI interfaces between an E3 ligase and a given POI, aiding in the design of linkers to stabilize the ternary complex and enhance degradation. Specifically, we build the non-Markovian dynamic model using the Integrative Generalized Master equation (IGME) method from ∼1.5 ms all-atom molecular dynamics simulations of linker-less encounter complex, to systematically explore the inherent PPIs between the oncogene homologue protein and the von Hippel-Lindau E3 ligase. Our protocol revealed six metastable states each containing a different PPI interface. We selected three of these metastable states containing promising PPIs for linker design. Our selection criterion included thermodynamic and kinetic stabilities of PPIs and the accessibility between the solvent-exposed sites on the warheads and E3 ligand. One selected PPIs closely matches a recent cocrystal PPI interface structure induced by an experimentally designed PROTAC with potent degradation efficacy. We anticipate that our protocol has significant potential for widespread application in predicting metastable POI-ligase interfaces that can enable rational design of PROTACs.
Collapse
Affiliation(s)
- Yunrui Qiu
- Department
of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Data
Science Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | | | - Huafeng Xu
- Atommap
Corporation, NY, New York 10013, United
States
| | - Woody Sherman
- Psivant
Therapeutics, Boston, Massachusetts 02210, United States
| | - Weiping Tang
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xuhui Huang
- Department
of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Data
Science Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Yan S, Zhang G, Luo W, Xu M, Peng R, Du Z, Liu Y, Bai Z, Xiao X, Qin S. PROTAC technology: From drug development to probe technology for target deconvolution. Eur J Med Chem 2024; 276:116725. [PMID: 39083982 DOI: 10.1016/j.ejmech.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Drug development remains a critical focus within the global pharmaceutical industry. To date, more than 80 % of disease targets are considered difficult to target. The emergence of PROTAC technology has, to some extent, alleviated this challenge. Since introduction, PROTAC technology has evolved through the peptide E3 ligase ligand phase and the small molecule E3 ligase ligand phase. Currently, multiple PROTAC molecules are in the clinical research phase, showing promising potential for addressing drug resistance, disease recurrence, and intractable targets. Target deconvolution is a crucial step in the drug discovery and development process. Due to the exceptional targeting ability and specificity of PROTAC, it is widely used and promoted as an innovative technology for discovering new drug targets, leading to significant breakthroughs. The use of PROTAC probe requires only a catalytic dose and weak interaction with the target protein to achieve target degradation. Thus, it offers substantial advantages over traditional probes, particularly in identifying new targets that are low-abundance or difficult to target. This review provides a comprehensive overview of the advancements made by PROTAC technology in drug development and drug target discovery, while also systematically reviewing the workflow of PROTAC probe. With the ongoing development of PROTAC technology, PROTAC probe is poised to become a key research area in future drug target deconvolution.
Collapse
Affiliation(s)
- Si Yan
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Guangshuai Zhang
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Wei Luo
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Mengwei Xu
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Rui Peng
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Yan Liu
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Zhaofang Bai
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| | - Xiaohe Xiao
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| | - Shuanglin Qin
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| |
Collapse
|
17
|
Abbas A, Ye F. Computational methods and key considerations for in silico design of proteolysis targeting chimera (PROTACs). Int J Biol Macromol 2024; 277:134293. [PMID: 39084437 DOI: 10.1016/j.ijbiomac.2024.134293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs), as heterobifunctional molecules, have garnered significant attention for their ability to target previously undruggable proteins. Due to the challenges in obtaining crystal structures of PROTAC molecules in the ternary complex, a plethora of computational tools have been developed to aid in PROTAC design. These computational tools can be broadly classified into artificial intelligence (AI)-based or non-AI-based methods. This review aims to provide a comprehensive overview of the latest computational methods for the PROTAC design process, covering both AI and non-AI approaches, from protein selection to ternary complex modeling and prediction. Key considerations for in silico PROTAC design are discussed, along with additional considerations for deploying AI-based models. These considerations are intended to guide subsequent model development in the PROTAC design process. Finally, future directions and recommendations are provided.
Collapse
Affiliation(s)
- Amr Abbas
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
18
|
Castagna D, Gourdet B, Hjerpe R, MacFaul P, Novak A, Revol G, Rochette E, Jordan A. To homeostasis and beyond! Recent advances in the medicinal chemistry of heterobifunctional derivatives. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:61-160. [PMID: 39370242 DOI: 10.1016/bs.pmch.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The field of induced proximity therapeutics has expanded dramatically over the past 3 years, and heterobifunctional derivatives continue to form a significant component of the activities in this field. Here, we review recent advances in the field from the perspective of the medicinal chemist, with a particular focus upon informative case studies, alongside a review of emerging topics such as Direct-To-Biology (D2B) methodology and utilities for heterobifunctional compounds beyond E3 ligase mediated degradation. We also include a critical evaluation of the latest thinking around the optimisation of physicochemical and pharmacokinetic attributes of these beyond Role of Five molecules, to deliver appropriate therapeutic exposure in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allan Jordan
- Sygnature Discovery, Nottingham, United Kingdom; Sygnature Discovery, Macclesfield, United Kingdom.
| |
Collapse
|
19
|
Guan T, Zhang Y, Li S, Zhang W, Song Y, Li Y, He Y, Chen Y. Discovery of an efficacious KDM5B PROTAC degrader GT-653 up-regulating IFN response genes in prostate cancer. Eur J Med Chem 2024; 272:116494. [PMID: 38749268 DOI: 10.1016/j.ejmech.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024]
Abstract
Epigenetic alterations promote cancer development by regulating the expression of various oncogenes and anti-oncogenes. Histone methylation modification represents a pivotal area in epigenetic research and numerous publications have demonstrated that aberrant histone methylation is highly correlated with tumorigenesis and development. As a key histone demethylase, lysine-specific demethylase 5B (KDM5B) demethylates lysine 4 of histone 3 (H3K4) and serves as a transcriptional repressor of certain tumor suppressor genes. Meanwhile, KDM5B inhibits STING-induced intrinsic immune response of tumor cells or recruits SETDB1 through non-enzymatic function to silence reverse transcription elements to promote immune escape. The conventional small molecule inhibitors can only inhibit the enzymatic function of KDM5B with no effect on the non-enzymatic function. In the article, we present the development of the first series of KDM5B degraders based on CPI-455 to inhibit the non-enzymatic function. Among them, GT-653 showed optimal KDM5B degradation efficiency in a ubiquitin proteasome-dependent manner. GT-653 efficiently reduced KDM5B protein levels without affecting KDM5B transcription. Interestingly, GT-653 increased H3K4me3 levels and activated the type-I interferon signaling pathway in 22RV1 cells without significant phenotypic response on cell proliferation.
Collapse
Affiliation(s)
- Tian Guan
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingshuang Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shen Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenbao Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuxuan Song
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuzhan Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|