1
|
Jain K, Takuli A, Gupta TK, Gupta D. Rethinking Nanoparticle Synthesis: A Sustainable Approach vs. Traditional Methods. Chem Asian J 2024; 19:e202400701. [PMID: 39126206 DOI: 10.1002/asia.202400701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
This review portrays a comparison between green protocols and conventional nanoparticle (NP) synthesis strategies, highlighting each method's advantages and limitations. Various top-down and bottom-up methods in NP synthesis are described in detail. The green chemistry principles are emphasized for designing safe processes for nanomaterial synthesis. Among the green biogenic sources plant extracts, vitamins, enzymes, polysaccharides, fungi (Molds and mushrooms), bacteria, yeast, algae, and lichens are discussed. Limitations in the reproducibility of green protocols in terms of availability of raw material, variation in synthetic protocol, and selection of material due to geographical differences are elaborated. Finally, a conclusion is drawn utilizing green chemical principles, & a circular economy strategy to minimize waste generation, offering a promising framework for the synthesis of NPs emphasizing sustainability.
Collapse
Affiliation(s)
- Kavya Jain
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Anshika Takuli
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Tejendra K Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| |
Collapse
|
2
|
Bayoumi M, Youshia J, Arafa MG, Nasr M, Sammour OA. Nanocarriers for the treatment of glioblastoma multiforme: A succinct review of conventional and repositioned drugs in the last decade. Arch Pharm (Weinheim) 2024; 357:e2400343. [PMID: 39074966 DOI: 10.1002/ardp.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Glioblastoma multiforme is a very combative and threatening type of cancer. The standard course of treatment involves excising the tumor surgically, then administering chemotherapy and radiation therapy. Because of the presence of the blood-brain barrier and the unique characteristics of the tumor microenvironment, chemotherapy is extremely difficult and has a high incidence of relapse. With their capacity to precisely target and transport therapeutic medications to the tumor while overcoming the challenges provided by invasive and infiltrative gliomas, nanocarriers offer a potentially beneficial treatment option for gliomas. Drug repositioning or, in other words, finding novel therapeutic uses for medications that have received approval for previous uses has also recently emerged to provide alternative treatments for many diseases, with glioblastoma being among them. In this article, our goal is to shed light on the pathogenesis of glioma and summarize the proposed treatment approaches in the last decade, highlighting how combining repositioned drugs and nanocarriers technology can reduce drug resistance and improve therapeutic efficacy in primary glioma.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
- Nanotechnology Research Center, The British University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Sarkar S, Roy A, Mitra R, Kundu S, Banerjee P, Acharya Chowdhury A, Ghosh S. Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles. Microb Pathog 2024; 194:106842. [PMID: 39117012 DOI: 10.1016/j.micpath.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
Collapse
Affiliation(s)
| | - Ankita Roy
- Department of Biosciences, JIS University, Kolkata, India
| | - Rangan Mitra
- Department of Biosciences, JIS University, Kolkata, India
| | - Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | | - Suparna Ghosh
- Department of Biosciences, JIS University, Kolkata, India.
| |
Collapse
|
4
|
Mohaghegh S, Osouli-Bostanabad K, Nazemiyeh H, Omidi Y, Maleki-Ghaleh H, Barzegar-Jalali M. Stimuli-responsive synthesis of silver nanoparticles applying green and chemical reduction approaches. BIOIMPACTS : BI 2024; 15:30286. [PMID: 40161941 PMCID: PMC11954753 DOI: 10.34172/bi.30286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 04/02/2025]
Abstract
Introduction The current study reports the comparative stimuli-responsive synthesis of silver nanoparticles (AgNPs) with various sizes and morphologies employing Lycium ruthenicum extract and sodium citrate solutions. Methods The morphology and size of AgNPs were regulated by varying the pH values, concentrations of the extract solution, and temperatures in the reaction medium. The prepared AgNPs were assessed via various instrumental analyses, including UV-Vis, FTIR, XRD, TEM, and DLS. Results The L. ruthenicum extract displayed several functional groups that reduced the Ag ions to the AgNPs at different values of pH. However, the primary chemical structure of L. ruthenicum was virtually unaltered at these conditions. Variations in the pH and extract concentration of the reaction medium yielded AgNPs of different sizes and morphologies. Both bio- and chemo-synthesized AgNPs revealed a relatively dispersed sphere-shaped morphology under alkaline conditions (≈ 36 nm). Conclusion This study introduced a simple, valuable, and green technique for stimuli-sensitive AgNPs synthesis employing the L. ruthenicum extract.
Collapse
Affiliation(s)
- Seraj Mohaghegh
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Osouli-Bostanabad
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Nazemiyeh
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL, 33328, USA
| | - Hossein Maleki-Ghaleh
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Khafaga DSR, Muteeb G, Elgarawany A, Aatif M, Farhan M, Allam S, Almatar BA, Radwan MG. Green nanobiocatalysts: enhancing enzyme immobilization for industrial and biomedical applications. PeerJ 2024; 12:e17589. [PMID: 38993977 PMCID: PMC11238728 DOI: 10.7717/peerj.17589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Nanobiocatalysts (NBCs), which merge enzymes with nanomaterials, provide a potent method for improving enzyme durability, efficiency, and recyclability. This review highlights the use of eco-friendly synthesis methods to create sustainable nanomaterials for enzyme transport. We investigate different methods of immobilization, such as adsorption, ionic and covalent bonding, entrapment, and cross-linking, examining their pros and cons. The decreased environmental impact of green-synthesized nanomaterials from plants, bacteria, and fungi is emphasized. The review exhibits the various uses of NBCs in food industry, biofuel production, and bioremediation, showing how they can enhance effectiveness and eco-friendliness. Furthermore, we explore the potential impact of NBCs in biomedicine. In general, green nanobiocatalysts are a notable progression in enzyme technology, leading to environmentally-friendly and effective biocatalytic methods that have important impacts on industrial and biomedical fields.
Collapse
Affiliation(s)
- Doaa S. R. Khafaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, Suez, Egypt
| | - Batool Abdulhadi Almatar
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | | |
Collapse
|
6
|
Khan A, Ahmad N, Fazal H, Ali M, Akbar F, Khan I, Tayyab M, Uddin MN, Ahmad N, Abdel-Maksoud MA, Saleh IA, Zomot N, AbdElgawad H, Rauf K, Iqbal B, Teixeira Filho MCM, El-Tayeb MA, Jalal A. Biogenic synthesis of silver nanoparticles using Rubus fruticosus extract and their antibacterial efficacy against Erwinia caratovora and Ralstonia solanacearum phytopathogens. RSC Adv 2024; 14:5754-5763. [PMID: 38362085 PMCID: PMC10864949 DOI: 10.1039/d3ra06723h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/07/2024] [Accepted: 01/13/2024] [Indexed: 02/17/2024] Open
Abstract
In the current research, we produced green, cost-effective, eco-friendly silver nanoparticles using a single-step approach. Plants are considered highly desirable systems for nanoparticle synthesis because they possess a variety of secondary metabolites with significant reduction potential. In the current research, the dried leaf extract of Rubus fruticosus was utilized as a capping and reducing agent for the fabrication of silver nanoparticles, to prepare reliable biogenic silver nanoparticles and subsequently to investigate their potential against some common phytopathogens. The prepared silver nanoparticles were exploited to quantify the total flavonoid content (TFC), total phenolic content (TPC) and DPPH-based antioxidant activity. Different concentrations of aqueous extracts of plant leaves and silver nitrate (AgNO3) were reacted, and the color change of the reactant mixture confirmed the formation of Rubus fruticosus leaf-mediated silver nanoparticles (RFL-AgNPs). A series of characterization techniques such as UV-vis spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction revealed the successful synthesis of silver nanoparticles. The surface plasmon resonance peak appeared at 449 nm. XRD analysis demonstrated the crystalline nature, EDX confirmed the purity, and TEM demonstrated that the nanoparticles are mostly spherical in form. Furthermore, the biosynthesized nanoparticles were screened for in vitro antibacterial activity, antioxidant activity, and total phenolic and flavonoid content. The nanoparticles were used in different concentrations alone and in combination with plant extracts to inhibit Erwinia caratovora and Ralstonia solanacearum. In high-throughput assays used to inhibit these plant pathogens, the nanoparticles were highly toxic against bacterial pathogens. This study can be exploited for planta assays against phytopathogens utilizing the same formulations for nanoparticle synthesis and to develop potent antibacterial agents to combat plant diseases.
Collapse
Affiliation(s)
- Adnan Khan
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Nisar Ahmad
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Hina Fazal
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Peshawar 25120 Pakistan
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Fazal Akbar
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Ishaq Khan
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Mohammad Tayyab
- IBGE, The University of Agriculture, Peshawar Peshawar 25120 Pakistan
| | - Muhammad Nazir Uddin
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Naveed Ahmad
- Department of Horticulture, The University of Agriculture Peshawar Khyber Pakhtunkhwa 22620 Pakistan
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | | | - Naser Zomot
- Faculty of Science, Zarqa University Zarqa 13110 Jordan
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp 2020 Antwerp Belgium
| | - Kamran Rauf
- Department of Horticulture, The University of Agriculture Peshawar Khyber Pakhtunkhwa 22620 Pakistan
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University Zhenjiang 212000 China
| | - Marcelo Carvalho Minhoto Teixeira Filho
- School of Engineering, Department of Plant Health, Soil and Rural Engineering, Sao Paulo State University Campus of Ilha Solteira 15385-000 Sao Paulo Brazil
| | - Mohamed A El-Tayeb
- Botany and Microbiology Department, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Arshad Jalal
- School of Engineering, Department of Plant Health, Soil and Rural Engineering, Sao Paulo State University Campus of Ilha Solteira 15385-000 Sao Paulo Brazil
| |
Collapse
|
7
|
Shandhiya M, Janarthanan B, Sharmila S. A comprehensive review on antibacterial analysis of natural extract-based metal and metal oxide nanoparticles. Arch Microbiol 2024; 206:52. [PMID: 38175198 DOI: 10.1007/s00203-023-03743-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024]
Abstract
Pharmaceutical, food packing, cosmetics, agriculture, energy storage devices widely utilize metal and metal oxide nanoparticles prepared via different physical and chemical methods. It resulted in the release of several dangerous compounds and solvents as the nanoparticles were being formed. Currently, Researchers interested in preparing nanoparticles (NPs) via biological approach due to their unique physiochemical properties which took part in reducing the environmental risks. However, a number of microbial species are causing dangerous illnesses and are a threat to the entire planet. The metal and metal oxide nanoparticles played a significant role in the identification and elimination of microbes when prepared using natural extract. Its biological performance is thus also becoming exponentially more apparent than it was using in conventional techniques. Despite the fact that they hurt germs, their small size and well-defined shape encourage surface contact with them. The generation of Reactive Oxygen Species (ROS), weakens the bacterial cell membrane by allowing internal cellular components to seep out. The bacterium dies as a result of this. Numerous studies on different nanoparticles and their antibacterial efficacy against various diseases are still accessible. The main objective of the biogenic research on the synthesis of key metals and metal oxides (such as gold, silver, titanium dioxide, nickel oxide, and zinc oxide) using various plant extracts is reviewed in this study along with the process of nanoparticle formation and the importance of phytochemicals found in the plant extract.
Collapse
Affiliation(s)
- M Shandhiya
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - B Janarthanan
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - S Sharmila
- Department of Physics, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India.
| |
Collapse
|
8
|
Liu L, Yu C, Ahmad S, Ri C, Tang J. Preferential role of distinct phytochemicals in biosynthesis and antibacterial activity of silver nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118546. [PMID: 37418916 DOI: 10.1016/j.jenvman.2023.118546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Biosynthesis of silver nanoparticles (AgNPs) by plant extracts and its antibacterial utilization has attracted great attention due to the spontaneous reducing and capping capacities of phytochemicals. However, the preferential role and mechanisms of the functional phytochemicals from different plants on AgNPs synthesis, and its catalytic and antibacterial performance remain largely unknown. This study used three widespread arbor species, including Eriobotrya japonica (EJ), Cupressus funebris (CF) and Populus (PL), as the precursors and their leaf extracts as reducing and stabilizing agents for the biosynthesis of AgNPs. A total of 18 phytochemicals in leaf extracts were identified by ultra-high liquid-phase mass spectrometer. For EJ extracts, most kinds of flavonoids participated in the generation of AgNPs by a reduced content of 5∼10%, while for CF extracts, about 15∼40% of the polyphenols were consumed to reduce Ag+ to Ag0. Notably, the more stable and homogeneous spherical AgNPs with smaller size (≈38 nm) and high catalytic capacity on Methylene blue were obtained from EJ extracts rather than CF extracts, and no AgNPs were synthesized from PL extracts, indicating that flavonoids are superior than polyphenols to act as reducer and stabilizer in AgNPs biosynthesis. The antibacterial activities against Gram-positive (Staphylococcus aureus and Bacillus mycoides) and Gram-negative bacteria (Pseudomonas putida and Escherichia coli) were higher in EJ-AgNPs than that in CF-AgNPs, which confirmed the synergistic antibacterial effects of flavonoids combined with AgNPs in EJ-AgNPs. This study provides a significant reference on the biosynthesis of AgNPs with efficient antibacterial utilization underlying effect of abundant flavonoids in plant extracts.
Collapse
Affiliation(s)
- Linan Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China
| | - Chen Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shakeel Ahmad
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China
| | - Cholnam Ri
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
9
|
Giray G, Gonca S, Özdemir S, Isik Z, Yılmaz E, Soylak M, Dizge N. Novel extracellular synthesized silver nanoparticles using thermophilic Anoxybacillus flavithermus and Geobacillus stearothermophilus and their evaluation as nanodrugs. Prep Biochem Biotechnol 2023; 54:294-306. [PMID: 37452678 DOI: 10.1080/10826068.2023.2230496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In this investigation, two new thermophilic bacteria were isolated. The new isolates were characterized by 16S rRNA, biochemical, morphological, and physiological analyzes and the isolates were identified as Geobacillus stearothermophilus strain Gecek20 and thermophilic Anoxybacillus flavithermus strain Gecek19. Various biological activities of extracellular Ag-NPs synthesized from thermophilic G. stearothermophilus strain Gecek20 and thermophilic A. flavithermus strain Gecek19 were evaluated. The produced NPs were analyzed by SEM, SEM-EDX, and XRD analyses. The antioxidant abilities of new synthesized Ag-NPs from thermophilic G. stearothermophilus strain Gecek20 (T1-Ag-NPs) and new synthesized Ag-NPs from thermophilic A. flavithermus strain Gecek19 (T2-Ag-NPs) were studied by DPPH inhibition and metal chelating ability. The highest DPPH and metal chelating abilities of T1-Ag-NPs and T2-Ag-NPs at 200 mg/L concentration were 93.17 and 90.85%, and 75.80 and 83.64%, respectively. The extracellular green synthesized T1-Ag-NPs and T2-AgN-Ps showed DNA nuclease activity at all tested concentrations. Moreover, both new synthesized Ag-NPs had antimicrobial activity against the strains studied, especially on Gram positive bacteria. T1-Ag-NPs and T2-AgNPs also showed powerful Escherichia coli growth inhibition. The highest biofilm inhibition percentages of T1-Ag-NPs and T2-Ag-NPs against Pseudomonas aeruginosa and Staphylococcus aureus were 100.0%, respectively, at 500 mg/L.
Collapse
Affiliation(s)
- Gülay Giray
- Department of Veterinary Medicine, Ihsangazi Technical Science Vocational School, Ihsangazi, Kastamonu, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | - Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| | - Erkan Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
- Nanotechnology Application and Research Center, ERNAM Erciyes University, Kayseri, Turkey
- Technology Research&Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research&Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
10
|
Waghchaure RH, Adole VA. Biosynthesis of metal and metal oxide nanoparticles using various parts of plants for antibacterial, antifungal and anticancer activity: A review. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Chahardoli A, Mavaei M, Shokoohinia Y, Fattahi A. Galbanic acid, a sesquiterpene coumarin as a novel candidate for the biosynthesis of silver nanoparticles: In vitro hemocompatibility, antiproliferative, antibacterial, antioxidant, and anti-inflammatory properties. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Applications of
Peristrophe paniculata
Derived Plasmonic Nanoparticles for DNA Binding and Photocatalytic Degradation of Cationic Dyes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
13
|
Alshameri AW, Owais M. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Lite MC, Constantinescu RR, Tănăsescu EC, Kuncser A, Romanițan C, Lăcătuşu I, Badea N. Design of Green Silver Nanoparticles Based on Primula Officinalis Extract for Textile Preservation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217695. [PMID: 36363287 PMCID: PMC9654331 DOI: 10.3390/ma15217695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 06/12/2023]
Abstract
The present study aims to bring an addition to biomass resources valorization for environmental-friendly synthesis of nanoparticles. Thus, the green synthesis of silver nanoparticles (AgNPs) was performed, using a novel and effective reducing agent, Primula officinalis extract. The synthesis was optimized by monitoring the characteristic absorption bands, using UV−Vis spectroscopy, and by evaluating the size and physical stability. The phenolic consumption was established using Folin-Ciocâlteu method (1.40 ± 0.42 mg, representing ~5% from the total amount of poly--phenols) and the antioxidant activity was evaluated using chemiluminescence and TEAC methods. The optimum ratio extract to Ag ions was 1:3, for which the AgNPs presented a zeta potential value of −29.3 ± 1.2 mV and particles size of 5−30 nm. For characterization, EDS and XRD techniques were used, along with microscopy techniques (TEM). The AgNPs dispersions were applied on natural textile samples (cotton and wool), as a novel antimicrobial treatment for textile preservation. The treated fabrics were further characterized in terms of chromatic parameters and antimicrobial effect against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Penicillium hirsutum strains. The high percentages of bacterial reduction, >99%, revealed that the AgNPs produced are a good candidate for textiles preservation against microbial degradation.
Collapse
Affiliation(s)
- Mihaela Cristina Lite
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucretiu Patrascanu 16, 030508 Bucharest, Romania
| | - Rodica Roxana Constantinescu
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucretiu Patrascanu 16, 030508 Bucharest, Romania
| | - Elena Cornelia Tănăsescu
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucretiu Patrascanu 16, 030508 Bucharest, Romania
| | - Andrei Kuncser
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Cosmin Romanițan
- National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae 126A, 077190 Voluntari, Romania
| | - Ioana Lăcătuşu
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
| | - Nicoleta Badea
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
15
|
Ureña‐Castillo B, Morones‐Ramírez JR, Rivera‐De la Rosa J, Alcalá‐Rodríguez MM, Cerdán Pasarán AQ, Díaz‐Barriga Castro E, Escárcega‐González CE. Organic Waste as Reducing and Capping Agents for Synthesis of Silver Nanoparticles with Various Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202201023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Brenda Ureña‐Castillo
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
- Centro de Investigación en Biotecnología y Nanotecnología Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo Apodaca Nuevo León 66629 México
| | - José Rubén Morones‐Ramírez
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
- Centro de Investigación en Biotecnología y Nanotecnología Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo Apodaca Nuevo León 66629 México
| | - Javier Rivera‐De la Rosa
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
| | - Mónica María Alcalá‐Rodríguez
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
| | - Andrea Quetzalli Cerdán Pasarán
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
| | - Enrique Díaz‐Barriga Castro
- Laboratorio de Instrumentación Analítica Centro de Investigación en Química Aplicada Blvd. Enrique Reyna Hermosillo No. 140 Saltillo Coahuila 25294 México
| | - Carlos Enrique Escárcega‐González
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
- Centro de Investigación en Biotecnología y Nanotecnología Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo Apodaca Nuevo León 66629 México
| |
Collapse
|
16
|
Green Synthesis of Silver Nanoparticles Using Euphorbia wallichii Leaf Extract: Its Antibacterial Action against Citrus Canker Causal Agent and Antioxidant Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113525. [PMID: 35684463 PMCID: PMC9182241 DOI: 10.3390/molecules27113525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Biologically synthesized silver nanoparticles are emerging as attractive alternatives to chemical pesticides due to the ease of their synthesis, safety and antimicrobial activities in lower possible concentrations. In the present study, we have synthesized silver nanoparticles (AgNPs) using the aqueous extract of the medicinal plant Euphorbia wallichii and tested them against the plant pathogenic bacterium Xanthomonas axonopodis, the causative agent of citrus canker, via an in vitro experiment. The synthesized silver nanoparticles were characterized by techniques such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis and transmission electron microscopy. Moreover, the plant species were investigated for phenolics, flavonoids and antioxidant activity. The antioxidant potential of the extract was determined against a DPPH radical. The extract was also evaluated for phenolic compounds using the HPLC technique. The results confirmed the synthesis of centered cubic, spherical-shaped and crystalline nanoparticles by employing standard characterization techniques. A qualitative and quantitative phytochemical analysis revealed the presence of phenolics (41.52 mg GAE/g), flavonoids (14.2 mg QE/g) and other metabolites of medicinal importance. Different concentrations (1000 µg/mL to 15.62 µg/mL—2 fold dilutions) of AgNPs and plant extract (PE) alone, and both in combination (AgNPs-PE), exhibited a differential inhibition of X. axanopodis in a high throughput antibacterial assay. Overall, AgNPs-PE was superior in terms of displaying significant antibacterial activity, followed by AgNPs alone. An appreciable antioxidant potential was recorded as well. The observed antibacterial and antioxidant potential may be attributed to eight phenolic compounds identified in the extract. The Euphorbia wallichii leaf-extract-induced synthesized AgNPs exhibited strong antibacterial activity against X. axanopodis, which could be exploited as effective alternative preparations against citrus canker in planta in a controlled environment. In addition, as a good source of phenolic compounds, the plant could be further exploited for potent antioxidants.
Collapse
|
17
|
Nagasundari SM, Murugan K, Jeyakumar P, Muthu K. Plant ( Pedalium murex L.) mucilage green synthesized and capped silver nanoparticles: in vitro biological and solar-driven photocatalytic dye degradation activity. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2012675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Kasi Murugan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Palanisamy Jeyakumar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Karuppiah Muthu
- Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| |
Collapse
|
18
|
Kapoor S, Sood H, Saxena S, Chaurasia OP. Green synthesis of silver nanoparticles using Rhodiola imbricata and Withania somnifera root extract and their potential catalytic, antioxidant, cytotoxic and growth-promoting activities. Bioprocess Biosyst Eng 2022; 45:365-380. [PMID: 34988733 DOI: 10.1007/s00449-021-02666-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022]
Abstract
This study presents the development of a sustainable production process of environmentally benign silver nanoparticles (AgNPs) from aqueous root extract of Rhodiola imbricata (RI) and Withania somnifera (WS) for mitigating environmental pollution and investigating their potential applications in agriculture and biomedical industry. RIWS-AgNPs were characterized using several analytical techniques (UV-Vis, DLS, HR-TEM, SAED, EDX and FTIR). The antioxidant and anticancer activity of RIWS-AgNPs were estimated by DPPH and MTT assay, respectively. UV-Vis and DLS analysis indicated that equal ratio of RIWS-extract and silver nitrate (1:1) is optimum for green synthesis of well-dispersed AgNPs (λmax: 430 nm, polydispersity index: 0.179, zeta potential: - 17.9 ± 4.14). HR-TEM and SAED analysis confirmed the formation of spherical and crystalline RIWS-AgNPs (37-42 nm). FTIR analysis demonstrated that the phenolic compounds are probably involved in stabilization of RIWS-AgNPs. RIWS-AgNPs showed effective catalytic degradation of hazardous environmental pollutant (4-nitrophenol). RIWS-AgNPs treatment significantly increased the growth and photosynthetic pigments of Hordeum vulgare in a size- and dose-dependent manner (germination (77%), chlorophyll a (12.62 ± 0.07 μg/ml) and total carotenoids (7.05 ± 0.04 μg/ml)). The DPPH assay demonstrated that RIWS-AgNPs exert concentration-dependent potent antioxidant activity (IC50: 12.30 μg/ml, EC50: 0.104 mg/ml, ARP: 959.45). Moreover, RIWS-AgNPs also confer strong cytotoxic activity against HepG2 cancer cell line in dose-dependent manner (cell viability: 9.51 ± 1.55%). Overall, the present study for the first time demonstrated a green technology for the synthesis of stable RIWS-AgNPs and their potential applications in biomedical and agriculture industry as phytostimulatory, antioxidant and anticancer agent. Moreover, RIWS-AgNPs could potentially be used as a green alternative for environmental remediation.
Collapse
Affiliation(s)
- Sahil Kapoor
- Defence Institute of High-Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India.,Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173215, India.,Department of Botany, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, 160030, India
| | - Hemant Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173215, India.
| | - Shweta Saxena
- Defence Institute of High-Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Om Prakash Chaurasia
- Defence Institute of High-Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| |
Collapse
|
19
|
Vasil'kov AY, Abd-Elsalam KA, Olenin AY. Biogenic silver nanoparticles: New trends and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:241-281. [DOI: 10.1016/b978-0-12-824508-8.00028-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
20
|
Chahardoli A, Hajmomeni P, Ghowsi M, Qalekhani F, Shokoohinia Y, Fattahi A. Optimization of Quercetin-Assisted Silver Nanoparticles Synthesis and Evaluation of Their Hemocompatibility, Antioxidant, Anti-Inflammatory, and Antibacterial effects. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100075. [PMID: 34938575 PMCID: PMC8671616 DOI: 10.1002/gch2.202100075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/23/2021] [Indexed: 06/14/2023]
Abstract
In the present study, different effective parameters (temperature, reaction time, and pH) on the synthesis of quercetin-assisted silver nanoparticles (QE-AgNPs) are optimized. These biogenic NPs are characterized by different physico-chemical analyses, including transmission electron microscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and UV-visible spectroscopy. In addition, the biological properties of QE-AgNPs are evaluated through antioxidant, antimicrobial, anti-inflammatory, hemolysis, and coagulation time assays. The formation of QE-AgNPs is affected by different parameters. The optimum condition for the synthesis of QE-AgNPs is attained at 70 °C and pH 7. Prepared QE-AgNPs show a spherical shape with a crystalline nature and an average particle size of 20 ± 3.6 nm. The role of QE as a reducing and capping agent in the preparation process of QE-AgNPs is demonstrated using FTIR analysis. These NPs with excellent antioxidant activity (82.3% at a concentration of 400 µg mL-1) and anti-inflammatory properties (82.5% and 100% at concentrations of 37.25 and 500 µg mL-1, respectively), show good antimicrobial effects, particularly against Staphylococcus aureus. Furthermore, the results of the hemolytic and coagulation assay of QE-AgNPs indicate their hemo-compatibility. Therefore, hemo/bio-compatible QE-AgNPs with excellent and unique properties can be employed in different medicinal and pharmacological applications.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of BiologyFaculty of ScienceRazi UniversityKermanshah6714414971Iran
| | - Pouria Hajmomeni
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
| | - Mahnaz Ghowsi
- Department of BiologyFaculty of ScienceRazi UniversityKermanshah6714414971Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
- Ric Scalzo Institute for Botanical ResearchSouthwest College of Naturopathic MedicineTempeAZ85282USA
| | - Ali Fattahi
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
- Medical Biology Research CenterHealth Technologies InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
| |
Collapse
|
21
|
Akilandaeaswari B, Muthu K. One-pot green synthesis of Au-Ag bimetallic nanoparticles from Lawsonia inermis seed extract and its catalytic reduction of environmental polluted methyl orange and 4-nitrophenol. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Hu D, Yang X, Chen W, Feng Z, Hu C, Yan F, Chen X, Qu D, Chen Z. Rhodiola rosea Rhizome Extract-Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Their Potential Antioxidant and Catalytic Reduction Activities. ACS OMEGA 2021; 6:24450-24461. [PMID: 34604627 PMCID: PMC8482401 DOI: 10.1021/acsomega.1c02843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 05/30/2023]
Abstract
The silver nanoparticles (AgNPs) using the rhizome extract of Rhodiola rosea have been reported. However, their antioxidant activity and whether the biogenic AgNPs could be used to catalyze the reduction of hazardous dye or used as fluorescence enhancers are unknown. This study focused on the facile green synthesis of silver nanoparticles using the rhizome aqueous extract of R. rosea (G-AgNPs). We then studied their antioxidant activity and catalytic degradation of hazardous dye Direct Orange 26 (DO26) and Direct Blue 15 (DB15). Their effects on fluorescein's fluorescent properties were also evaluated. The chemical AgNPs (C-AgNPs) were synthesized by reducing solid sodium borohydride (NaBH4), and its above activities were compared with those of G-AgNPs. The formation of G-AgNPs was confirmed by the appearance of brownish-gray color and the surface plasmon resonance (SPR) peak at 437 nm. The biogenic AgNPs were approximately 10 nm in size with a regular spherical shape identified from transmission electron microscopy (TEM) analysis. G-AgNPs exhibited significantly improved 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity than butylated hydroxytoluene (BHT) and C-AgNPs (p < 0.05). The biogenic G-AgNPs were also found to function as an effective green catalyst in reducing DO26 and DB15 by NaBH4, which is superior to C-AgNPs. Furthermore, G-AgNPs showed better fluorescence enhancement activity than C-AgNPs, and the concentration required was lower. When the concentration of the G-AgNP solution was 64 nmol/L, the fluorescence intensity reached the maximum of 5460, with the fluorescence enhancement efficiency of 3.39, and the fluorescence activity was stable within 48 h. This study shows the efficacy of biogenic AgNPs in catalyzing the reduction of hazardous dye DO26 and DB15. Biogenic AgNPs could also be used as fluorescence enhancers in low concentrations.
Collapse
Affiliation(s)
- Daihua Hu
- Vitamin
D Research Institute, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
- College
of Food Science and Engineering, Northwest
A&F University, Yangling, Shaanxi 712100, China
- Shaanxi
Key Laboratory of Bioresource, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Xu Yang
- Vitamin
D Research Institute, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Wang Chen
- Vitamin
D Research Institute, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Zili Feng
- Vitamin
D Research Institute, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Chingyuan Hu
- Shaanxi
Key Laboratory of Bioresource, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Fei Yan
- Shaanxi
Key Laboratory of Bioresource, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Xiaohua Chen
- Shaanxi
Key Laboratory of Bioresource, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Dong Qu
- Shaanxi
Key Laboratory of Bioresource, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Zhiyuan Chen
- Shaanxi
Key Laboratory of Bioresource, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| |
Collapse
|
23
|
Boeira CP, Alves JDS, Flores DCB, Moura MR, Melo PTS, Rosa CS. Antioxidant and antimicrobial effect of an innovative active film containing corn stigma residue extract for refrigerated meat conservation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caroline Pagnossim Boeira
- Department of Food Science and Technology Universidade Federal de Santa Maria (UFSM) Santa Maria Brazil
| | - Jamila dos Santos Alves
- Department of Food Science and Technology Universidade Federal de Santa Maria (UFSM) Santa Maria Brazil
| | | | - Márcia Regina Moura
- Department of Physics and Chemistry Universidade Estadual Paulista (UNESP) Ilha Solteira Brazil
| | - Pamela Thais Sousa Melo
- Department of Physics and Chemistry Universidade Estadual Paulista (UNESP) Ilha Solteira Brazil
| | - Claudia Severo Rosa
- Department of Food Science and Technology Universidade Federal de Santa Maria (UFSM) Santa Maria Brazil
| |
Collapse
|
24
|
Green synthesis of silver nanoparticles using Borago officinalis leaves extract and screening its antimicrobial and antifungal activity. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00345-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Tarmizi AAA, Wagiran A, Mohd Salleh F, Chua LS, Abdullah FI, Hasham R, Binte Mostafiz S. Integrated Approach for Species Identification and Quality Analysis for Labisia pumila Using DNA Barcoding and HPLC. PLANTS 2021; 10:plants10040717. [PMID: 33917172 PMCID: PMC8067811 DOI: 10.3390/plants10040717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022]
Abstract
Labisia pumila is a precious herb in Southeast Asia that is traditionally used as a health supplement and has been extensively commercialized due to its claimed therapeutic properties in boosting a healthy female reproductive system. Indigenous people used these plants by boiling the leaves; however, in recent years it has been marketed as powdered or capsuled products. Accordingly, accuracy in determination of the authenticity of these modern herbal products has faced great challenges. Lack of authenticity is a public health risk because incorrectly used herbal species can cause adverse effects. Hence, any measures that may aid product authentication would be beneficial. Given the widespread use of Labisia herbal products, the current study focuses on authenticity testing via an integral approach of DNA barcoding and qualitative analysis using HPLC. This study successfully generated DNA reference barcodes (ITS2 and rbcL) for L. pumila var. alata and pumila. The DNA barcode that was generated was then used to identify species of Labisia pumila in herbal medicinal products, while HPLC was utilized to determine their quality. The findings through the synergistic approach (DNA barcode and HPLC) implemented in this study indicate the importance of both methods in providing the strong evidence required for the identification of true species and to examine the authenticity of such herbal medicinal products.
Collapse
Affiliation(s)
- Auni Aqilah Ahmad Tarmizi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (A.A.A.T.); (F.M.S.); (S.B.M.)
| | - Alina Wagiran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (A.A.A.T.); (F.M.S.); (S.B.M.)
- Correspondence: ; Tel.: +60-19-7632512
| | - Faezah Mohd Salleh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (A.A.A.T.); (F.M.S.); (S.B.M.)
| | - Lee Suan Chua
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (L.S.C.); (F.I.A.); (R.H.)
| | - Farah Izana Abdullah
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (L.S.C.); (F.I.A.); (R.H.)
| | - Rosnani Hasham
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (L.S.C.); (F.I.A.); (R.H.)
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Suraiya Binte Mostafiz
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (A.A.A.T.); (F.M.S.); (S.B.M.)
| |
Collapse
|
26
|
Chahardoli A, Qalekhani F, Shokoohinia Y, Fattahi A. Biological and Catalytic Activities of Green Synthesized Silver Nanoparticles from the Leaf Infusion of Dracocephalum kotschyi Boiss. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000018. [PMID: 33552550 PMCID: PMC7857125 DOI: 10.1002/gch2.202000018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/01/2020] [Indexed: 06/12/2023]
Abstract
The discovery and development of active compounds to eliminate drug resistance and side effects is a crucial process. In this study, the leaf infusion of Dracocephalum kotschyi Boiss as a novel green alternative is used to synthesize silver nanoparticles (Drac-AgNPs). Antibacterial, cytotoxicity effects, hemocompatibility, and the catalytic properties of these nanoparticles are evaluated. The synthesis of Drac-AgNPs is confirmed by UV-vis spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy, where Drac-AgNPs are spherical, with a size range of 5-63 nm. Their IC50 values against H1299 and MCF-7 cell lines are above 50 and 100 μg mL-1, respectively. Drac-AgNPs are effective against an inclusive range of the gram-positive and gram-negative bacteria, that is, Staphylococcus epidermidis, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Serratia marcescens, and Pseudomonas aeruginosa, and a low hemolytic effect makes them an exceptional AgNP with a great hemocompatibility. They show a moderate catalytic-effect in terms of removing methylene blue, with 67% degradation. Altogether, Drac-AgNP, as a multi-tasker material, shows potential for the prevention and treatment of infections and photothermal/chemotherapy of cancers.
Collapse
Affiliation(s)
- Azam Chahardoli
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshahIran
- Medical Biology Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshah6715847141Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Ali Fattahi
- Medical Biology Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshah6715847141Iran
| |
Collapse
|
27
|
Thakur A, Sharma N, Bhatti M, Sharma M, Trukhanov AV, Trukhanov SV, Panina LV, Astapovich KA, Thakur P. Synthesis of barium ferrite nanoparticles using rhizome extract of Acorus Calamus: Characterization and its efficacy against different plant phytopathogenic fungi. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100599] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Biosynthesis, Characterization, and Biological Activities of Procyanidin Capped Silver Nanoparticles. J Funct Biomater 2020; 11:jfb11030066. [PMID: 32961705 PMCID: PMC7564108 DOI: 10.3390/jfb11030066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2–7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.
Collapse
|
29
|
Nagra U, Shabbir M, Zaman M, Mahmood A, Barkat K. Review on Methodologies Used in the Synthesis of Metal Nanoparticles: Significance of Phytosynthesis Using Plant Extract as an Emerging Tool. Curr Pharm Des 2020; 26:5188-5204. [PMID: 32473619 DOI: 10.2174/1381612826666200531150218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
Nanosized particles, with a size of less than 100 nm, have a wide variety of applications in various fields of nanotechnology and biotechnology, especially in the pharmaceutical industry. Metal nanoparticles [MNPs] have been synthesized by different chemical and physical procedures. Still, the biological approach or green synthesis [phytosynthesis] is considered as a preferred method due to eco-friendliness, nontoxicity, and cost-effective production. Various plants and plant extracts have been used for the green synthesis of MNPs, including biofabrication of noble metals, metal oxides, and bimetallic combinations. Biomolecules and metabolites present in plant extracts cause the reduction of metal ions into nanosized particles by one-step preparation methods. MNPs have remarkable attractiveness in biomedical applications for their use as potential antioxidant, anticancer and antibacterial agents. The present review offers a comprehensive aspect of MNPs production via top-to-bottom and bottom-to-top approach with considerable emphasis on green technology and their possible biomedical applications. The critical parameters governing the MNPs formation by plant-based synthesis are also highlighted in this review.
Collapse
Affiliation(s)
- Uzair Nagra
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| | - Maryam Shabbir
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Punjab, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| |
Collapse
|
30
|
Jalilian F, Chahardoli A, Sadrjavadi K, Fattahi A, Shokoohinia Y. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.01.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Mohaghegh S, Osouli-Bostanabad K, Nazemiyeh H, Javadzadeh Y, Parvizpur A, Barzegar-Jalali M, Adibkia K. A comparative study of eco-friendly silver nanoparticles synthesis using Prunus domestica plum extract and sodium citrate as reducing agents. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Mavaei M, Chahardoli A, Shokoohinia Y, Khoshroo A, Fattahi A. One-step Synthesized Silver Nanoparticles Using Isoimperatorin: Evaluation of Photocatalytic, and Electrochemical Activities. Sci Rep 2020; 10:1762. [PMID: 32020015 PMCID: PMC7000682 DOI: 10.1038/s41598-020-58697-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
In the current study, isoimperatorin, a natural furanocoumarin, is used as a reducing reagent to synthesize isoimperatorin mediated silver nanoparticles (Iso-AgNPs), and photocatalytic and electrocatalytic activities of Iso-AgNPs are evaluated. Iso-AgNPs consisted of spherically shaped particles with a size range of 79-200 nm and showed catalytic activity for the degradation (in high yields) of New Fuchsine (NF), Methylene Blue (MB), Erythrosine B (ER) and 4-chlorophenol (4-CP) under sunlight irradiation. Based on obtained results, Iso-AgNPs exhibited 96.5%, 96.0%, 92%, and 95% degradation rates for MB, NF, ER, and 4-CP, respectively. The electrochemical performance showed that the as-prepared Iso-AgNPs exhibited excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction. It is worth noticing that the Iso-AgNPs were used as electrode materials without any binder. The sensor-based on binder-free Iso-AgNPs showed linearity from 0.1 µM to 4 mM with a detection limit of 0.036 μM for H2O2. This binder-free and straightforward strategy for electrode preparation by silver nanoparticles may provide an alternative technique for the development of other nanomaterials based on isoimperatorin under green conditions. Altogether, the application of isoimpratorin in the synthesis of nano-metallic electro and photocatalysts, especially silver nanoparticles, is a simple, cost-effective and efficient approach.
Collapse
Affiliation(s)
- Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Chahardoli
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, USA
| | - Alireza Khoshroo
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Fattahi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
33
|
Jayakumar A, Vedhaiyan RK. Rapid synthesis of phytogenic silver nanoparticles using Clerodendrum splendens: its antibacterial and antioxidant activities. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0389-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Das P, Karankar VS. New avenues of controlling microbial infections through anti-microbial and anti-biofilm potentials of green mono-and multi-metallic nanoparticles: A review. J Microbiol Methods 2019; 167:105766. [PMID: 31706910 DOI: 10.1016/j.mimet.2019.105766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticles synthesized through the green route deserve special mention because this green technology is not only energy-efficient and cost-effective but also amenable to the environment. Various biological resources have been used for the generation of these 'green nanoparticles'. Biological wastes have also been focused in this direction thereby promoting the value of waste. Reports indicate that green nanoparticles exhibit remarkable antimicrobial activitiesboth singly as well as in combination with standard antibiotics. The current phenomenon of multi-drug resistance has resulted due to indiscriminate administration of high-doses of antibiotics followed by significant toxicity. In the face of this emergence of drug-resistant microbesthe efficacy of green nanoparticles might prove greatly beneficial. Microbial biofilm is another hurdle in the effective treatment of diseases as the microorganismsbeing embedded in the meshwork of the biofilmevade the antimicrobial agents. Nanoparticles may act as a ray of hope on the face of this challenge tooas they not only destroy the biofilms but also lessen the doses of antibiotics requiredwhen administered in combination with the nanoparticles. It should be further noted that the resistance mechanisms exhibited by the microorganisms seem not that relevant for nanoparticles. The current review, to the best of our knowledgefocuses on the structures of these green nanoparticles along with their biomedical potentials. It is interesting to note how a variety of structures are generated by using resources like microbes or plants or plant products and how the structure affects their activities. This study might pave the way for further development in this arena and future work may be taken up in identifying the detailed mechanism by which 'green' synthesis empowers nanoparticles to kill pathogenic microbes.
Collapse
Affiliation(s)
- Palashpriya Das
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India.
| | - Vijayshree S Karankar
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| |
Collapse
|
35
|
Bio-Mediated Synthesis and Characterisation of Silver Nanocarrier, and Its Potent Anticancer Action. NANOMATERIALS 2019; 9:nano9101423. [PMID: 31597260 PMCID: PMC6835987 DOI: 10.3390/nano9101423] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 12/17/2022]
Abstract
Discovery of a potent drug nanocarrier is crucial for cancer therapy in which drugs often face challenges in penetrating efficiently into solid tumours. Here, biosynthesis of silver nanoparticles (AgNPs) using a waste material, Garcinia mangostana (GM) fruit peel extract is demonstrated. The best condition for AgNPs synthesis was with 0.5 g of peel extract, 7.5 mM silver nitrate at 45 °C, ~pH 4 for 16 h. The synthesized AgNPs were spherical and 32.7 ± 5.7 nm in size. To test its efficiency to be used as drug carrier, plant-based drug, protocatechuic acid (PCA) was used as a test drug. AgNPs loaded with PCA (AgPCA) resulted in 80% of inhibition at 15.6 µg/mL as compared to AgNPs which only killed 5% of HCT116 colorectal cells at same concentration. The IC50 of AgNPs and AgPCA for HCT116 were 40.2 and 10.7 µg/mL, respectively. At 15.6 µg/mL, AgPCA was not toxic to the tested colon normal cells, CCD112. Ag-based drug carrier could also potentially reduce the toxicity of loaded drug as the IC50 of PCA alone (148.1 µg/mL) was higher than IC50 of AgPCA (10.7 µg/mL) against HCT116. Further, 24-h treatment of 15.6 µg/mL AgPCA resulted in loss of membrane potential in the mitochondria of HCT116 cells and increased level of reaction oxygen species (ROS). These could be the cellular killing mechanisms of AgPCA. Collectively, our findings show the synergistic anticancer activity of AgNPs and PCA, and its potential to be used as a potent anticancer drug nanocarrier.
Collapse
|
36
|
Haroon M, Zaidi A, Ahmed B, Rizvi A, Khan MS, Musarrat J. Effective Inhibition of Phytopathogenic Microbes by Eco-Friendly Leaf Extract Mediated Silver Nanoparticles (AgNPs). Indian J Microbiol 2019; 59:273-287. [PMID: 31388204 PMCID: PMC6646496 DOI: 10.1007/s12088-019-00801-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT This study was aimed at producing the eco-friendly, safe, and inexpensive silver (Ag) nanoparticles (NPs) and assessing its antimicrobial activity. Fungal pathogens isolated from diseased leaves and fruits of brinjal and bacterial pathogen obtained from a culture collection were used in this study. Green synthesis of AgNPs was performed and optimized using Azadirachta indica leaf extract. The newly synthesized AgNPs (λmax = 437 nm) showed isotropism in size (crystal size/diameter: 21/29 ± 5 nm) and morphology under transmission and scanning electron microscopy and energy dispersive X-ray analysis. The fourier transform infrared spectroscopy data suggested the role of various aliphatic/aromatic moieties and proteins in AgNPs stabilization. The AgNPs reduced the growth of Penicillium sp. maximally by 92% after 6 days. The sensitivity of test fungi towards AgNPs followed the order: Penicillium sp. (92%) > Fusarium sp. (89%) > Aspergillus sp. (69%). Exposure of Ralstonia solanacearum to AgNPs (MIC/MBC 200/400 µg ml-1) displayed damaged cellular envelopes, bulging of cells, and pit formation. The nucleic acid discharge showed a progressive increase from 8 to 34% (r2 = 0.97). The cellular metabolic activity and surface adhering ability of R. solanacearum were completely lost at 400 µgAgNPs ml-1. Results suggested that the AgNPs synthesized in this study had enough anti-pathogenic potential and could inexpensively and safely be used as a promising alternative to agrochemicals. Moreover, the findings observed in this study is likely to serve as an important indicator for the development of effective nano-control agents which in effect would help to manage some deadly phyto-pathogens capable of causing heavy losses to agricultural production systems. GRAPHICAL ABSTRACT Effective inhibition of phytopathogenic microbes by eco-friendly neem leaf extract mediated silver nanoparticles (AgNPs).
Collapse
Affiliation(s)
- Mahvash Haroon
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, India
| | - Almas Zaidi
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, India
| | - Bilal Ahmed
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, India
| | - Asfa Rizvi
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, India
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, India
- Present Address: School of Biosciences and Biodiversity, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir India
| |
Collapse
|
37
|
Labanni A, Zulhadjri Z, Handayani D, Ohya Y, Arief S. The effect of monoethanolamine as stabilizing agent in Uncaria gambir Roxb. mediated synthesis of silver nanoparticles and its antibacterial activity. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1626249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Arniati Labanni
- Department of Chemistry, Faculty of Mathematics and Sciences, Andalas University , Padang , Indonesia
| | - Zulhadjri Zulhadjri
- Department of Chemistry, Faculty of Mathematics and Sciences, Andalas University , Padang , Indonesia
| | - Dian Handayani
- Department of Pharmacy, Andalas University , Padang , Indonesia
| | - Yutaka Ohya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University ,
Yanagido 1 – 1
, Gifu , Japan
| | - Syukri Arief
- Department of Chemistry, Faculty of Mathematics and Sciences, Andalas University , Padang , Indonesia
| |
Collapse
|
38
|
Dairi N, Ferfera-Harrar H, Ramos M, Garrigós MC. Cellulose acetate/AgNPs-organoclay and/or thymol nano-biocomposite films with combined antimicrobial/antioxidant properties for active food packaging use. Int J Biol Macromol 2019; 121:508-523. [DOI: 10.1016/j.ijbiomac.2018.10.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/10/2018] [Accepted: 10/10/2018] [Indexed: 01/31/2023]
|
39
|
Khandel P, Shahi SK, Soni DK, Yadaw RK, Kanwar L. Alpinia calcarata: potential source for the fabrication of bioactive silver nanoparticles. NANO CONVERGENCE 2018; 5:37. [PMID: 30519797 PMCID: PMC6281549 DOI: 10.1186/s40580-018-0167-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
In the present study silver nanoparticles fabricated by using leaf extract of Alpinia calcarata. We have also studied the effect of various experimental parameters viz., metal ion concentration, pH and incubation period on nanoparticle biosynthesis. Results of optimization showed that metal ion concentration of 1.5 mM, alkaline pH and incubation period of 12 h were the optimum conditions for metal nanoparticle biosynthesis. Synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, Dynamic light scattering (DLS), Zeta potential analysis, Fourier transform infrared spectroscopy (FTIR), Inductively coupled plasma-optical emission spectrometry (ICP-OES), Transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The UV-visible spectrum shows a sharp peak at 420 nm which was due to the surface plasmon resonance of the silver nanoparticles. Effect of several phytochemicals present in A. calcarata, on synthesis of silver nanoparticles was studied by Fourier transform infrared spectroscopy. The results indicate that the flavonoids, phytosterol, quinones and phenolic compounds present in the plant extract plays a major role in formation of silver nanoparticles in their respective ions in solution. Results of TEM and XRD analysis showed that synthesized silver nanoparticles were mostly spherical in shape with an average diameter of 27.2 ± 0.2.5 nm and highly crystalline in nature. Moreover the synthesized silver nanoparticles were also evaluated for their potential antibacterial and antioxidant activities. It showed good antibacterial activity as well as antioxidant activity. Thus the obtained result provides a scientific support that leaf extract of A. calcarata can be used efficiently in the production of potential bioactive silver nanoparticles with several pharmaceutical applications.
Collapse
Affiliation(s)
- Pramila Khandel
- Department of Botany, Bioresource Tech Laboratory, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009 India
| | - Sushil Kumar Shahi
- Department of Botany, Bioresource Tech Laboratory, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009 India
| | - Deepak Kumar Soni
- Department of Botany, Bioresource Tech Laboratory, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009 India
| | - Ravi Kumar Yadaw
- Department of Botany, Bioresource Tech Laboratory, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009 India
| | - Leeladhar Kanwar
- Department of Botany, Bioresource Tech Laboratory, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009 India
| |
Collapse
|
40
|
Alharbi NS, Govindarajan M, Kadaikunnan S, Khaled JM, Almanaa TN, Alyahya SA, Al-Anbr MN, Gopinath K, Sudha A. Nanosilver crystals capped with Bauhinia acuminata phytochemicals as new antimicrobials and mosquito larvicides. J Trace Elem Med Biol 2018; 50:146-153. [PMID: 30262272 DOI: 10.1016/j.jtemb.2018.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
To develop novel nanoformulated insecticides and antimicrobials, herein we produced Ag nanoparticles (AgNPs) using the Bauhinia acuminata leaf extract. This unexpensive aqueous extract acted as a capping and reducing agent for the formation of AgNPs. We characterized B. acuminata-synthesized AgNPs by UV-vis and FTIR spectroscopy, XRD and TEM analyses. UV-vis spectroscopy analysis of B. acuminata-synthesized AgNPs showed a peak at 441.5 nm. FTIR shed light on functional groups from the phytoconstituents involved in nanosynthesis. XRD of B. acuminata-synthesized AgNPs suggested a face-centered cubic structure, with a highly crystalline nature. TEM of B. acuminata-synthesized AgNPs revealed mean size of 25 nm, with round shape. AgNPs tested at 60 μg/mL inhibited the growth of 5 bacteria and 3 fungal pathogens. In the insecticidal assays on important mosquito species, LC50 of the aqueous extract of B. acuminata leaves on the larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus were 204.07, 226.02, and 249.24 μg/mL, respectively. The B. acuminata-synthesized AgNPs exhibited higher larvicidal efficacy, with LC50 values of 24.59, 27.19, and 30.19 μg/mL, respectively. Therefore, herein we developed a single-step, reliable, inexpensive, and environmentally non-toxic synthesis process to obtain AgNPs with high bioactivity against pathogens and vectors. Given the effective antimicrobial and larvicidal activity, nanoparticles fabricated using plant extracts and extremely low concentrations of trace elements, such as silver, can be exploited for multipurpose activities. Our results pointed out that B. acuminata-synthesized AgNPs have a promising potential in antimicrobial food packaging, as well as a foliar spray to control plant pathogens in the field, and to synergize the efficacy of fungicidal and larvicidal formulations.
Collapse
Affiliation(s)
- Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India; Department of Zoology, Government College for Women, Kumbakonam, 612001, Tamil Nadu, India.
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sami A Alyahya
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Mohammed N Al-Anbr
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kasi Gopinath
- Department of Packaging, Yonsei University, Gangwondo 26493, Republic of Korea
| | - Arumugam Sudha
- Department of Bioinformatics, Alagappa University, Karaikudi, India
| |
Collapse
|
41
|
Dzul-Erosa MS, Cauich-Díaz MM, Razo-Lazcano TA, Avila-Rodriguez M, Reyes-Aguilera JA, González-Muñoz M. Aqueous leaf extracts of Cnidoscolus chayamansa (Mayan chaya) cultivated in Yucatán México. Part II: Uses for the phytomediated synthesis of silver nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:838-852. [DOI: 10.1016/j.msec.2018.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
|
42
|
Lopez-Miranda JL, Vázquez González MA, Mares-Briones F, Cervantes-Chávez JA, Esparza R, Rosas G, Pérez R. Catalytic and antibacterial evaluation of silver nanoparticles synthesized by a green approach. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3568-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Ahmed B, Hashmi A, Khan MS, Musarrat J. ROS mediated destruction of cell membrane, growth and biofilms of human bacterial pathogens by stable metallic AgNPs functionalized from bell pepper extract and quercetin. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.03.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
44
|
Koduru JR, Kailasa SK, Bhamore JR, Kim KH, Dutta T, Vellingiri K. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: A review. Adv Colloid Interface Sci 2018; 256:326-339. [PMID: 29549999 DOI: 10.1016/j.cis.2018.03.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Silver nanoparticles (Ag NPs) have recently emerged as promising materials in the biomedical sciences because of their antimicrobial activities towards a wide variety of microorganisms. Nanomaterial-based drug delivery systems with antimicrobial activity are critical as they may lead to novel treatments for cutaneous pathogens. In this review, we explore the recent progress on phytochemical-mediated synthesis of Ag NPs for antimicrobial treatment and associated infectious diseases. We discuss the biological activity of Ag NPs including mechanisms, antimicrobial activity, and antifungal/antiviral effects towards various microorganisms. The advent of Ag NP-based nanocarriers and nano-vehicles is also described for treatment of different diseases, along with the mechanisms of microbial inhibition. Overall, this review will provide a rational vision of the main achievements of Ag NPs as nanocarriers for inhibition of various microbial agents (bacteria, fungus, and virus).
Collapse
|
45
|
Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:30-34. [PMID: 29684718 DOI: 10.1016/j.jphotobiol.2018.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/26/2018] [Accepted: 04/14/2018] [Indexed: 11/23/2022]
Abstract
Silver nanoparticles were prepared through eco-friendly, cost effective, bio-mediated technique using anaerobically digested Parthenium hysterophorous digested slurry (PDS) for the first time. The synthesized nanoparticles were characterized through different techniques such as UV-Vis spectrophotometer for optical properties; X-ray diffractometer (XRD), high resolution transmission electron spectroscopy (HR-TEM) and Fourier Transform Infra Red (FTIR) Spectroscopy for structural property investigations. It was observed that the prepared silver nanoparticles were crystallized in face centered cubic crystal structure with an average particle size of 19 nm as confirmed from XRD. Also HR-TEM studies reveal the formation of nano-sized silver particles with face centered cubic nano structure. In addition, absorption spectra exhibit Surface Plasmon Resonance (SPR) which suggests the formation of silver nanoparticles. FTIR results show the presence of different characteristic functional groups and their stretching / bending vibrations in turn responsible for the bioreduction of silver ions in Parthenium digested slurry. Further investigations on antimicrobial activity were done by subjecting the synthesized silver nanoparticles on E-coli and Pseudomonas as marker organisms for the group of gram negative bacteria by well plate method on enrichment media. The result obtained shows a clear zone of inhibition confirming the antibacterial activity. Overall, the investigated results confirm the biosynthesized silver nanoparticles are potential candidates for antimicrobial activity applications.
Collapse
|