1
|
Lithi IJ, Ahmed Nakib KI, Chowdhury AMS, Sahadat Hossain M. A review on the green synthesis of metal (Ag, Cu, and Au) and metal oxide (ZnO, MgO, Co 3O 4, and TiO 2) nanoparticles using plant extracts for developing antimicrobial properties. NANOSCALE ADVANCES 2025; 7:2446-2473. [PMID: 40207090 PMCID: PMC11976448 DOI: 10.1039/d5na00037h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Green synthesis (GS) is a vital method for producing metal nanoparticles with antimicrobial properties. Unlike traditional methods, green synthesis utilizes natural substances, such as plant extracts, microorganisms, etc., to create nanoparticles. This eco-friendly approach results in non-toxic and biocompatible nanoparticles with superior antimicrobial activity. This paper reviews the prospects of green synthesis of metal nanoparticles of silver (Ag), copper (Cu), gold (Au) and metal oxide nanoparticles of zinc (ZnO), magnesium (MgO), cobalt (Co3O4), and titanium (TiO2) using plant extracts from tissues of leaves, barks, roots, etc., antibacterial mechanisms of metal and metal oxide nanoparticles, and obstacles and factors that need to be considered to overcome the limitations of the green synthesis process. The clean surfaces and minimal chemical residues of these nanoparticles contribute to their effectiveness. Certain metals exhibit enhanced antibacterial properties only in GS methods due to the presence of bioactive compounds from natural reducing agents such as Au and MgO. GS improves TiO2 antibacterial properties under visible light, while it would be impossible without UV activation. These nanoparticles have important antimicrobial properties for treating microbial infections and combating antibiotic resistance against bacteria, fungi, and viruses by disrupting microbial membranes, generating ROS, and interfering with DNA and protein synthesis. Nanoscale size and large surface area make them critical for developing advanced antimicrobial treatments. They are effective antibacterial agents for treating infections, suitable in water purification systems, and fostering innovation by creating green, economically viable antibacterial materials. Therefore, green synthesis of metal and metal oxide nanoparticles for antibacterial agents supports several United Nations Sustainable Development Goals (SDGs), including health improvement, sustainability, and innovation.
Collapse
Affiliation(s)
- Israt Jahan Lithi
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Kazi Imtiaz Ahmed Nakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - A M Sarwaruddin Chowdhury
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
2
|
Ali G, Tahira A, Hayat A, Bhatti MA, Shah AA, Uddin Shah Bukhari SN, Dawi E, Nafady A, Alshammari RH, Tonezzer M, Samoon MK, Ibupoto ZH. Facile and ecofriendly green synthesis of Co 3O 4/MgO-SiO 2 composites towards efficient asymmetric supercapacitor and oxygen evolution reaction applications. RSC Adv 2024; 14:38009-38021. [PMID: 39610823 PMCID: PMC11604033 DOI: 10.1039/d4ra07337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
The development of low-cost, eco-friendly, and earth-friendly electrode materials for energy storage and conversion applications is a highly desirable but challenging task for strengthening the existing renewable energy systems. As part of this study, orange peel extract was utilized to synthesize a magnesium oxide-silicon dioxide hybrid substrate system (MgO-SiO2) for coating cobalt oxide nanostructures (Co3O4) via hydrothermal methods. A variety of MgO-SiO2 compositions were used to produce Co3O4 nanostructures. The purpose of using MgO-SiO2 substrates was to increase the porosity of the final hybrid material and enhance its compatibility with the electrode material. This study investigated the morphology, chemical composition, optical properties, and functional group properties. In hybrid materials, the shape structure is inherited from nanoparticles with uniform size distributions that are well compacted. A relative decrease in the optical band was observed for Co3O4 when deposited onto an MgO-SiO2 substrate. An improvement in the electrochemical properties of Co3O4/MgO-SiO2 composites was observed during the measurements of supercapacitors and oxygen evolution reaction (OER) in alkaline solutions. The Co3O4/MgO-SiO2 composite prepared on 0.4 g of the MgO-SiO2 substrate (sample 2) demonstrated excellent specific capacitance, high energy density, and recycling stability for 40 000 galvanic charge-discharge cycles. The assembled asymmetric supercapacitor (ASC) device demonstrated a specific capacitance of 243.94 F g-1 at a current density of 2 A g-1. Co3O4/MgO-SiO2 composites were found to be highly active towards the OER in 1 M KOH aqueous solution with an overpotential of 340 mV at 10 mA cm-2 and a Tafel slope of 88 mV dc-1. It was found that the stability and durability were highly satisfactory. Based on the use of orange peel extract, a roadmap was developed for the synthesis of porous hybrid substrates for the development of efficient electrode materials for energy storage and conversion.
Collapse
Affiliation(s)
- Gulzar Ali
- Institute of Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | - Asma Hayat
- Institute of Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Muhammad Ali Bhatti
- Centre for Environmental Sciences, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Aqeel Ahmed Shah
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road Karachi 75270 Pakistan
| | - Syed Nizam Uddin Shah Bukhari
- Department of Basic Science and Humanities, Dawood University of Engineering and Technology Karachi Sindh 74800 Pakistan
| | - Elmuez Dawi
- College of Humanities and Sciences, Department of Mathematics and Sciences, Ajman University P. O. Box 346 Ajman UAE
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Riyadh H Alshammari
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Matteo Tonezzer
- Department of Chemical and Geological Sciences, University of Cagliari Monserrato Italy
| | - Muhammad Kashif Samoon
- Centre for Pure and Applied Geology, University of Sindh Jamshoro Jamshoro Sindh 76080 Pakistan
| | | |
Collapse
|
3
|
Annu, Sahu M, Singh S, Prajapati S, Verma DK, Shin DK. From green chemistry to biomedicine: the sustainable symphony of cobalt oxide nanoparticles. RSC Adv 2024; 14:32733-32758. [PMID: 39429933 PMCID: PMC11483901 DOI: 10.1039/d4ra05872k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Deciphering the importance of nanostructures in advanced technologies for a broad application spectrum has far-reaching implications for humans and the environment. Cost-effective, abundant cobalt oxide nanoparticles (NPs) are among the most attractive and extensively utilized materials in biomedical sciences due to their high chemical stability, and biocompatibility. However, the methods used to develop the NPs are hazardous for human health and the environment. This article precisely examines diverse green synthesis methods employing plant extracts and microbial sources, shedding light on their mechanism, and eco-friendly attributes with more emphasis on biocompatible properties accompanied by their challenges and avenues for further research. An in-depth analysis of the synthesized cobalt oxide NPs by various characterization techniques reveals their multifaceted functionalities including cytotoxicity, larvicidal, antileishmanial, hemolytic, anticoagulating, thrombolytic, anticancer and drug sensing abilities. This revelatory and visionary article helps researchers to contribute to advancing sustainable practices in nanomaterial synthesis and illustrates the potential of biogenically derived cobalt oxide NPs in fostering green and efficient technologies for biomedical applications.
Collapse
Affiliation(s)
- Annu
- Materials Laboratory, School of Mechanical Engineering, Yeungnam University 280 Daehak-ro Gyeongsan-si Gyeongsanbuk-do 38541 Republic of Korea
| | - Muskan Sahu
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V.B.S. Purvanchal University Jaunpur-222003 India
| | - Somesh Singh
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V.B.S. Purvanchal University Jaunpur-222003 India
| | - Satypal Prajapati
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V.B.S. Purvanchal University Jaunpur-222003 India
| | - Dinesh K Verma
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V.B.S. Purvanchal University Jaunpur-222003 India
| | - Dong Kil Shin
- Materials Laboratory, School of Mechanical Engineering, Yeungnam University 280 Daehak-ro Gyeongsan-si Gyeongsanbuk-do 38541 Republic of Korea
| |
Collapse
|
4
|
Imtiyaz A, Singh A, Gaur R. Comparative Analysis and Applications of Green Synthesized Cobalt Oxide (Co3O4) Nanoparticles: A Systematic Review. BIONANOSCIENCE 2024; 14:3536-3554. [DOI: 10.1007/s12668-024-01452-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 01/06/2025]
|
5
|
Rigi F, Yavari Z, Kaedi F. Plant‐mediated fabrication of cobalt oxide nanoparticles and evaluation of their catalytic effects on electro‐oxidation of formaldehyde. J CHIN CHEM SOC-TAIP 2023; 70:1957-1964. [DOI: 10.1002/jccs.202300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 01/06/2025]
Abstract
AbstractCobalt oxide nanoparticles (Co3O4‐NPs) were synthesized by aqueous extract of Artemisia vulgaris plant at 50°C. The biosynthesized extract mediated Co3O4‐NPs were characterized through different methods containing FT‐IR (Fourier transform infrared spectroscopy), FESEM (Field emission scanning electron microscopy), EDS (Energy‐dispersive x‐ray spectroscopy), and XRD (x‐ray diffraction). Co3O4‐NPs as an efficient and practical catalyst was employed for the electrochemical oxidation of formaldehyde; which was an irreversible charge transfer controlled by mass transfer. The coefficients of electron transfer and diffusion were 0.87 and 0.122 cm2/s for formaldehyde oxidation on Co3O4 electrode, respectively. The formation of the CoOOH species during potential sweeping appears to be involved in the catalytic activity of the Co3O4 toward formaldehyde oxidation.
Collapse
Affiliation(s)
- Fatemeh Rigi
- Department of Production and Utilization of Medicinal Plants, Faculty of Agriculture Higher Education Complex of Saravan Saravan Iran
| | - Zahra Yavari
- Department of Chemistry University of Sistan and Baluchestan Zahedan Iran
- Renewable Energies Research Institute University of Sistan and Baluchestan Zahedan Iran
| | - Fariba Kaedi
- Department of Chemistry University of Sistan and Baluchestan Zahedan Iran
| |
Collapse
|
6
|
Shajahan S, Mohammad AH. Development of Co 3O 4/TiO 2/rGO photocatalyst for efficient degradation of pharmaceutical pollutants with effective charge carrier recombination suppression. ENVIRONMENTAL RESEARCH 2023; 235:116535. [PMID: 37399985 DOI: 10.1016/j.envres.2023.116535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Pharmaceutical contaminations in the water resources becomes very serious global environmental issue. Therefore, these pharmaceutical molecules should be removed from the water resources. In the current work, 3D/3D/2D-Co3O4/TiO2/rGO nanostructures were synthesized through a facile self-assembly-assisted solvothermal method for an effective removal of pharmaceutical contaminations. The nanocomposite was finely optimized through the response surface methodology (RSM) technique with different initial reaction parameters and different molar ratios. Various characterization techniques were used to understand the physical and chemical properties of 3D/3D/2D heterojunction and its photocatalytic performance. The degradation performance of ternary nanostructure was rapidly increased owing formation of 3D/3D/2D heterojunction nanochannels. The 2D-rGO nanosheets play an essential role in trapping photoexcited charge carriers to reduce the recombination process rapidly as confirmed by photoluminescence analysis. Tetracycline and ibuprofen were used as model carcinogen molecules to examine the degradation efficiency of Co3O4/TiO2/rGO under visible light irradiation using halogen lamp. The intermediates produced during the degradation process were studied using LC-TOF/MS analysis. The pharmaceutical molecules tetracycline and ibuprofen follows pseudo first order kinetics model. The photodegradation results show that the 6:4 M ratio of Co3O4:TiO2 with 5% rGO exhibits 12.4 times and 12.3 higher degradation ability than pristine Co3O4 nanostructures against tetracycline and ibuprofen, respectively. These results shows high efficiency of Co3O4/TiO2/rGO composite against the degradation of tetracycline and ibuprofen.
Collapse
Affiliation(s)
- Shanavas Shajahan
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Abu Haija Mohammad
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
8
|
Khalaj M, Kamali M, Aminabhavi TM, Costa MEV, Dewil R, Appels L, Capela I. Sustainability insights into the synthesis of engineered nanomaterials - Problem formulation and considerations. ENVIRONMENTAL RESEARCH 2023; 220:115249. [PMID: 36632884 DOI: 10.1016/j.envres.2023.115249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Engineered nanomaterials (ENMs) have been introduced into the market for a wide range of applications. As per the literature review, the fabrication of new generations of ENMs is starting to comply with environmental, economic, and social criteria in addition to technical aspects to meet sustainability criteria. At this stage, identification of the appropriate criteria for the synthesis of ENMs is critical because the technologies already developed at the lab scales are being currently transferred to pilot and full scales. Hence, the development of scientific-based methodologies to identify, screen, and prioritize the involved criteria is highly necessary. In the present manuscript, a fuzzy-Delphi methodology is adopted to identify the main criteria and sub-criteria encompassing the sustainable fabrication of ENMs, and to explore the "degree of consensus" among the experts on the relative importance of the mentioned criteria. The "health and safety risks" respecting the equipment and the materials, solvent used, and availability of "green experts" were identified as the most critical criteria. Furthermore, although all the criteria were identified as being important, some criteria, such as "solvent" and "raw materials cost", raised a lower degree of consensus, indicating that various "degrees of uncertainties" still exist regarding the level of importance of the studied criteria.
Collapse
Affiliation(s)
- Mohammadreza Khalaj
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM,University of Aveiro, 3810-193, Aveiro, Portugal; Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mohammadreza Kamali
- Center for Environmental and Marine Studies, CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, 580 031, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali, Punjab, 140 413, India.
| | - M Elisabete V Costa
- Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Isabel Capela
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM,University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
El-Shamy OAA, Deyab MA. The most popular and effective synthesis processes for Co 3O 4 nanoparticles and their benefit in preventing corrosion. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Cobalt oxide nanostructures are gaining popularity in the scientific community because they are reasonably priced, easy to develop, and have unique properties that make them valuable for coating, corrosion inhibitors, supercapacitors, photocatalysis, and other applications. In this review, the most well-known and effective synthetic methods are mentioned along with their particle size. A description of the main experimental methods used to describe the nanoparticles is also provided. In addition, the green production of cobalt oxide nanoparticles using plant extract is summarized. In particular with regard, we mentioned the use of cobalt oxide nanoparticles in the construction of nanocomposites coatings and future prospective approaches.
Collapse
Affiliation(s)
| | - Mohamed A. Deyab
- Egyptian Petroleum Research Institute , Nasr City , Cairo 11727 , Egypt
| |
Collapse
|
10
|
Chen Y, Su X, Ma M, Hou Y, Lu C, Liu P, Ma Y, Wan F, Yang Y, Hu X, Yu Z. Constructing 3D magnetic flower-like Fe 3O 4@SiO 2@Co 3O 4@BiOCl heterojunction photocatalyst for degrading rhodamine B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87310-87318. [PMID: 35802325 DOI: 10.1007/s11356-022-21830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the 3D magnetic flower-like Fe3O4@SiO2@Co3O4@BiOCl heterojunction photocatalyst was successfully prepared. The combination of BiOCl with Co3O4 favored to increase specific surface area and separate photo-generated carriers of the resulting composite, resulting in the improvement of catalytic efficiency. The photocatalytic activities of Fe3O4@SiO2@Co3O4@BiOCl were researched in details. In 50 min of visible light, the degradation efficiency for rhodamine B (RhB) of Fe3O4@SiO2@Co3O4@BiOCl was 98.41%. It still maintained 94.22% even after three tests. Furthermore, the photodegradation mechanisms were also investigated, indicating that the improved efficiency was ascribed to the superior separation of photo-induced electron-hole pairs. This study supplies a new perception to fabricate photocatalysts for actual uses.
Collapse
Affiliation(s)
- Yan Chen
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Xuewei Su
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
| | - Yongbo Hou
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Chenggang Lu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Peizhe Liu
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Fei Wan
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Ying Yang
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Xinru Hu
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Zhenqi Yu
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| |
Collapse
|
11
|
Domyati D. Thermal stability and antibacterial activity of Er2O3, and Co3O4 scattered in Polycaprolactone. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
D. NAGAJOTHİ M, MAHESWARİ J. Biosynthesis and Characterization of Co3O4NPs Utilizing Prickly Pear Fruit Extract and its Biological Activities. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.993633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In the current research, there is a low level of research and information about the interaction of cobalt oxide nanoparticles (Co3O4NPs) in biological systems. This research creates a very simple and cost-effective preparation of cobalt oxide nanoparticles by using prickly pear fruit extract as a reducing agent, which may be further used for biological applications like antimicrobial, antioxidant, DNA interaction and in-vitro anticancer activity. The use of prickly pear fruit extract acts as a good reducing agent and is responsible for easy preparation and reducing the toxicity of cobalt oxide nanoparticles. The fabricated biogenic nanoparticles were confirmed by microscopic and spectroscopic analytical techniques like Ultra Violet-Visible spectrometer, Fourier transforms infrared spectrometer (FTIR), X-ray Diffraction Method (XRD), Energy-dispersive X-ray spectroscopy (EDS), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The average size of the synthesized nanoparticles is 36.24 nm. In the MTT assay, the prepared cobalt oxide NPs haspotential mechanisms of cytotoxicity and in-vitro anticancer activity in Hepatocellular carcinoma cancer cells (HepG2). The microbial activities like antibacterial and antifungal studies of the biosynthesized nanoparticles were performed by the Disc method. The Co3O4NPs with DNA interaction were examined by UV-Visible and fluorescence spectroscopic methods. The binding constant value of biogenic Co3O4NPs with CT-DNA was observed by UV-Visible spectroscopy with a result of 2.57x105mol-1. The binding parameters and quenching constants were observed by fluorescence spectroscopic methods having values of Ksv=7.1x103, kq=7.1x108, Ka=3.47.1x105, n=0.9119. From the findings, Co3O4NPs may be utilized as a medicinal aid for their antibacterial, antifungal, antioxidant, DNA binding and in-vitro anticancer activities.
Collapse
|
13
|
Naikoo GA, Arshad F, Almas M, Hassan IU, Pedram MZ, Aljabali AAA, Mishra V, Serrano-Aroca Á, Birkett M, Charbe NB, Goyal R, Negi P, El-Tanani M, Tambuwala MM. 2D materials, synthesis, characterization and toxicity: A critical review. Chem Biol Interact 2022; 365:110081. [PMID: 35948135 DOI: 10.1016/j.cbi.2022.110081] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Nanotechnology is an arena of exploration and innovation concerned with building things generally, advancing resources and devices based on highly specific and superior nanomaterials with unmatched properties dependent on their morphology and diameter. 2D materials such as graphene have unique properties and applications varying from imaging, delivery of drugs, and theranostics of diseases. Each 2D material, ranging from the graphene family, MXenes, chalcogenides, and 2D oxides, have a unique potential based on their shape and morphology. In addition, 2D materials have intriguing physiochemical characteristics, increased aspect ratio and associated increased reactivity that make them an ideal contender in multiple applications. This review aims to answer the existing knowledge gaps in various 2D materials having interdisciplinary roles. We have presented a brief overview of the 2D materials, followed by their synthesis methods and techniques. We have also highlighted the different characterization methods used to characterise various 2D materials. Next, we performed an in-depth analysis of the potential toxicities of 2D materials to assess their risks in multiple applications. Lastly, we conclude our review by presenting the challenges and future perspectives of 2D materials as promising forerunners of science and technology.
Collapse
Affiliation(s)
- Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman.
| | - Fareeha Arshad
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | - Muniba Almas
- Department of Chemistry, The University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Israr U Hassan
- College of Engineering, Dhofar University, Salalah, Oman.
| | - Mona Z Pedram
- Faculty of Mechanical Engineering-Energy Division, K.N. Toosi University of Technology, Tehran, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology Yarmouk University, Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences Lovely Professional University, Phagwara, Punjab, India
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, UK
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
14
|
Green Synthesis and Characterization of Cobalt Oxide Nanoparticles Using Psidium guajava Leaves Extracts and Their Photocatalytic and Biological Activities. Molecules 2022; 27:molecules27175646. [PMID: 36080410 PMCID: PMC9457729 DOI: 10.3390/molecules27175646] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The advanced technology for synthesizing nanoparticles utilizes natural resources in an environmentally friendly manner. Additionally, green synthesis is preferred to chemical and physical synthesis because it takes less time and effort. The green synthesis of cobalt oxide nanoparticles has recently risen due to its physico-chemical properties. In this study, many functional groups present in Psidium guajava leaf extracts are used to stabilize the synthesis of cobalt oxide nanoparticles. The biosynthesized cobalt oxide nanoparticles were investigated using UV-visible spectroscopic analysis. Additionally, Fourier-transform infrared spectroscopy revealed the presence of carboxylic acids, hydroxyl groups, aromatic amines, alcohols and phenolic groups. The X-ray diffraction analysis showed various peaks ranging from 32.35 to 67.35°, and the highest intensity showed at 36.69°. The particle size ranged from 26 to 40 nm and confirmed the average particle size is 30.9 nm. The green synthesized P. guajava cobalt oxide nanoparticles contain cobalt as the major abundant element, with 42.26 wt% and 18.75 at% confirmed by the EDAX techniques. SEM images of green synthesized P. guajava cobalt oxide nanoparticles showed agglomerated and non-uniform spherical particles. The anti-bacterial activity of green synthesized P. guajava cobalt oxide nanoparticles was evaluated against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli with a 7 to 18 mm inhibitory zone. The photocatalytic activity was evaluated using green synthesized P. guajava cobalt oxide nanoparticles and observed 79% of dye degradation. The MTT assay of P. guajava cobalt oxide nanoparticles showed an excellent cytotoxic effect against MCF 7 and HCT 116 cells compared to normal cells. The percentage of cell viability of P. guajava cobalt oxide nanoparticles was observed as 90, 83, 77, 68, 61, 58 and 52% for MCF-7 cells and 82, 70, 63, 51, 43, 40, and 37% for HCT 116 cells at the concentration of 1.53, 3.06, 6.12, 12.24, 24.48, 50, and 100 μg/mL compared to control cells. These results confirmed that green synthesized P. guajava cobalt oxide nanoparticles have a potential photocatalytic and anti-bacterial activity and also reduced cell viability against MCF-7 breast cancer and HCT 116 colorectal cancer cells.
Collapse
|
15
|
Anele A, Obare S, Wei J. Recent Trends and Advances of Co 3O 4 Nanoparticles in Environmental Remediation of Bacteria in Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1129. [PMID: 35407254 PMCID: PMC9000771 DOI: 10.3390/nano12071129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023]
Abstract
Antibiotic resistance is a formidable global threat. Wastewater is a contributing factor to the prevalence of antibiotic-resistant bacteria and genes in the environment. There is increased interest evident from research trends in exploring nanoparticles for the remediation of antibiotic-resistant bacteria. Cobalt oxide (Co3O4) nanoparticles have various technological, biomedical, and environmental applications. Beyond the environmental remediation applications of degradation or adsorption of dyes and organic pollutants, there is emerging research interest in the environmental remediation potential of Co3O4 nanoparticles and its nanocomposites on antibiotic-resistant and/or pathogenic bacteria. This review focuses on the recent trends and advances in remediation using Co3O4 nanoparticles and its nanocomposites on antibiotic-resistant or pathogenic bacteria from wastewater. Additionally, challenges and future directions that need to be addressed are discussed.
Collapse
Affiliation(s)
- Anuoluwapo Anele
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| | - Sherine Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| |
Collapse
|
16
|
Mayakannan M, Prabakar S, Vinoth E. Synthesis and characterizations of zinc-doped cobalt oxide nanoparticles and its antibacterial and antifungal activities. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1992431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. Mayakannan
- PG & Research Department of Physics, Government Arts College, Thiruvalluvar University, Tiruvannamalai, Tamilnadu, India
| | - S. Prabakar
- Department of Physics, Siga College of Management and Computer Science, Thiruvalluvar University, Villupuram, Tamilnadu, India
| | - E. Vinoth
- PG & Research Department of Physics, Government Arts College, Thiruvalluvar University, Tiruvannamalai, Tamilnadu, India
| |
Collapse
|
17
|
Selvanathan V, Aminuzzaman M, Tey LH, Razali SA, Althubeiti K, Alkhammash HI, Guha SK, Ogawa S, Watanabe A, Shahiduzzaman M, Akhtaruzzaman M. Muntingia calabura Leaves Mediated Green Synthesis of CuO Nanorods: Exploiting Phytochemicals for Unique Morphology. MATERIALS 2021; 14:ma14216379. [PMID: 34771914 PMCID: PMC8585435 DOI: 10.3390/ma14216379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
In this study, phytochemical assisted nanoparticle synthesis was performed using Muntingia calabura leaf extracts to produce copper oxide nanoparticles (CuO NPs) with interesting morphology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis of the biosynthesized CuO NPs reveal formation of distinct, homogeneous, and uniform sized CuO nanorods structure with thickness and length of around 23 nm and 79 nm, respectively. Based on Fourier-transform infrared (FTIR) analysis, the unique combinations of secondary metabolites such as flavonoid and polyphenols in the plant extract are deduced to be effective capping agents to produce nanoparticles with unique morphologies similar to conventional chemical synthesis. X-ray diffraction (XRD) analysis verified the monoclinical, crystalline structure of the CuO NPs. The phase purity and chemical identity of the product was consolidated via X-Ray photoelectron spectroscopy (XPS) and Raman spectroscopic data which indicate the formation of a single phase CuO without the presence of other impurities. The direct and indirect optical band gap energies of the CuO nanorods were recorded to be 3.65 eV and 1.42 eV.
Collapse
Affiliation(s)
- Vidhya Selvanathan
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (V.S.); (S.A.R.)
| | - Mohammod Aminuzzaman
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Perak Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia;
- Centre for Photonics and Advanced Materials Research (CPAMR), Universiti Tunku Abdul Rahman (UTAR), Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia
- Correspondence: (M.A.); (M.A.)
| | - Lai-Hock Tey
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Perak Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia;
| | - Syaza Amira Razali
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (V.S.); (S.A.R.)
| | - Khaled Althubeiti
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Hend Ibraheem Alkhammash
- Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia;
| | - Samar Kumar Guha
- Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology, 141-142, Love Road, Tejgaon I/A, Dhaka 1208, Bangladesh;
| | - Sayaka Ogawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan; (S.O.); (A.W.)
| | - Akira Watanabe
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan; (S.O.); (A.W.)
| | - Md. Shahiduzzaman
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma, Kanazawa 920-1192, Japan;
| | - Md. Akhtaruzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (V.S.); (S.A.R.)
- Correspondence: (M.A.); (M.A.)
| |
Collapse
|
18
|
Mayakannan M, Prabakar S, Vinoth E. Synthesis of copper sulfate supported cobalt oxide nanoparticles through microwave irradiation assisted method. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1977820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. Mayakannan
- PG & Research Department of Physics, Government Arts College, Thiruvalluvar University, Tiruvannamalai, Tamil Nādu, India
| | - S. Prabakar
- Department of Physics, Siga College of Management and Computer Science, Thiruvalluvar University, Villupuram, Tamil Nādu, India
| | - E. Vinoth
- PG & Research Department of Physics, Government Arts College, Thiruvalluvar University, Tiruvannamalai, Tamil Nādu, India
| |
Collapse
|
19
|
Catalano PN, Chaudhary RG, Desimone MF, Santo-Orihuela PL. A Survey on Analytical Methods for the Characterization of Green Synthesized Nanomaterials. Curr Pharm Biotechnol 2021; 22:823-847. [PMID: 33397235 DOI: 10.2174/1389201022666210104122349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022]
Abstract
Nowadays, nanotechnologies are well established and the uses of a great variety of nanomaterials show exponential growth. The development of green synthesis procedures experienced a great development thanks to the contribution of researchers of diverse origins. The versatility of green chemistry allows producing a wide range of organic and inorganic nanomaterials with numerous promising applications. In all cases, it is of paramount importance to carefully characterize the resulting nanomaterials because their properties will determine their correct performance to accomplish the function to which they were synthesized or even their detrimental effects like nanotoxicological behavior. This review provides an overview of frequently employed characterization methods and their applications for green synthesized nanomaterials. However, while several different nanoscale materials and their associated green construction methodology are being developed, other important techniques would be extensively incorporated into this field soon. The aim is to encourage researchers in the field to employ a variety of these techniques for achieving an exhaustive characterization of new nanomaterials and for contributing to the development of validated green synthesis procedures.
Collapse
Affiliation(s)
- Paolo N Catalano
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Av. General Paz 1499 (1650), San Martin, Argentina
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, S.K. Porwal College, Kamptee 441001, India
| | - Martín F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Instituto de la Quimica y Metabolismo del Farmaco (IQUIMEFA), Facultad de Farmacia y Bioquimica Junin 956, Piso 3 (1113), Buenos Aires, Argentina
| | - Pablo L Santo-Orihuela
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Junin 956, Piso 3 (1113), Buenos Aires, Argentina
| |
Collapse
|
20
|
Islam SKN, Naqvi SMA, Parveen S, Ahmad A. Endophytic fungus-assisted biosynthesis, characterization and solar photocatalytic activity evaluation of nitrogen-doped Co3O4 nanoparticles. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01824-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Manjula N, Chen TW, Chen SM, Lou BS. Facile synthesis of hexagonal-shaped zinc doped cobalt oxide: Application for electroanalytical determination of antibacterial drug ofloxacin in urine samples. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Chang AS, Tahira A, Chang F, Memon NN, Nafady A, Kasry A, Ibupoto ZH. Silky Co 3O 4 nanostructures for the selective and sensitive enzyme free sensing of uric acid. RSC Adv 2021; 11:5156-5162. [PMID: 35424461 PMCID: PMC8694662 DOI: 10.1039/d0ra10462k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, simple, new and functional silky nanostructures of Co3O4 are prepared by hydrothermal method. These nanostructures are successfully used for the enzyme free sensing of uric acid in 0.1 M phosphate buffer solution of pH 7.3. Physical characterization experiments were carried out to explore the morphology, composition and crystalline phase of the newly prepared Co3O4 nanostructures. Scanning electron microscopy (SEM) shows a silk like morphology and energy dispersive spectroscopy (EDS) revealed the presence of Co and O as the main elements. Powder X-ray diffraction (XRD) demonstrates a cubic crystallography with well resolved diffraction patterns. The electrochemical activity of these silky Co3O4 nanostructures was evaluated by cyclic voltammetry (CV) in a 0.1 M phosphate buffer solution at pH 7.3. The high purity and unique morphology of Co3O4 shows a highly sensitive and selective response towards the non-enzymatic sensing of uric acid. This uric acid sensor exhibits a linear range of 0.5 mM to 3.5 mM uric acid and a 0.1 mM limit of detection. The anti-interference capability of this uric acid sensor was monitored in the presence of common interfering species. Furthermore, electrochemical impedance spectroscopy confirms a low charge transfer resistance value of 5.11 K Ω cm2 for silky Co3O4 nanostructures which significantly supported the CV results. The proposed modified electrode is stable, selective and reproducible which confirms its possible practical use. Silky Co3O4 nanostructures can be of great importance for diverse electrochemical applications due to their excellent electrochemical activity and large surface area.
Collapse
Affiliation(s)
- Abdul Sattar Chang
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Fouzia Chang
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Nusrat Naeem Memon
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Amal Kasry
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE) Egypt
| | - Zafar Hussain Ibupoto
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| |
Collapse
|
23
|
Waris A, Din M, Ali A, Afridi S, Baset A, Khan AU, Ali M. Green fabrication of Co and Co 3O 4 nanoparticles and their biomedical applications: A review. Open Life Sci 2021; 16:14-30. [PMID: 33817294 PMCID: PMC7968533 DOI: 10.1515/biol-2021-0003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 01/25/2023] Open
Abstract
Nanotechnology is the fabrication, characterization, and potential application of various materials at the nanoscale. Over the past few decades, nanomaterials have attracted researchers from different fields because of their high surface-to-volume ratio and other unique and remarkable properties. Cobalt and cobalt oxide nanoparticles (NPs) have various biomedical applications because of their distinctive antioxidant, antimicrobial, antifungal, anticancer, larvicidal, antileishmanial, anticholinergic, wound healing, and antidiabetic properties. In addition to biomedical applications, cobalt and cobalt oxide NPs have been widely used in lithium-ion batteries, pigments and dyes, electronic thin film, capacitors, gas sensors, heterogeneous catalysis, and for environmental remediation purposes. Different chemical and physical approaches have been used to synthesize cobalt and cobalt oxide NPs; however, these methods could be associated with eco-toxicity, cost-effectiveness, high energy, and time consumption. Recently, an eco-friendly, safe, easy, and simple method has been developed by researchers, which uses biotic resources such as plant extract, microorganisms, algae, and other biomolecules such as starch and gelatin. Such biogenic cobalt and cobalt oxide NPs offer more advantages over other physicochemically synthesized methods. In this review, we have summarized the recent literature for the understanding of green synthesis of cobalt and cobalt oxide NPs, their characterization, and various biomedical applications.
Collapse
Affiliation(s)
- Abdul Waris
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Misbahud Din
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asmat Ali
- Centre for Human Genetics, Hazara University Mansehra, Pakistan
| | - Shakeeb Afridi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Baset
- Department of Zoology, Bacha Khan University Charsadda, Pakistan
| | - Atta Ullah Khan
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
24
|
Kiani M, Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Dinarvand R, Webster TJ. Improved green biosynthesis of chitosan decorated Ag- and Co 3O 4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102331. [PMID: 33181272 DOI: 10.1016/j.nano.2020.102331] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
AgNPs@Chitosan and Co3O4-NPs@Chitosan were fabricated with Salvia hispanica. Results showed MZI values of 5 and 30 mm for Co3O4-NPs- and AgNPs@Chitosan against S. aureus, and 15 and 21 mm for Co3O4-NPs- and AgNPs@Chitosan against E. coli (24 h, 20 μg/mL), respectively. MTT assays showed up to 80% and 90%, 71% and 75%, and 91% and 94% mammalian cell viability for the green synthesized, chemically synthesized AgNPs and green synthesized AgNPs@Chitosan for HEK-293 and PC12 cells, respectively, and 70% and 71%, 59% and 62%, and 88% and 73% for the related Co3O4-NPs (24 h, 20 μg/mL). The photocatalytic activities showed dye degradation after 135 and 105 min for AgNPs@Chitosan and Co3O4-NPs@Chitosan, respectively. FESEM results showed differences in particle sizes (32 ± 3.0 nm for the AgNPs and 41 ± 3.0 nm for the Co3O4NPs) but AFM results showed lower roughness of the AgNPs@Chitosan (7.639 ± 0.85 nm) compared to Co3O4NPs@Chitosan (9.218 ± 0.93 nm), which resulted in potential biomedical applications.
Collapse
Affiliation(s)
- Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
25
|
Akhlaghi N, Najafpour-Darzi G, Younesi H. Facile and green synthesis of cobalt oxide nanoparticles using ethanolic extract of Trigonella foenumgraceum (Fenugreek) leaves. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Fazleeva RR, Nasretdinova GR, Osin YN, Samigullina AI, Gubaidullin AT, Yanilkin VV. CoO–xCo(OH)2 supported silver nanoparticles: electrosynthesis in acetonitrile and catalytic activity. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Surfactant free stable cobalt oxide nanocolloid in water by pulsed laser fragmentation and its thin films for visible light photocatalysis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Two-step one-pot electrosynthesis and catalytic activity of xCoO–yCo(OH)2-supported silver nanoparticles. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04526-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Yang J, Liu Y, Deng J, Zhao X, Zhang K, Han Z, Dai H. AgAuPd/meso-Co3O4: High-performance catalysts for methanol oxidation. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(18)63205-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Synthesis of Eco-friendly Cobalt Nanoparticles Using Celosia argentea Plant Extract and Their Efficacy Studies as Antioxidant, Antibacterial, Hemolytic and Catalytical Agent. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-03937-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Mulya Dewi NO, Yulizar Y, Bagus Apriandanu DO. Green synthesis of Co3O4 nanoparticles using Euphorbia heterophylla L. leaves extract: characterization and photocatalytic activity. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/509/1/012105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Han W, Dong F, Han W, Tang Z. Fabrication of homogeneous and highly dispersed CoMn catalysts for outstanding low temperature catalytic oxidation performance. NEW J CHEM 2019. [DOI: 10.1039/c9nj03450a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of homogeneous and highly dispersed CoMnOx bimetallic oxides with different ratios were prepared through pyrolysis of CoMn-MOF-71, which was applied to the catalytic oxidation of toluene.
Collapse
Affiliation(s)
- Weigao Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Fang Dong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Weiliang Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| |
Collapse
|