1
|
Zandi P, Phani A, Kim S. Detecting Cr 6+ at ≈100 pM Concentration with Fluorescence Enhancement Signatures in a Novel Eco-Fluorophore: Matching WHO's 96 pM Recommended Standard for Drinking Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504142. [PMID: 40318106 DOI: 10.1002/adma.202504142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Indexed: 05/07/2025]
Abstract
Hexavalent chromium (Cr6+) ions in drinking water pose a significant risk to human health, being a leading cause for neurological disorders, organ damage, and infertility. This study introduces an ultrasensitive method for detecting trace Cr6+ over a wide concentration range (≈ 100 pM - 100 µM) through fluorescence enhancement signatures via integration of both covalent and non-covalent interaction strategies on carbon quantum dots (CQD). The covalent functionalization is achieved from dual-functionalized CQD (CQD-(NH2, COOH)) derived from coffee-waste. Additionally, the covalent and non-covalent approach integrates CQD-(NH2, COOH) with graphitic carbon nitride (g-C3N4) to form a 2D/2D heterostructure. The synergy between CQD-(NH2, COOH) and g-C3N4 introduces a mid-gap band in their band structure, allowing multiple carrier excitation and recombination states, significantly enhancing the fluorescence quenching signal. This combination allows to achieve Cr6+ detection sensitivity down to ≈100 pM concentration-matching the World Health Organization's 96 pM permissible limit of total Cr in drinking water. Furthermore, a 70 pM detection limit is reported for Cr6+ in a mixture of twelve ions, including cations and anions, surpassing current state-of-the-art detection limits. These results highlight the potential of dual covalent and non-covalent modification strategy in nanomaterials to set new standards in ultrasensitive and wide-range fluorescent sensing applications.
Collapse
Affiliation(s)
- Pegah Zandi
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Arindam Phani
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Seonghwan Kim
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
2
|
Saranya S, Yashly YK, Sibiya RGS, Buvaneswari G, Senthil Kumar A. Ultrasensitive detection of carcinogenic chromium(VI) species below the WHO limit using a LaCeO 3/carbon black screen printed electrode in batch injection analysis. Analyst 2025; 150:1754-1767. [PMID: 40125623 DOI: 10.1039/d5an00038f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The widespread industrial use of chromium and its subsequent release into the environment as toxic and carcinogenic hexavalent chromium (Cr(VI)) species pose significant risks to human health and the environment. The World Health Organization (WHO) has established a limit of 50 ppb (960 nM) for Cr(VI) in water samples. Developing simple, selective, and separation-free methods for the direct detection of Cr(VI) species in the environment remains a challenging task. Herein, we present a highly crystalline lanthanum cerate/carbon black chemically modified screen-printed electrode (SPE/CB@LaCeO3) as an effective electrochemical system for the high-performance and selective electrochemical reduction of toxic Cr(VI) species in pH 2 KCl-HCl solution. The CB@LaCeO3 composite is characterized by its high-density electroactive sites and enhanced electrical conductivity, which facilitate the efficient diffusion-controlled reduction of Cr(VI) species at a low reduction potential of 0.55 V vs. Ag/AgCl. The modified electrode demonstrated stability and resistance to surface fouling during continuous voltammetry analysis of high Cr(VI) concentrations. A batch-injection analysis using a three-in-one screen-printed electrode, comprising carbon working, silver-ink reference, and CB@LaCeO3 modified carbon working electrodes, exhibited excellent concentration linearity within the ranges of 2-30 ppb and 10-35 ppm, with a low detection limit of 682 ppt (signal-to-noise ratio, 3). This method was not interfered by dissolved oxygen or other common chemicals present in environmental and water systems. The linear range and detection limit achieved in this study surpass those reported in several previous works involving precious metal and organic molecule-based chemically modified electrodes. The analytical method was validated with t-test analysis. To demonstrate the applicability of this new system, batch injection analysis was performed on a wide range of real samples, including water (tap, ground, well, and reverse osmosis), consumable products (coffee, tea and milk powders), and tannery effluent, using the standard addition method. This approach yielded accurate and sensitive detection of Cr(VI) species in the samples, with recovery values of approximately 100%.
Collapse
Affiliation(s)
- Senthurvelan Saranya
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore - 632 014, Tamil Nadu, India.
| | - Yesudas K Yashly
- Nano and Bioelectrochemistry Research Laboratory, CO2 Research and Green Technologies Centre, Vellore Institute of Technology University, Vellore - 632 014, Tamil Nadu, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore - 632 014, Tamil Nadu, India.
| | - R G Stacey Sibiya
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore - 632 014, Tamil Nadu, India.
| | - Gopal Buvaneswari
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore - 632 014, Tamil Nadu, India.
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, CO2 Research and Green Technologies Centre, Vellore Institute of Technology University, Vellore - 632 014, Tamil Nadu, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore - 632 014, Tamil Nadu, India.
| |
Collapse
|
3
|
Tian Y, Liu J, Qiao J, Ge F, Yang Y, Zhang Q. Advancements in electrochemical sensingTechnology for Heavy Metal Ions Detection. Food Chem X 2025; 25:102204. [PMID: 39911752 PMCID: PMC11795542 DOI: 10.1016/j.fochx.2025.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 02/07/2025] Open
Abstract
Most heavy metal ions are carcinogenic and non-biodegradable, posing threats to ecological balance and human health in trace amount. Therefore, there is a pressing demand for rapid and dependable detection technologies. Electrochemical sensing technology distinguishes itself with its ease of use and swiftness, rendering it perfect for the expeditious detection of heavy metal elements. This review examines various electrochemical detection techniques for on-site real-time monitoring of heavy metal ions. Advanced methods using innovative electrochemical sensor technologies are explored, highlighting the importance of sensing strategies for the quick and easy monitoring of metal levels in different environments. Additionally, the role of nanotechnology and electrochemical techniques in enhancing the sensitivity and selectivity of sensors for better detection of heavy metals is discussed. Finally, the future direction of sensor development is addressed, focusing on integrating new materials and technologies to improve the performance of sensor in environmental monitoring, food safety and public health.
Collapse
Affiliation(s)
- Yu Tian
- Shanxi Kunming Tobacco Co., Ltd., Taiyuan 030012, China
| | - Jinli Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jiali Qiao
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fuguo Ge
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qi Zhang
- Shanxi Kunming Tobacco Co., Ltd., Taiyuan 030012, China
| |
Collapse
|
4
|
Kamble BB, Sharma KK, Sonawane KD, Tayade SN, Grammatikos S, Reddy YVM, Reddy SL, Shin JH, Park JP. Graphitic carbon nitride-based electrochemical sensors: A comprehensive review of their synthesis, characterization, and applications. Adv Colloid Interface Sci 2024; 333:103284. [PMID: 39226798 DOI: 10.1016/j.cis.2024.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Graphitic carbon nitride (g-C3N4) has garnered much attention as a promising 2D material in the realm of electrochemical sensors. It contains a polymeric matrix that can serve as an economical and non-toxic electrode material for the detection of a diverse range of analytes. However, its performance is impeded by a relatively limited active surface area and inherent instability. Although electrochemistry involving metal-doped g-C3N4 nanomaterials is rapidly progressing, it remains relatively unexplored. The metal doping of g-C3N4 augments the electrochemically active surface area of the resulting electrode, which has the potential to significantly enhance electrode kinetics and bolster catalytic activity. Consequentially, the main objective of this review is to provide insight into the intricacies of synthesizing and characterizing metal-doped g-C3N4. Furthermore, we comprehensively delve into the fundamental attributes of electrochemical sensors based on metal-doped g-C3N4, with a specific focus on healthcare and environmental applications. These applications encompass a meticulous exploration of detecting biomolecules, drug molecules, and organic pollutants.
Collapse
Affiliation(s)
- Bhagyashri B Kamble
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India.
| | - Kiran Kumar Sharma
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Shivaji N Tayade
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Sotirios Grammatikos
- ASEMlab - Laboratory of Advanced and Sustainable Engineering Materials, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway
| | - Y Veera Manohara Reddy
- Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway; Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110026, India.
| | - S Lokeswara Reddy
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, TN, India
| | - Jae Hwan Shin
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea.
| |
Collapse
|
5
|
Nadumane SS, Biswas R, Mazumder N. Integrated microfluidic platforms for heavy metal sensing: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2810-2823. [PMID: 38656324 DOI: 10.1039/d4ay00293h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Heavy metals are found naturally; however, anthropogenic activities such as mining, inappropriate disposal of industrial waste, and the use of pesticides and fertilizers containing heavy metals can cause their unwanted release into the environment. Conventionally, detection of heavy metals is performed using atomic absorption spectrometry, electrochemical methods and inductively coupled plasma-mass spectrometry; however, they involve expensive and sophisticated instruments and multistep sample preparation that require expertise for accurate results. In contrast, microfluidic devices involve rapid, cost-efficient, simple, and reliable approaches for in-laboratory and real-time monitoring of heavy metals. The use of inexpensive and environment friendly materials for fabrication of microfluidic devices has increased the manufacturing efficiency of the devices. Different types of techniques used in heavy metal detection include colorimetry, absorbance-based, and electrochemical detection. This review provides insight into the detection of toxic heavy metals such as mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As). Importance is given to colorimetry, optical, and electrochemical techniques applied for the detection of heavy metals using microfluidics and their modifications to improve the limit of detection (LOD).
Collapse
Affiliation(s)
- Sharmila Sajankila Nadumane
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104
| | - Rajib Biswas
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur, Assam, India -784028
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104
| |
Collapse
|
6
|
Godja NC, Munteanu FD. Hybrid Nanomaterials: A Brief Overview of Versatile Solutions for Sensor Technology in Healthcare and Environmental Applications. BIOSENSORS 2024; 14:67. [PMID: 38391986 PMCID: PMC10887000 DOI: 10.3390/bios14020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
The integration of nanomaterials into sensor technologies not only poses challenges but also opens up promising prospects for future research. These challenges include assessing the toxicity of nanomaterials, scalability issues, and the seamless integration of these materials into existing infrastructures. Future development opportunities lie in creating multifunctional nanocomposites and environmentally friendly nanomaterials. Crucial to this process is collaboration between universities, industry, and regulatory authorities to establish standardization in this evolving field. Our perspective favours using screen-printed sensors that employ nanocomposites with high electrochemical conductivity. This approach not only offers cost-effective production methods but also allows for customizable designs. Furthermore, incorporating hybrids based on carbon-based nanomaterials and functionalized Mxene significantly enhances sensor performance. These high electrochemical conductivity sensors are portable, rapid, and well-suited for on-site environmental monitoring, seamlessly aligning with Internet of Things (IoT) platforms for developing intelligent systems. Simultaneously, advances in electrochemical sensor technology are actively working to elevate sensitivity through integrating nanotechnology, miniaturization, and innovative electrode designs. This comprehensive approach aims to unlock the full potential of sensor technologies, catering to diverse applications ranging from healthcare to environmental monitoring. This review aims to summarise the latest trends in using hybrid nanomaterial-based sensors, explicitly focusing on their application in detecting environmental contaminants.
Collapse
Affiliation(s)
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2–4 E. Drăgoi Str., 310330 Arad, Romania;
| |
Collapse
|
7
|
Dei J, Mondal S, Biswas A, Sarkar DJ, Bhattacharyya S, Pal S, Mukherjee S, Sarkar S, Ghosh A, Bansal V, Bandhyopadhyay R, Das BK, Behera BK. Cr-Detector: A simple chemosensing system for onsite Cr (VI) detection in water. PLoS One 2024; 19:e0295687. [PMID: 38170706 PMCID: PMC10763940 DOI: 10.1371/journal.pone.0295687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Due to the increase in urbanization and industrialization, the load of toxicants in the environment is alarming. The most common toxicants, including heavy metals and metalloids such as hexavalent Chromium, have severe pathophysiological impacts on humans and other aquatic biotas. Therefore, developing a portable rapid detection device for such toxicants in the aquatic environment is necessary. This work portrays the development of a field-portable image analysis device coupled with 3,3',5,5'-tetramethylbenzidine (TMB) as a sensing probe for chromium (VI) detection in the aquatic ecosystem. Sensor parameters, such as reagent concentration, reaction time, etc., were optimized for the sensor development and validation using a commercial UV-Vis spectrophotometer. The chemoreceptor integrated with a uniform illumination imaging system (UIIS) revealed the system's applicability toward Cr(VI) detection. The calibration curve using the R-value of image parameters allows Cr(VI) detection in the linear range of 25 to 600 ppb, which covers the prescribed permissible limit by various regulatory authorities. Furthermore, the adjusted R2 = 0.992 of the linear fit and correlation coefficients of 0.99018 against the spectrophotometric method signifies the suitability of the developed system. This TMB-coupled field-portable sensing system is the first-ever reported image analysis-based technology for detecting a wide range of Cr(VI) in aquatic ecosystems to our knowledge.
Collapse
Affiliation(s)
- Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland, Fisheries Research Institute, Kolkata, West Bengal, India
- Department of Instrumentation and Electronics Engineering, Jadavpur University Salt Lake Campus, Kolkata, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland, Fisheries Research Institute, Kolkata, West Bengal, India
| | - Ayan Biswas
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland, Fisheries Research Institute, Kolkata, West Bengal, India
| | - Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland, Fisheries Research Institute, Kolkata, West Bengal, India
| | - Soumyadeb Bhattacharyya
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Kolkata, West Bengal, India
| | - Souvik Pal
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Kolkata, West Bengal, India
| | - Subhankar Mukherjee
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Kolkata, West Bengal, India
| | - Subrata Sarkar
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Kolkata, West Bengal, India
| | - Alokesh Ghosh
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Kolkata, West Bengal, India
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Rajib Bandhyopadhyay
- Department of Instrumentation and Electronics Engineering, Jadavpur University Salt Lake Campus, Kolkata, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland, Fisheries Research Institute, Kolkata, West Bengal, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland, Fisheries Research Institute, Kolkata, West Bengal, India
- College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
8
|
Pal S, Mahamiya V, Ray P, Sarkar A, Sultana F, Adhikary B, Chakraborty B, Show B. β-Bi 2O 3-Bi 2WO 6 Nanocomposite Ornated with meso-Tetraphenylporphyrin: Interfacial Electrochemistry and Photoresponsive Detection of Nanomolar Hexavalent Cr. Inorg Chem 2023; 62:21201-21223. [PMID: 38078695 DOI: 10.1021/acs.inorgchem.3c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Hexavalent chromium exposure via inhalation, ingestion, or both has been proven to adversely affect internal organs, induce toxic effects, cause allergies, and contribute to the development of cancer. It requires a substantial and challenging effort to detect several heavy metal ions conveniently, sensitively, and reliably by using materials that are easy to synthesize and have a high yield. The impact of light on the electrocatalytic oxidation/reduction process proves an environmentally friendly methodology with numerous applications in pollution control. The extensive use of photoactive materials in photoelectrochemical (PEC) sensors necessitates the development of stable and highly effective photoactive materials. Hence, the solvothermal synthesis of the organic-inorganic hybrid nanocomposite β-Bi2O3-Bi2WO6/H2TPP with varying weight percentages of meso-tetraphenylporphyrin (H2TPP) resulted in a selective electrode for electrocatalytic and photoelectrocatalytic reduction of Cr6+ on fluorine-doped tin oxide (FTO) by an adsorption-reduction mechanism. H2TPP increases the active site density and provides an effective surface area for efficient adsorption by providing both pyridinic- and pyrrolic-N atoms to β-Bi2O3-Bi2WO6/H2TPP. H2TPP could effectively adsorb Cr6+ in the β-Bi2O3-Bi2WO6/H2TPP composite system through electrostatic interaction, and the adsorbed Cr6+ ions were reduced to trivalent chromium Cr3+, resulting in promising Cr6+ sensing. The projected density of states and Bader charge calculations result in the electrostatic attraction among the N-2p orbital of H2TPP and the 3d and 4s orbitals of the Cr atom, resulting in the adsorption of the hexavalent Cr atom onto the active center of H2TPP. Moreover, the addition of H2TPP results in the development of a mesoporous surface that offers strong electrical conductivity, a substantial surface area, improved charge-mass transport, intimate contact between the electrolyte and catalyst, an extended fluorescence lifetime, and increased stability. The role of pH values was thoroughly investigated. All electrochemical and photoelectrochemical studies were carried out on 5 wt % H2TPP-ornated β-Bi2O3-Bi2WO6. Nanocomposite β-Bi2O3-Bi2WO6/5 wt % H2TPP demonstrated reliable cyclic stability, reproducibility, good sensitivity (8.005 μA mM cm-2), and a low limit of detection (LOD) (8.0 nM) toward photoelectrocatalytic reduction of Cr6+. The interference study in the presence of a few inorganic entities exhibited excellent selectivity. This tale amplification approach for developing a β-Bi2O3-Bi2WO6/5 wt % H2TPP nanocomposite system suggests a deeper understanding of the application of photoelectrocatalytic reduction of Cr6+ in environmental remediation with real samples under light irradiation.
Collapse
Affiliation(s)
- Sunanda Pal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Vikram Mahamiya
- National Institute for Materials Science, Namiki1-1, Tsukuba, Ibaraki 305-0044, Japan
- Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore 641 021, Tamil Nadu, India
| | - Purbali Ray
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Abhimanyu Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Farhin Sultana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Bibhutosh Adhikary
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, West Bengal, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | | |
Collapse
|
9
|
Zhao M, He Y, Dong X, Pang K, He Q, Ma Y, Cui H. Using Multistage Energy Barrier of Heterojunctions in Improving Cr(VI) Detection. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7154. [PMID: 38005083 PMCID: PMC10672457 DOI: 10.3390/ma16227154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Detecting heavy metals in seawater is challenging due to the high salinity and complex composition, which cause strong interference. To address this issue, we propose using a multistage energy barrier as an electrochemical driver to generate electrochemical responses that can resist interference. The Ni-based heterojunction foams with different types of barriers were fabricated to detect Cr(VI), and the effects of the energy barriers on the electrochemical response were studied. The single-stage barrier can effectively drive the electrochemical response, and the multistage barrier is even more powerful in improving sensing performance. A prototype Ni/NiO/CeO2/Au/PANI foam with multistage barriers achieved a high sensitivity and recovery rate (93.63-104.79%) in detecting seawater while resisting interference. The use of multistage barriers as a driver to resist electrochemical interference is a promising approach.
Collapse
Affiliation(s)
- Minggang Zhao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yichang He
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaotong Dong
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Kun Pang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qian He
- School of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Ye Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongzhi Cui
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
10
|
Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Zhao X, Huang Z, Zhang W, Li P, Lu F, Hu L. N‐Doped Carbon Coated TiC Nanofiber Arrays on Ti‐6Al‐4V for Sensitive Electrochemical Determination of Cr(VI). ELECTROANAL 2022. [DOI: 10.1002/elan.202100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xia Zhao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University 515063 Guangdong P. R. China
| | - Zanling Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University 515063 Guangdong P. R. China
| | - Wanying Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University 515063 Guangdong P. R. China
| | - Peipei Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University 515063 Guangdong P. R. China
| | - Fushen Lu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University 515063 Guangdong P. R. China
| | - Liangsheng Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University 515063 Guangdong P. R. China
| |
Collapse
|
12
|
Priya SD, Nesaraj AS, Selvakumar AI. Facile synthesis and electrochemical evaluation characteristics of NiO-CeO 2 based inorganic nanocomposite anode material for application in LTSOFC. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Srinivasan Dharani Priya
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Arputharaj Samson Nesaraj
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Anburaj Immanuel Selvakumar
- Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences(Deemed to be University), Coimbatore, Tamil Nadu, India
| |
Collapse
|
13
|
Manganese Molybdenum Oxide Micro Rods Adorned Porous Carbon Hybrid Electrocatalyst for Electrochemical Determination of Furazolidone in Environmental Fluids. Catalysts 2021. [DOI: 10.3390/catal11111397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The frequent occurrence of furazolidone (FZD) in environmental fluids reveals the ongoing increase in use and raises concerns about the need of monitoring it. To investigate the electrochemical behavior of FZD, a novel sensor of manganese molybdenum oxide (MMO) micro rods adorned three-dimensional porous carbon (PC) electrocatalyst was constructed. The crystalline structure and surface morphology of the MMO/PC composite was characterized by XRD, Raman, FESEM, and HR-TEM. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometric(i-t) methods were used to assess the electrocatalytic activity of modified electrodes. In the presence of FZD, the as-fabricated MMO/PC modified glassy carbon electrode (GCE) performed better at lower potentials with a greater peak current than other modified GCE. These results emanate from the synergistic effect of the MMO/PC suspension on the GCE. The electrochemical behavior of the amperometric(i-t) technique was used to determine FZD. Amperometric(i-t) detection yielded linear dynamic ranges of 150 nM to 41.05 µM and 41.05 to 471.05 µM with detection limits of 30 nM. The MMO/PC hybrid sensor was also effectively used to detect FZD in environmental fluids, yielding ultra-trace level detection.
Collapse
|
14
|
Vinoth S, Shalini Devi K, Pandikumar A. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116274] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Stern CM, Jegede TO, Hulse VA, Elgrishi N. Electrochemical reduction of Cr(VI) in water: lessons learned from fundamental studies and applications. Chem Soc Rev 2021; 50:1642-1667. [PMID: 33325959 DOI: 10.1039/d0cs01165g] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Converting toxic Cr(vi) to benign Cr(iii) would offer a solution to decontaminate drinking water. Electrochemical methods are ideally suited to carry out this reduction without added external reductants. Achieving this transformation at low overpotentials requires mediating the transfer of protons and electrons to Cr(vi). In this review thermodynamic parameters will be discussed to understand Cr(vi) speciation in water and identify reduction pathways. The electrochemical reduction of Cr(vi) at bare electrodes is reviewed and mechanistic considerations are discussed. Works on modified electrodes are compared to identify key parameters influencing the reduction. An overview of current applications to Cr(vi) reduction is briefly discussed to link fundamental studies to applications.
Collapse
Affiliation(s)
- Callie M Stern
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA.
| | - Temitope O Jegede
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA.
| | - Vanessa A Hulse
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA.
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
16
|
Gandhi M, Rajagopal D, Senthil Kumar A. In situ electro-organic synthesis of hydroquinone using anisole on MWCNT/Nafion modified electrode surface and its heterogeneous electrocatalytic reduction of toxic Cr(vi) species. RSC Adv 2021; 11:4062-4076. [PMID: 35424337 PMCID: PMC8694528 DOI: 10.1039/d0ra10370e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
Owing to its electro-inactive character, anisole (phenylmethyl ether, PhOCH3) and its related derivatives have been used as electrolytes in electrochemistry. Herein, we report a simple one-step electro-organic conversion of PhOCH3 to hydroquinone (HQ) on a pristine-MWCNT-Nafion modified electrode glassy carbon electrode surface, GCE/Nf-MWCNT@HQ, in pH 2 KCl-HCl solution within 15 min of working time. The chemically modified electrode showed a highly redox-active and well-defined signal at an apparent standard electrode potential, E o' = 0.45 V vs. Ag/AgCl (A2/C2) with a surface excess value, Γ HQ = 2.1 × 10-9 mol cm-2. The formation of surface-confined HQ is confirmed by collective physicochemical and spectroscopic characterizations using TEM, UV-Vis, Raman, FTIR, NMR and GC-MS techniques and with several control experiments. Consent about the mechanism, the 2.1% of intrinsic iron present in the pristine-MWCNT is involved for specific complexation with oxygen donor organic molecule (PhOCH3) and hydroxylation in presence of H2O2 (nucleophilic attack) for HQ-product formation. The GCE/Nf-MWCNT@HQ showed an excellent heterogeneous-electrocatalytic reduction of Cr(vi) species in acidic solution with a linear calibration plot in a range, 5-500 ppm at an applied potential, 0.4 V vs. Ag/AgCl with a detection limit, 230 ppb (S/N = 3; amperometric i-t). As a proof of concept, selective detection of toxic Cr(vi) content in the tannery-waste water has been demonstrated with a recovery value ∼100%.
Collapse
Affiliation(s)
- Mansi Gandhi
- Nano and Bioelectrochemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University Vellore-632014 India +91-416-220-2754
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University Vellore-632014 India +91-407-590-3978 +91-416-220-2330
| | - Desikan Rajagopal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University Vellore-632014 India +91-407-590-3978 +91-416-220-2330
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University Vellore-632014 India +91-416-220-2754
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University Vellore-632014 India +91-407-590-3978 +91-416-220-2330
- Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology University Vellore-632014 Tamil Nadu India
| |
Collapse
|
17
|
Munonde TS, Nomngongo PN. Nanocomposites for Electrochemical Sensors and Their Applications on the Detection of Trace Metals in Environmental Water Samples. SENSORS (BASEL, SWITZERLAND) 2020; 21:E131. [PMID: 33379201 PMCID: PMC7795550 DOI: 10.3390/s21010131] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
The elevated concentrations of various trace metals beyond existing guideline recommendations in water bodies have promoted research on the development of various electrochemical nanosensors for the trace metals' early detection. Inspired by the exciting physical and chemical properties of nanomaterials, advanced functional nanocomposites with improved sensitivity, sensitivity and stability, amongst other performance parameters, have been synthesized, characterized, and applied on the detection of various trace metals in water matrices. Nanocomposites have been perceived as a solution to address a critical challenge of distinct nanomaterials that are limited by agglomerations, structure stacking leading to aggregations, low conductivity, and limited porous structure for electrolyte access, amongst others. In the past few years, much effort has been dedicated to the development of various nanocomposites such as; electrochemical nanosensors for the detection of trace metals in water matrices. Herein, the recent progress on the development of nanocomposites classified according to their structure as carbon nanocomposites, metallic nanocomposites, and metal oxide/hydroxide nanocomposites is summarized, alongside their application as electrochemical nanosensors for trace metals detection in water matrices. Some perspectives on the development of smart electrochemical nanosensors are also introduced.
Collapse
Affiliation(s)
- Tshimangadzo S. Munonde
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa;
- DST/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Philiswa N. Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa;
- DST/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- DST/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
18
|
Lotfi Z, Gholivand MB, Shamsipur M. Non-enzymatic glucose sensor based on a g-C 3N 4/NiO/CuO nanocomposite. Anal Biochem 2020; 616:114062. [PMID: 33285122 DOI: 10.1016/j.ab.2020.114062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/10/2023]
Abstract
In this paper, a non-enzymatic glucose sensor was developed based on a g-C3N4/NiO/CuO nanocomposite immobilized on a glassy carbon electrode (GCE). Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were utilized for the characterization of the synthesized g-C3N4/NiO/CuO nanocomposite. The electrocatalytic activity of the nanocomposite was investigated by cyclic voltammetry, and the amperometric technique was applied for monitoring glucose. The g-C3N4/NiO/CuO/GCE exhibited better electrocatalytic performance than g-C3N4/GCE, g-C3N4/CuO/GCE and g-C3N4/NiO/GCE. Under optimized conditions, the proposed sensor offered a linearity ranging from 0.4 μM to 8.5 mM with a detection limit of 0.1 μM and a sensitivity of 362.12 μA mM-1 cm-2. The constructed sensor displayed favorable reproducibility, outstanding selectivity, and long-term performance. These results reveal that the sensor is a promising candidate for blood glucose sensing.
Collapse
Affiliation(s)
- Z Lotfi
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - M B Gholivand
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - M Shamsipur
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
19
|
Hilali N, Mohammadi H, Amine A, Zine N, Errachid A. Recent Advances in Electrochemical Monitoring of Chromium. SENSORS 2020; 20:s20185153. [PMID: 32917045 PMCID: PMC7570498 DOI: 10.3390/s20185153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/31/2022]
Abstract
The extensive use of chromium by several industries conducts to the discharge of an immense quantity of its various forms in the environment which affects drastically the ecological and biological lives especially in the case of hexavalent chromium. Electrochemical sensors and biosensors are useful devices for chromium determination. In the last five years, several sensors based on the modification of electrode surface by different nanomaterials (fluorine tin oxide, titanium dioxide, carbon nanomaterials, metallic nanoparticles and nanocomposite) and biosensors with different biorecognition elements (microbial fuel cell, bacteria, enzyme, DNA) were employed for chromium monitoring. Herein, recent advances related to the use of electrochemical approaches for measurement of trivalent and hexavalent chromium from 2015 to 2020 are reported. A discussion of both chromium species detections and speciation studies is provided.
Collapse
Affiliation(s)
- Nazha Hilali
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
- Correspondence: or ; Tel.: +212-661454198
| | - Nadia Zine
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| | - Abdelhamid Errachid
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| |
Collapse
|
20
|
Wang D, Zhang L, Li P, Li J, Dong C. Convenient synthesis of carbon nanodots for detecting Cr( vi) and ascorbic acid by fluorimetry. NEW J CHEM 2020. [DOI: 10.1039/d0nj04495d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Carbon nanodots (CDs) were simply synthesized from Sophora flavescens Ait. “On–off–on” fluorescent probes for the sensitive and selective detections of Cr(iv) and ascorbic acid (AA) were founded and well applied in real samples.
Collapse
Affiliation(s)
- Dongxiu Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Lin Zhang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Pengxia Li
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Junfen Li
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|