1
|
González S, Jaramillo-Fierro X. Density Functional Theory Study of Methylene Blue Demethylation as a Key Step in Degradation Mediated by Reactive Oxygen Species. Int J Mol Sci 2025; 26:1756. [PMID: 40004219 PMCID: PMC11855300 DOI: 10.3390/ijms26041756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Methylene blue (MB), a widely used organic dye, poses significant environmental challenges due to its stability and persistence in aquatic ecosystems. This study employs density functional theory (DFT) to investigate the demethylation mechanisms of MB mediated by reactive oxygen species (ROS), a critical initial step in its photocatalytic degradation. Computational analyses reveal that demethylation is energetically favorable, particularly when mediated by hydroxyl radicals (•OH) and hydroxyl ions (OH-) with reaction energies of -154 kcal/mol and -214 kcal/mol, respectively. These pathways lead to the formation of key intermediates, such as Azure B, methanol (CH3OH), and formaldehyde (CH2O), which align with experimentally detected degradation byproducts. The study further demonstrates that the dissociation of hydrogen peroxide species (H2O2, H2O2-, H2O2+) plays a fundamental role in generating the ROS required for MB degradation. Potential energy surface analyses confirm that these ROS-driven processes are thermodynamically and kinetically viable. The findings provide a theoretical framework that bridges existing knowledge gaps in MB degradation, reinforcing the role of ROS in advanced photocatalytic systems and contributing to the optimization of wastewater treatment strategies. This work underscores the importance of integrating computational and experimental approaches to develop more effective strategies for the remediation of recalcitrant pollutants in wastewater.
Collapse
Affiliation(s)
| | - Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, París s/n y Praga, Loja 110107, Ecuador;
| |
Collapse
|
2
|
Kamoun O, Akkari A, Alhalaili B, Vidu R, Turki-Kamoun N. Investigations on the synthesis and characterization of silver-doped MoO 3 thin films for photocatalytic applications. Sci Rep 2025; 15:998. [PMID: 39762440 PMCID: PMC11704069 DOI: 10.1038/s41598-024-84485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, we aimed to enhance the photocatalytic performance of molybdenum oxide (MoO3) thin films by doping with silver (Ag) via a spray pyrolysis technique. The primary objective for silver incorporation was intended to introduce additional energy levels into the band structure of MoO3, improving its efficiency. Structural, optical, and photocatalytic properties were analyzed using X-ray diffraction (XRD) and optical spectroscopy. XRD results confirmed an orthorhombic phase with a (040) preferential orientation for all samples. Optimal crystallinity was observed with 2% Ag doping, yielding an 84 nm crystallite size, while higher doping levels reduced crystallite size. Band gap energy narrowed from 3.07 eV (undoped) to 2.94 eV (2% Ag-doped), indicating electronic structure changes. Impedance spectroscopy revealed superior electrical properties at 4% Ag doping, enhancing charge transport. Photocatalytic performance, assessed via dye degradation, showed significant improvement with silver doping, the degradation rate peaking at 4% Ag. These results demonstrate that silver doping optimizes structural and electronic properties of MoO3 thin films, leading to enhanced photocatalytic activity.
Collapse
Affiliation(s)
- Olfa Kamoun
- Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Anis Akkari
- Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, State of Kuwait
| | - Ruxandra Vidu
- Faculty of Materials Science and Engineering, University POLITEHNICA of Bucharest, 313 Splaiul Independentei, Bucharest, Romania.
- American Romanian Academy of Arts and Sciences, P.O. Box 2761, Citrus Heights, CA, 95611-2761, USA.
| | - Najoua Turki-Kamoun
- Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
- American Romanian Academy of Arts and Sciences, P.O. Box 2761, Citrus Heights, CA, 95611-2761, USA
| |
Collapse
|
3
|
Tanuj, Kumar R, Kumar S, Kalra N, Sharma S, Montaño VEA, Singh A. Sustainable and facile fabrication of chitosan-coated silver-doped zinc oxide nanocomposites exploiting Bergera koenigii foliage for enhanced photocatalysis and antibacterial activity. Int J Biol Macromol 2024; 279:135162. [PMID: 39214209 DOI: 10.1016/j.ijbiomac.2024.135162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Industrial and academic chemical pollutants such as Eriochrome Black-T (EBT) and murexide dyes are widely used in academic institution as well as industries, when eluted into rivers, delineate the ill effect on human and aquatic life. Herein, green and ecofriendly synthesis of silver doped-Zinc oxide nanoparticles (Ag/ZnO NPs) and chitosan coated Ag/ZnO nanoparticles (CS/Ag/ZnO NPs) using Bergera koenigii extract to solve environmental issues have been reported for the first time. Spherical and agglomerated particles with crystalline flakes like morphology of Ag/ZnO NPs and CS/Ag/ZnO NPs respectively have been ascertained by Scanning electron morphology (SEM) analyses and XRD. XRD analysis revealed the average crystallite size of 42.16 nm and 48.45 nm for Ag/ZnO NPs with 5 % and 10 % Ag concentration respectively, lesser than crystallite size of 47.394 nm and 52.38 nm for CS-5 % Ag/ZnO NC and CS-10 % Ag/ZnO NC respectively. All the synthesized NPs and NC demonstrated remarkable antibacterial potential against both gram +ve and gram -ve bacteria. Additionally, all the materials showed very high time-dependent photocatalytic degradation activity (>98 %) of EBT and murexide in 12 min. Remarkably, all active nano-catalysts exhibit high durability, and displayed recyclability for >8 cycles. In nutshell, chitosan coated nano-catalyst showed drastic improvement in photocatalytic and antibacterial activities.
Collapse
Affiliation(s)
- Tanuj
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla 171005, H.P., India
| | - Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla 171005, H.P., India.
| | - Santosh Kumar
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla 171005, H.P., India.
| | - Neerja Kalra
- Department of Chemistry, Government College, Ateli, Mahendergarh 123021, Haryana, India
| | - Subhash Sharma
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada AP 14, Ensenada 22860, B.C., Mexico
| | | | - Amritpal Singh
- Department of Pure of Applied Chemistry, Strathclyde University, Glasgow, UK
| |
Collapse
|
4
|
Dhariwal N, Yadav P, Kumari M, Sanger A, Mishra YK, Kumar V, Thakur OP. Synergistic photocatalytic breakdown of azo dyes coupled with H 2 generation via Cr-doped α-Fe 2O 3 nanoparticles. Sci Rep 2024; 14:19916. [PMID: 39198475 PMCID: PMC11358315 DOI: 10.1038/s41598-024-65672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/24/2024] [Indexed: 09/01/2024] Open
Abstract
This research addresses the scalable and inexpensive synthesis of α-Fe2O3via hydrothermal method without any precipitating agent as well as the enhancement of solar driven photocatalytic and H2 production through doping different chromium proportions. Competency of α-Fe2O3, both pure and doped with chromium, to function as photocatalyst was evaluated by its interaction with multiple dyes, which was real-time monitored utilizing (Internet of Things) IoT technique. By adding chromium, the rate of deterioration increased substantially from 15 to 94% for TB under sunlight in a remarkably brief 20 min by employing a very small amount of Cr0.8Fe1.2O3 (0.3 g/L), as evidenced by high degree of mineralization i.e. 85% and LC-HRMS. Also, the rapid breakdown of Trypan Blue (TB) was indicated by BOD5/COD ratio. Moreover, Cr-doped α-Fe2O3 displays excellent H2 production (~ 132 μmol h-1 g-1) as compared to α-Fe2O3. This work highlights the potential utilization of Cr-doped α-Fe2O3 for the purification of industrial waste water and green energy harvesting.
Collapse
Affiliation(s)
- Neeraj Dhariwal
- Nano Magnetic Research Laboratory, Department of Physics, NSUT, Dwarka, New Delhi, 110078, India
- Material Analysis and Research Laboratory, Department of Physics, NSUT, Dwarka, New Delhi, 110078, India
| | - Preety Yadav
- Nano Magnetic Research Laboratory, Department of Physics, NSUT, Dwarka, New Delhi, 110078, India
- Material Analysis and Research Laboratory, Department of Physics, NSUT, Dwarka, New Delhi, 110078, India
| | - Manju Kumari
- Nano Magnetic Research Laboratory, Department of Physics, NSUT, Dwarka, New Delhi, 110078, India
- Material Analysis and Research Laboratory, Department of Physics, NSUT, Dwarka, New Delhi, 110078, India
| | - Amit Sanger
- Nano Magnetic Research Laboratory, Department of Physics, NSUT, Dwarka, New Delhi, 110078, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, SDU NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Vinod Kumar
- Nano Magnetic Research Laboratory, Department of Physics, NSUT, Dwarka, New Delhi, 110078, India.
| | - O P Thakur
- Material Analysis and Research Laboratory, Department of Physics, NSUT, Dwarka, New Delhi, 110078, India
| |
Collapse
|
5
|
Mohammadzadeh Kakhki R, Bolandhemmat H. Synthesis of Ag/CuS doped mineral magnetite nanocomposite with improved photocatalytic activity against tetracycline and diclofenac pollutants. Sci Rep 2024; 14:19009. [PMID: 39152164 PMCID: PMC11329678 DOI: 10.1038/s41598-024-69644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The contamination of water sources by pharmaceutical pollutants presents significant environmental and health hazards, making the development of effective photocatalytic materials crucial for their removal. This research focuses on the synthesis of a novel Ag/CuS/Fe₃O₄ nanocomposite and its photocatalytic efficiency against tetracycline (TC) and diclofenac contaminants. The nanocomposite was created through a straightforward and scalable precipitation method, integrating silver nanoparticles (AgNPs) and copper sulfide (CuS) into a magnetite framework. Various analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR),ultraviolet-visible spectrophotometry (UV-Vis) and energy-dispersive X-ray spectroscopy (EDS), were employed to characterize the structural and morphological properties of the synthesized material. The photocatalytic activity was tested by degrading tetracycline and diclofenac under visible light. Results indicated a marked improvement in the photocatalytic performance of the Ag/CuS/Fe₃O₄ nanocomposite (98%photodegradation of TC 60 ppm in 30 min) compared to both pure magnetite and CuS/Fe₃O₄. The enhanced photocatalytic efficiency is attributed to the synergistic interaction between AgNPs, CuS, and Fe3O4, which improves light absorption and charge separation, thereby increasing the generation of reactive oxygen species (ROS) and promoting the degradation of the pollutants. The rate constant k of photodegradation was about 0.1 min-1 for catalyst dosages 0.02 g. Also the effect of photocatalyst dose and concentration of TC and pH of solution was tested. The modified photocatalyst was also used for simultaneous photodegradation of TC and diclofenac successfully. This study highlights the potential of the Ag/CuS/Fe₃O₄ nanocomposite as an efficient and reusable photocatalyst for eliminating pharmaceutical pollutants from water.
Collapse
Affiliation(s)
| | - Hadis Bolandhemmat
- Department of Chemistry, Faculty of Sciences, University of Gonabad, Gonabad, Iran
| |
Collapse
|
6
|
Kaushal S, Thakur N, Kumar K. Investigation of the efficacy of Zn/Ce-CuO nanoparticles for enhanced photocatalytic, antibacterial, and antioxidant activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34180-2. [PMID: 38992302 DOI: 10.1007/s11356-024-34180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
The world is dealing with unprecedented environmental challenges, leading to a growing urgency to limit environmental damage. So, this study focuses on the synthesis of pure CuO, Zn, Ce, and Zn/Ce dual-doped CuO nanoparticles (NPs) using extract of Citrus limon leaves as reductant via simple co-precipitation method. The X-ray diffraction (XRD) characterization was employed to analyze structural characteristics of synthesized samples which confirm influence of Zn or Ce doping on crystallite size, dislocation density, and strain. The role of functional groups, changes in force constant, and bond length on addition of dopants was indicated by FTIR results. The SEM and TEM results showed variation in morphology from irregular to spherical. The zeta-potential and BET analysis confirmed surface potential as well as surface area characteristics. The change in energy gap values from 1.81 to 1.45 eV of Zn/Ce-doped CuO NPs computed from UV-vis analysis elevated its photocatalytic performance and reduced the chances of recombination of electron-hole pair due to presence of trapping levels between valence and conduction bands. The enhanced photo-degradation of Congo red (CR) and rhodamine B (RhB) with 91 and 94%, respectively, for Zn/Ce-doped CuO NPs was observed. The so-obtained samples have also exhibited good antibacterial and antioxidant activities.
Collapse
Affiliation(s)
- Shweta Kaushal
- Department of Chemistry, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
- Center for Nano-Science and Technology, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
- Center for Nano-Science and Technology, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
| | - Kuldeep Kumar
- Department of Chemistry, Career Point University, Hamirpur, Himachal Pradesh, 176041, India.
- Center for Nano-Science and Technology, Career Point University, Hamirpur, Himachal Pradesh, 176041, India.
| |
Collapse
|
7
|
Rathinam Thiruppathi Venkadajapathy V, Sivaperumal S. Tailoring functional two-dimensional nanohybrids: A comprehensive approach for enhancing photocatalytic remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116221. [PMID: 38547728 DOI: 10.1016/j.ecoenv.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Photocatalysis is gaining prominence as a viable alternative to conventional biohazard treatment technologies. Two-dimensional (2D) nanomaterials have become crucial for fabricating novel photocatalysts due to their nanosheet architectures, large surface areas, and remarkable physicochemical properties. Furthermore, a variety of applications are possible with 2D nanomaterials, either in combination with other functional nanoparticles or by utilizing their inherent properties. Henceforth, the review commences its exploration into the synthesis of these materials, delving into their inherent properties and assessing their biocompatibility. Subsequently, an overview of mechanisms involved in the photocatalytic degradation of pollutants and the processes related to antimicrobial action is presented. As an integral part of our review, we conduct a systematic analysis of existing challenges and various types of 2D nanohybrid materials tailored for applications in the photocatalytic degradation of contaminants and the inactivation of pathogens through photocatalysis. This investigation will aid to contribute to the formulation of decision-making criteria and design principles for the next generation of 2D nanohybrid materials. Additionally, it is crucial to emphasize that further research is imperative for advancing our understanding of 2D nanohybrid materials.
Collapse
|
8
|
Xiong T, Feng Q, Fang C, Chen R, Wang Y, Xu L, Liu C. A novel ZnCo 2O 4/BiOBr p-n/Z-scheme heterojunction photocatalyst for enhancing photocatalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26839-26854. [PMID: 38456981 DOI: 10.1007/s11356-024-32762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
In this study, we developed a novel p-n/Z-scheme heterojunction photocatalyst, ZnCo2O4/BiOBr (ZCo/BB), through a straightforward and safe hydrothermal-calcination-solvent thermal method. The composite photocatalyst demonstrated exceptional photocatalytic efficacy, particularly when the mass ratio of ZnCo2O4 was 25% (referred to as 25% ZCo/BB). Structural characterization and electrochemical analysis revealed that 25% ZCo/BB exhibited a larger specific surface area and a faster electron transfer rate. Under visible light exposure for 30 min, methylene blue (MB) degradation reached 92%, and the reaction rate constants were 8.2 and 3.7 times higher than those observed for individual ZnCo2O4 and BiOBr, respectively. Furthermore, the 25% ZCo/BB demonstrated exceptional photocatalytic stability over four cycles, maintaining over 80% MB degradation after each cycle. The outstanding photocatalytic activity was attributed to the p-n/Z-scheme heterojunction construction, which promoted charge separation and inhibited carrier recombination. In addition, ·OH and h+ were the major active species in photocatalysis, and · O 2 - was identified as a secondary active species. This work presents an efficient heterojunction photocatalyst for the degradation of organic wastewater.
Collapse
Affiliation(s)
- Tao Xiong
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Qi Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Cimei Fang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Rui Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yanxi Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Longjun Xu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Chenglun Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China.
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
9
|
Su HM, Vasu D, Chan SY, Liu YC, Jiang J, You YF, Chiu TW, Chen SC. Two-dimensional heterojunction layered graphene oxide/graphitic carbon nitride photocatalyst for removal of toxic environmental dye methylene blue. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123556. [PMID: 38346635 DOI: 10.1016/j.envpol.2024.123556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
The direct thermal polymerization techniques were applied to prepare the graphene oxide (GO)-graphitic carbon nitride (gCN) hybrid structure. The prepared hybrid heterojunction GO-gCN nanosheets were utilized as a photocatalyst to remove model pollutants methylene blue (MB) dye. The basic physio-chemical properties of GO-gCN layered materials have been analyzed by various characterization techniques. In addition, the proposed materials have a higher photocatalytic ability toward the degradation of aqueous solution of MB dye under visible light irradiation within a short treatment time. This is because it's the synergistic effects of GO-gCN layer-by-layer structures produced by π─π stacking with charge-transfer interactions. The gCN with GO composite can able to enhance the charge transfer and light-harvesting properties. Under the influence of photocatalyst, the surface of Graphene oxide undergoes the separation and combination of carbonyl radicals, hydroxyl radicals, epoxy radicals, and electron-hole pairs. This enhances the absorption of visible light and improves the degradation of MB, when GO is incorporated into gCN. The removal efficiency of MB reached up to 82.311% within the short treatment time.
Collapse
Affiliation(s)
- Homg-Ming Su
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan; Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Dhanapal Vasu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan; Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Shang-Yu Chan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan; Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Yung-Chieh Liu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan; Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Jiaxin Jiang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan; Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Yu-Feng You
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan; Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan; Institute of Materials Science and Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Sheng-Chi Chen
- Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 243, Taiwan
| |
Collapse
|
10
|
Guleria S, Simsek H, Chawla P, Relhan A, Bhasin A. Evaluation of Cladophora and Chlamydomonas microalgae for environmental sustainability: A comparative study of antimicrobial and photocatalytic dye degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122806. [PMID: 37926410 DOI: 10.1016/j.envpol.2023.122806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
The present study emphasizes exploring the potential of bioactive compounds such as polysaccharides, protein, pigments, antioxidants, and vitamins extracted from two microalgae species, Cladophora and Chlamydomonas. The extraction process was optimized for different periods, and the extracted bioactive compounds were characterized. These bioactive compounds showed significant antibacterial activity against gram-positive and gram-negative bacteria. Notably, Cladophora species exhibited a higher zone of inhibition than Chlamydomonas species against both gram-positive and gram-negative bacterial strains. Moreover, the photocatalytic activity of these bioactive compounds was investigated for the degradation of methylene blue and crystal violet dyes under different light conditions. The results demonstrated that Cladophora species exhibited superior photocatalytic activity under natural sunlight, UV light, and visible light sources compared to Chlamydomonas species. Moreover, Cladophora species achieved the highest dye degradation efficiencies of 78% and 72% for methylene blue and crystal violet, respectively, within 150 min compared to UV light and visible light sources.
Collapse
Affiliation(s)
- Samriti Guleria
- Department of Food Technology & Nutrition, Lovely Professional University, 144411, Phagwara, India.
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Prince Chawla
- Department of Food Technology & Nutrition, Lovely Professional University, 144411, Phagwara, India.
| | - Ankush Relhan
- Department of Horticulture, Lovely Professional University, 144411, Phagwara, India.
| | - Aparajita Bhasin
- Department of Food Technology & Nutrition, Lovely Professional University, 144411, Phagwara, India.
| |
Collapse
|
11
|
Alterary S, Amina M, El-Tohamy M. Impact of silver-doped alumina nanocomposite on water decontamination by remodeling of biogenic waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27941-y. [PMID: 37249782 DOI: 10.1007/s11356-023-27941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The main cause of various fatal diseases in humans and animals is environmental pollution. Ag-doped alumina nanocomposite was prepared using coffee husk extract with a large BET surface area of 126.58 m2 g-1 and investigated for its antibacterial potential against both bacterial strains Escherichia coli and Salmonella typhimurium, and observed as an effective sorbent for removing the water pollution dye indigo carmine (IGC). The lowest concentration of the nanocomposite and the maximum contact time required to achieve complete inhibition of bacteria present in the contaminated water, as well as the capacity of sorption of IGC, were investigated. The results showed that the minimum inhibitory concentration of the Ag-doped alumina nanocomposite was 12 µg mL-1 for both bacterial strains, with the highest inhibition occurring in E. coli. Moreover, the nanocomposite exhibited an experimental qt of 462.7 mg g-1 from 160 mg L-1 IGC solution at 50 °C and followed the Langmuir model. The thermodynamic results showed that the process was endothermic, spontaneous, and physisorptive. The nanocomposite was used to fully treat water samples contaminated with 10 mg L-1 concentrations of IGC. For six consecutive cycles, the reuse research showed an average efficiency of 95.72 ± 3.6%. Consequently, the synthesized Ag-doped alumina nanocomposite is suitable for treatments of contaminated water.
Collapse
Affiliation(s)
- Seham Alterary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Maha El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
12
|
Mahalaxmi S, Rajesh G, Senthil Kumar P, Akilandeswari S, Arul Joshua M, Uma Shankar V, Ramya M, Thirumalai K, Rangasamy G. Fabrication of an effectual, stable and reusable Mg-doped CdAl 2O 4 nanoparticles for photodegradation of toxic pollutants under visible light illumination. CHEMOSPHERE 2023; 322:138178. [PMID: 36828113 DOI: 10.1016/j.chemosphere.2023.138178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The water contamination caused by discharging extensive organic dyes stuff into water bodies is one of the utmost significant concerns disturbing the environment and human life. CdAl2O4 spinel materials have been excellent in the elimination of emerging pollutants by the photocatalysis route. These materials, when altered through methods namely doping with Mg ions, have benefits over CdAl2O4, especially reduced energy gap and light absorbed in the visible region. The XRD established the creation of space group R 3‾ with no other phase step being found. The photoluminescence outcomes indicated that Mg-doped CdAl2O4 nanoparticles had the preventing e--h+ recombination possibility, which was favorable for the photocatalytic process. The Mg (0.075 M)-doped CdAl2O4 catalyst had higher photocatalytic performance with 94 and 96% removal of two azo (BB and BG) dyes under a mere 90 min visible light irradiation, which indicated enhanced Photodegradation behaviors when compared to other Mg (0.025, 0.050 M)-doped and pure CdAl2O4 materials. More interestingly, pH 5 was optimum for the Mg (0.075 M)-doped CdAl2O4 samples photodegradation of both dyes, and the optimum catalyst amount was 5 mg/100 mL. The doped Mg ions influenced the elimination of both dyes by inducing the manufacture of more active species. The Mg (0.075 M)-doped CdAl2O4 samples is reusable and highly stable with only a 5% reduction in degradation rate after six cycles. Based on the quencher and ESR investigations, the .OH- and h+ are described as active species in the removal reaction. We hope our present examinations highlight the possibility of using Mg (0.075 M)-doped CdAl2O4 product for a broad range of photodegradation applications, also it may be applied for several ecological remediations, surface cleaning devices, foods and pharmaceutical industry applications.
Collapse
Affiliation(s)
- S Mahalaxmi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India.
| | - S Akilandeswari
- PG & Research Department of Physics, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, India
| | - M Arul Joshua
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - V Uma Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - K Thirumalai
- Department of Chemistry, Government Arts College, Tiruvannamalai, Tamil Nadu, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
13
|
Rajesh G, Senthil Kumar P, Akilandeswari S, Rangasamy G, Lohita S, Uma Shankar V, Ramya M, Nirmala K, Thirumalai K. Strategies for ameliorating the photodegradation efficiency of Mn-doped CdAl 2O 4 nanoparticles for the toxic dyes under visible light illumination. CHEMOSPHERE 2023; 321:138069. [PMID: 36764620 DOI: 10.1016/j.chemosphere.2023.138069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Worldwide environmental issues have been escalating with the growth of the global economy and become a vital problem. To solve the problems, we require an eco-friendly and sustainable binary catalyst for the degradation of Azo dye pollutants. In this work, magnetically reusable, multifunctional novel Mn-doped CdAl2O4 nanoparticles were effectively fabricated by the co-precipitation approach. It was utilized for the degradation of two Azo dyes, exhibiting 96 and 98% Mn (0.050 M)-doped CdAl2O4 removal rates under visible light illumination, and presenting improved photocatalytic capability than that of pure and other dopants. More notably, the Mn (0.050 M)-doped CdAl2O4 catalyst was recycled using centrifuges without major loss and displays almost similar photodegradation behaviors for six successive runs. According to the ESR measurements, outcome and quenching tests affirmed that .OH- and h+ radicals were better reactive species responsible for Azo dyes removal. A possible photodegradation reaction mechanism underlying the elimination of Azo dyes by Mn (0.050 M)-doped CdAl2O4 catalyst is also proposed. Elaborated analyzes by variable reaction parameters such as the role of reactive species and catalyst dosage, pH, COD and irradiation time in the degradation route was also discussed. We assume that our outcomes will provide novel insights into using a highly effectual Mn (0.050 M)-doped CdAl2O4 catalyst, with possible applications in the treatment of both industrial and domestic wastewater.
Collapse
Affiliation(s)
- G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India.
| | - S Akilandeswari
- PG & Research Department of Physics, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - S Lohita
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - V Uma Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - K Nirmala
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - K Thirumalai
- Department of Chemistry, Government Arts College, Tiruvannamalai, Tamil Nadu, India
| |
Collapse
|
14
|
Alharshan GA, Aboraia AM, Uosif MAM, Sharaf IM, Shaaban ER, Saad M, ALMohiy H, Elsenety MM. Optical Band Gap Tuning, DFT Understandings, and Photocatalysis Performance of ZnO Nanoparticle-Doped Fe Compounds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2676. [PMID: 37048969 PMCID: PMC10096406 DOI: 10.3390/ma16072676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/04/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Iron-doped Zinc oxide nanoparticles were produced by the sol-gel combustion method. This study aims to see how iron doping affects the structural, optical, and photocatalytic characteristics of ZnO composites. XRD examined all samples to detect the structural properties and proved that all active materials are a single hexagonal phase. The morphology and particle size were investigated by TEM. Computational Density functional theory (DFT) calculation of the band structure, density of state, and charge distributions for ZnO were investigated in comparison with ZnO dope iron. We reported the application results of ZnO doped Fe for Methylene blue dye removal under photocatalytic degradation effect. The iron concentrations affect the active material's band gap, producing higher photocatalytic performance. The acquired results could be employed to enhance the photocatalytic properties of ZnO.
Collapse
Affiliation(s)
- Gharam A. Alharshan
- Physics Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdelaziz Mohamed Aboraia
- Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
- Energy Storage Research Laboratory (ESRL), Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
| | - Mohamed A. M. Uosif
- Physics Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ibrahim M. Sharaf
- Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
- Energy Storage Research Laboratory (ESRL), Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
| | - Essam R. Shaaban
- Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
- Energy Storage Research Laboratory (ESRL), Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
| | - Mohamed Saad
- Department of Radiological Science, Faculty of Applied Medical Science, King Khalid University, Abha P.O. Box 9004, Saudi Arabia
- Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Hussain ALMohiy
- Department of Radiological Science, Faculty of Applied Medical Science, King Khalid University, Abha P.O. Box 9004, Saudi Arabia
| | - Mohamed M. Elsenety
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
15
|
Jaramillo-Fierro X, Cuenca MF. Novel Semiconductor Cu(C 3H 3N 3S 3) 3/ZnTiO 3/TiO 2 for the Photoinactivation of E. coli and S. aureus under Solar Light. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:173. [PMID: 36616082 PMCID: PMC9824406 DOI: 10.3390/nano13010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The use of semiconductors for bacterial photoinactivation is a promising approach that has attracted great interest in wastewater remediation. The photoinactivator Cu-TTC/ZTO/TO was synthesized by the solvothermal method from the coordination complex Cu(C3H3N3S3)3 (Cu-TTC) and the hybrid semiconductor ZnTiO3/TiO2 (ZTO/TO). In this study, the effect of photocatalyst composition/concentration as well as radiation intensity on the photoinactivation of the gram-negative bacteria Escherichia coli and the gram-positive bacteria Staphylococcus aureus in aqueous solutions was investigated. The results revealed that 25 mg/mL of photoinactivator, in a Cu-TTC:ZTO/TO molar ratio of 1:2 (w/w%) presents a higher rate of bacterial photoinactivation under simulated solar light (λ = 300-800 nm) in comparison to the individual components. The evidence of this study suggests that the presence of the Cu(C3H3N3S3)3 coordination complex in the ZnTiO3/TiO2 hybrid semiconductor would contribute to the generation of reactive oxygen species (ROS) that are essential to initiate the bacterial photoinactivation process. Finally, the results obtained allow us to predict that the Cu-TTC/ZTO/TO photocatalyst could be used for effective bacterial inactivation of E. coli and S. aureus in aqueous systems under simulated solar light.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - María Fernanda Cuenca
- Departamento de Producción, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| |
Collapse
|
16
|
Pradhan SP, Swain S, Sa N, Pilla SN, Behera A, Sahu PK, Chandra Si S. Photocatalysis of environmental organic pollutants and antioxidant activity of flavonoid conjugated gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121699. [PMID: 35940068 DOI: 10.1016/j.saa.2022.121699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The unique properties of nanomaterials have the potential application in different fields of biomedical application along with the management of environmental pollutants. This research work involved the isolation of hesperidin from the orange peel and the preparation of hesperidin gold nanoparticles by the chemical reduction method. The high substrate specificity and lower band gap enable the excitation of gold nanoparticles in visible light. Hence gold nanoparticles are chosen nowadays for the management and removal of organic pollutants. The efficacy of hesperidin gold nanoparticles was evaluated by the photocatalytic activity on organic dyes and pollutants like methyl orange, methylene blue, bromocresol green, and 4 - nitro phenol with sodium borohydride as reducing agent and the antioxidant study by scavenging of free radicals of DPPH, ABTS, and hydroxyl free radicals of hydrogen peroxide. The kinetics of photocatalytic degradation of organic dyes and 4 - nitro phenol was found to follow the first order with rate constants of 10 × 10-3, 37 × 10-3, 23 × 10-3 and 49 × 10-3 min-1 for methyl orange, methylene blue, bromocresol green and 4 - nitro phenol respectively. The hesperidin gold nanoparticles showed significant antioxidant activity as compared to ascorbic acid as standard. The flavonoid conjugated gold nanoparticles can be an efficient antioxidant and photocatalyst for the management of different diseases and wastewater treatment respectively.
Collapse
Affiliation(s)
| | - Sunsita Swain
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Sudam Chandra Si
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
17
|
Bashir S, Jamil A, Amin R, Ul-hasan I, Alazmi A, Shahid M. Hydrothermally synthesized Gd-doped BiSbO4 nanoparticles and their graphene-based composite: A novel photocatalytic material. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Jabeen S, Iqbal J, Feighan J. CuO induced effects on the electrochemical properties of (In2O3)1-xCuOx nanocomposites for supercapacitor flexible electrode materials. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Mahadevaswamy M, Paniyadi SR, Lakshmikanthan A, Swamirayachar SA, Chandrashekarappa MPG, Giasin K, Shivaraju VK, Chougala MB, Linul E. Plant-mediated synthesis of NiO(II) from Lantana camara flowers: a study of photo-catalytic, electrochemical, and biological activities. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2022; 19:4543-4556. [DOI: 10.1016/j.jmrt.2022.06.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
|
20
|
Shakir I, Almutairi Z, Shar SS. Fabrication of nanostructured iron-cobalt layered double hydroxide: An innovative approach for the facile synthesis. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Mahdi MA, Jasim LS, Ranjeh M, Masjedi-Arani M, Salavati-Niasari M. Improved pechini sol-gel fabrication of Li2B4O7/NiO/Ni3(BO3)2 nanocomposites to advanced photocatalytic performance. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Milad Tabatabaeinejad S, Yousif QA, Abbas Alshamsi H, Al-Nayili A, Salavati-Niasari M. Ultrasound-assisted Fabrication and Characterization of a Novel UV-light-responsive Er2Cu2O5 Semiconductor Nanoparticle Photocatalyst. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Bashir S, Habib A, Jamil A, Alazmi A, Shahid M. Fabrication of Ag-doped MoO3 and its nanohybrid with a two-dimensional carbonaceous material to enhance photocatalytic activity. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Ganjali F, Kashtiaray A, Zarei-Shokat S, Taheri-Ledari R, Maleki A. Functionalized hybrid magnetic catalytic systems on micro- and nanoscale utilized in organic synthesis and degradation of dyes. NANOSCALE ADVANCES 2022; 4:1263-1307. [PMID: 36133673 PMCID: PMC9418160 DOI: 10.1039/d1na00818h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Herein, a concise review of the latest developments in catalytic processes involving organic reactions is presented, focusing on magnetic catalytic systems (MCSs). In recent years, various micro- and nanoscale magnetic catalysts have been prepared through different methods based on optimized reaction conditions and utilized in complex organic synthesis or degradation reactions of pharmaceutical compounds. These biodegradable, biocompatible and eco-benign MCSs have achieved the principles of green chemistry, and thus their usage is highly advocated. In addition, MCSs can shorten the reaction time, effectively accelerate reactions, and significantly upgrade both pharmaceutical synthesis and degradation mechanisms by preventing unwanted side reactions. Moreover, the other significant benefits of MCSs include their convenient magnetic separation, high stability and reusability, inexpensive raw materials, facile preparation routes, and surface functionalization. In this review, our aim is to present at the recent improvements in the structure of versatile MCSs and their characteristics, i.e., magnetization, recyclability, structural stability, turnover number (TON), and turnover frequency (TOF). Concisely, different hybrid and multifunctional MCSs are discussed. Additionally, the applications of MCSs for the synthesis of different pharmaceutical ingredients and degradation of organic wastewater contaminants such as toxic dyes and drugs are demonstrated.
Collapse
Affiliation(s)
- Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
25
|
Fenniche F, Henni A, Khane Y, Aouf D, Harfouche N, Bensalem S, Zerrouki D, Belkhalfa H. Electrochemical Synthesis of Reduced Graphene Oxide–Wrapped Polyaniline Nanorods for Improved Photocatalytic and Antibacterial Activities. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02204-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Abbas G, Pandey G, Singh KB, Gautam N. One-Pot Surface Modification of β-Cu 2O NPs for Biocatalytic Performance against A-549 Lung Carcinoma Cell Lines through Docking Analysis. ACS OMEGA 2021; 6:29380-29393. [PMID: 34778611 PMCID: PMC8581973 DOI: 10.1021/acsomega.1c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The physicochemical approaches and biological principles in bio-nanotechnology favor specially functionalized nanosized particles. Cuprous oxide nanoparticles (β-Cu2O NPs) of cuprite phase with a little tenorite (CuO) may be very effective in the development of novel therapeutic approaches against several fatalities including A-549 lung carcinoma cell lines. Consequently, the synthesis of β-Cu2O NPs for the improvement in the therapeutic index and drug delivery application is becoming an effective strategy in conventional anticarcinoma treatment. Hence, surface-enhanced nanosized spherical cuprous oxide nanoparticles (β-Cu2O NPs) of cuprite phase were successfully prepared using poly(ethylene glycol) (PEG) as an amphiphilic nonionic surfactant and l-ascorbic acid (K3[Cu(Cl5)]@LAA-PEG) reduced to cuprites β-Cu2O NPs via the sonochemical route. Less improved toxicity and better solubility of β-Cu2O NPs compared with Axitinib were a major reason for producing β-Cu2O NPs from K3[Cu(Cl5)]@LAA-PEG (LAA, l-ascorbic acid, PEG, poly(ethylene glycol) (PEG)). These nanoparticle syntheses have been suggested to influence their cytotoxicity, free-radical scavenging analysis, and reactive oxygen species (ROS) using poly(ethylene glycol) (PEG) and l-ascorbic acid (LAA) as coated and grafted materials due to their dose-dependent nature and IC50 calculations. The surface morphology of the formed β-Cu2O NPs has been examined via UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy diffraction scattering spectroscopy (SEM@EDS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) analysis. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) surface analysis results confirm the presence of pure cuprite with a very little amount of tenorite (CuO) phase, Dynamic light scattering (DLS) confirms the negative ζ-value with stable nature. Docking was performed using PDB of lung carcinomas and others, as rigid receptors, whereas the β-Cu2O NP cluster was treated as a flexible ligand.
Collapse
|
27
|
Shahid M, Bashir S, Habib A, Jamil A, Afzal A, Iqbal N. Fabrication of Silica‐Supported Al‐Doped ZnO and Its Use in the Elimination of the Toxic Organic Ingredients from Industrial Effluents. ChemistrySelect 2021. [DOI: 10.1002/slct.202102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Muhammad Shahid
- Department of Chemistry, College of Science University of Hafr Al Batin P.O.Box 1803, Hafr Al Batin, 31991 Saudi Arabia
| | - Sheraz Bashir
- Department of Chemical Engineering College of Engineering University of Hafr Al Batin P.O.Box 1803 Hafr Al Batin 31991 Saudi Arabia
| | - Amir Habib
- Department of Physics, College of Science University of Hafr Al Batin P.O.Box 1803, Hafr Al Batin, 31991 Saudi Arabia
| | - Akmal Jamil
- Department of Chemistry, College of Science University of Hafr Al Batin P.O.Box 1803, Hafr Al Batin, 31991 Saudi Arabia
| | - Adeel Afzal
- Department of Chemistry, College of Science University of Hafr Al Batin P.O.Box 1803, Hafr Al Batin, 31991 Saudi Arabia
| | - Naseer Iqbal
- Department of Chemistry, College of Science University of Hafr Al Batin P.O.Box 1803, Hafr Al Batin, 31991 Saudi Arabia
| |
Collapse
|
28
|
Talebzadeh Z, Masjedi-Arani M, Amiri O, Salavati-Niasari M. La 2Sn 2O 7/g-C 3N 4 nanocomposites: Rapid and green sonochemical fabrication and photo-degradation performance for removal of dye contaminations. ULTRASONICS SONOCHEMISTRY 2021; 77:105678. [PMID: 34330085 PMCID: PMC8329518 DOI: 10.1016/j.ultsonch.2021.105678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 05/07/2023]
Abstract
The deficiency of drinking water sources has become a serious crisis for the future of the world that the photocatalytic process is one of the most favorable methods for removal of artificial dyes and poisonous organic impurities. In the present study, rapid ultrasonic treatment was performed to obtain La2Sn2O7/Graphitic carbon nitrides (LSO/CN) nanocomposites with advanced photo-catalytic performance. Broccoli extract was utilized as a natural surfactant with active surface groups to control nucleation and growth of formed crystals with the creation of spatial barriers around the cations, and finally prevent nano-product agglomeration. Changing experimental parameters in synthesis reaction in turn offers a virtuous control over the nano-products size and shape. The shape and size distribution of particles was considered via diverse characterization techniques of microscopic and spectroscopic. The photocatalytic behaviors along with a kinetic study of the nanoparticles were examined by elimination and degradation of different artificial dyes under the UV waves. Effect of particle size, weight ratio of LSO:CN, type of dye, scavenger kind, dye and catalyst loading was designated on altering proficiency of nano-catalyst function. Also, the probable mechanism of removal dye by photocatalytic function was studied.
Collapse
Affiliation(s)
- Zeinab Talebzadeh
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box.87317-51167, Iran
| | - Maryam Masjedi-Arani
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box.87317-51167, Iran
| | - Omid Amiri
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran; Department of Chemistry, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box.87317-51167, Iran.
| |
Collapse
|
29
|
Self-Supporting Design of NiS/CNTs Nanohybrid for Advanced Electrochemical Energy Storage Applications. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02138-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02008-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Aadil M, Zulfiqar S, Shahid M, Agboola PO, Al-Khalli NF, Warsi MF, Shakir I. Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138332] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|