1
|
Kouao DS, Grochowska K, Stranak V, Sezemsky P, Gumieniak J, Kramek A, Karczewski J, Coy E, Hanus J, Kylian O, Sawczak M, Siuzdak K. Laser-Treated MXene as an Electrochemical Agent to Boost Properties of Semitransparent Photoelectrode Based on Titania Nanotubes. ACS NANO 2024; 18:10165-10183. [PMID: 38533789 DOI: 10.1021/acsnano.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this study, Ti3C2Tx underwent laser treatment to reshape it, resulting in the formation of a TiO2/Ti3C2Tx heterojunction. The interaction with laser light induced the formation of spherical TiO2 composed of an anatase-rutile phase on the Ti3C2Tx surface. Such a heterostructure was loaded over a titania nanotube (TNT) layer, and the surface area was enhanced through immersion in a TiCl4 solution followed by thermal treatment. Consequently, the photon-to-electron conversion efficiency exhibits a 10-fold increase as compared to bare TNT. Moreover, for the sample produced with optimized conditions, five times higher photoactivity is observed in comparison to bare TNT. It was shown that under visible light irradiation the most photoactive heterojunction based on the tubular layer reveals a substantial drop in the charge transfer resistance of about 32% with respect to the dark condition. This can be attributed to the narrower band gaps of the modified material and improvement of the separation efficiency of the photogenerated electron-hole pairs. Overall results suggest that this investigation underscores TiO2/Ti3C2Tx as a promising noble-metal-free material that enhances both the electrochemical and photoelectrochemical performances of electrode materials based on TNT that can be further used in light-harvesting applications.
Collapse
Affiliation(s)
- Dujearic-Stephane Kouao
- Centre for Plasma and Laser Engineering, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland
| | - Katarzyna Grochowska
- Centre for Plasma and Laser Engineering, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland
| | - Vitezslav Stranak
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budejovice, Czech Republic
| | - Petr Sezemsky
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budejovice, Czech Republic
| | - Justyna Gumieniak
- The Faculty of Mechanics and Technology, Rzeszów University of Technology, Kwiatkowskiego 4 St., 37-450 Stalowa Wola, Poland
| | - Agnieszka Kramek
- The Faculty of Mechanics and Technology, Rzeszów University of Technology, Kwiatkowskiego 4 St., 37-450 Stalowa Wola, Poland
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3 St., 61-614 Poznań, Poland
| | - Jan Hanus
- Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 180 00 Praha 8, Czech Republic
| | - Ondrej Kylian
- Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 180 00 Praha 8, Czech Republic
| | - Mirosław Sawczak
- Centre for Plasma and Laser Engineering, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland
| | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland
| |
Collapse
|
2
|
Zhang LS, Cao XS, Yang Y, Ye Z, Wu JM. A H 2O 2 Oxidation Approach to Ti 3C 2/TiO 2 for Efficient Photocatalytic Removal of Distinct Organic Pollutants in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4424-4433. [PMID: 38368593 DOI: 10.1021/acs.langmuir.3c03754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
To develop versatile photocatalysts for efficient degradation of distinct organic pollutants in water is a continuous pursuit in environment remediation. Herein, we directly oxidize Ti3C2 MXene with hydrogen peroxide to produce C-doped anatase TiO2 nanowires with aggregates maintaining a layered architecture of the MXene. The Ti3C2 MXene provides a titanium source for TiO2, a carbon source for in situ C-doping, and templates for nanowire aggregates. Under UV light illumination, the optimized Ti3C2/TiO2 exhibits a reaction rate constant 1.5 times that of the benchmark P25 TiO2 nanoparticles, toward photocatalytic degradations of trace phenol in water. The mechanism study suggests that photogenerated holes play key roles on the phenol degradation, either directly oxidizing phenol molecules or in an indirect way through oxidizing first the surface hydroxyl groups. The unreacted Ti3C2 MXene, although with trace amounts, is supposed to facilitate electron transfer, which inhibits charge recombination. The unique nanostructure of layered aggregates of nanowires, abundant surface oxygen vacancies arising from the carbon doping, and probably the Ti3C2/TiO2 heterojunction guarantee the high photocatalytic efficiency toward removals of organic pollutants in water. The photocatalyst also exhibits an activity superior to, or at least comparable to, the benchmark P25 TiO2 toward photodegradations for typical persistent organic pollutants of phenol, dye molecule of rhodamine B, antibiotic of tetracycline, pharmaceutical wastewater of ofloxacin, and pesticide of N,N-dimethylformamide, when evaluated in total organic carbon removal.
Collapse
Affiliation(s)
- Li-Sha Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
| | - Xu-Sheng Cao
- Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
| | - Yefeng Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zhizhen Ye
- Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Zhejiang University, Hangzhou 310027, PR China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jin-Ming Wu
- Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Zhejiang University, Hangzhou 310027, PR China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
3
|
Wu S, Ou K, Zhang W, Ni Y, Xia Y, Wang H. TiO 2nanorod arrays/Ti 3C 2T xMXene nanosheet composites with efficient photocatalytic activity. NANOTECHNOLOGY 2024; 35:155705. [PMID: 38176072 DOI: 10.1088/1361-6528/ad1afb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Semiconductor photocatalysis holds significant promise in addressing both environmental and energy challenges. However, a major hurdle in photocatalytic processes remains the efficient separation of photoinduced charge carriers. In this study, TiO2nanorod arrays were employed by glancing angle deposition technique, onto which Ti3C2TxMXene was deposited through a spin-coating process. This hybrid approach aims to amplify the photocatalytic efficacy of TiO2nanorod arrays. Through photocurrent efficiency characterization testing, an optimal loading of TiO2/Ti3C2Txcomposites is identified. Remarkably, this composite exhibits a 40% increase in photocurrent density in comparison to pristine TiO2. This enhancement is attributed to the exceptional electrical conductivity and expansive specific surface area inherent to Ti3C2TxMXene. These attributes facilitate swift transport of photoinduced electrons, consequently refining the separation and migration of electron-hole pairs. The synergistic TiO2/Ti3C2Txcomposite showcases its potential across various domains including photoelectrochemical water splitting and diverse photocatalytic devices. As such, this composite material stands as a novel and promising entity for advancing photocatalytic applications. This study can offer an innovative approach for designing simple and efficient photocatalytic materials composed of MXene co-catalysts and TiO2for efficient water electrolysis on semiconductors.
Collapse
Affiliation(s)
- Shujun Wu
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Kai Ou
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Wenting Zhang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Yuxiang Ni
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Yudong Xia
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Hongyan Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Wu H, Quan Y, Liu M, Tian X, Ren C, Wang Z. Synthesis of AgBr/Ti 3C 2@TiO 2 ternary composite for photocatalytic dehydrogenation of 1,4-dihydropyridine and photocatalytic degradation of tetracycline hydrochloride. RSC Adv 2023; 13:21754-21768. [PMID: 37476041 PMCID: PMC10354501 DOI: 10.1039/d3ra02164e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
In this work, AgBr/Ti3C2@TiO2 ternary composite photocatalyst was prepared by a solvothermal and precipitation method with the aims of introducing Ti3C2 as a cocatalyst and TiO2 as a compositing semiconductor. The crystal structure, morphology, elemental state, functional groups and photoelectrochemical properties were studied by XRD, SEM, TEM, XPS, FI-IR and EIS. The photocatalytic performances of the composites were investigated by the photodehydrogenation of diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (1,4-DHP) and the photodegradation of tetracycline hydrochloride (TCH) under visible light irradiation (λ > 400 nm). The AgBr/Ti3C2@TiO2 composite photocatalyst showed enhanced photocatalytic performance in both photocatalytic reactions. The photocatalytic activity of the composite photocatalyst is dependent on the proportional content of Ti3C2@TiO2. With optimized Ti3C2@TiO2 proportion, the photocatalytic ability of the AgBr/Ti3C2@TiO2 composite was 24.5 times as high as that of Ti3C2@TiO2 for photodehydrogenation of 1,4-DHP and 1.9 times as high as that of pure AgBr for photodegradation of TCH. The enhanced photocatalytic performance of the AgBr/Ti3C2@TiO2 composite should be due to the formation of a p-n heterojunction structure between AgBr and Ti3C2@TiO2 and the excellent electronic properties of Ti3C2, which enhanced the visible light absorption capacity, lowered the internal resistance, speeded up the charge transfer and reduced the recombination efficiency of photo-generated carriers. Mechanism studies showed that superoxide free radical (˙O2-) was the main active species. In addition, the composite photocatalyst also displayed good stability, indicating its reutilization in practical application.
Collapse
Affiliation(s)
- Hanliu Wu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Yan Quan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Meiling Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Xuemei Tian
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Chunguang Ren
- College of Life Sciences, Yantai University Yantai 264005 China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| |
Collapse
|
5
|
3D HCN nanotexture with synergistic effect of nickel and hole scavengers for enhancing photocatalytic H2 production: Role of morphology and influential parameters. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Wu Z, Fu W, Xu H, Zheng R, Han F, Liang Z, Han D, Han D, Li F, Niu L. Simple preparation of in-situ oxidized titanium carbide MXene for photocatalytic degradation of catechol. NEW J CHEM 2022. [DOI: 10.1039/d2nj01033j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic system has been widely applied to treat the highly toxic and refractory aromatics sewage water pollution problem. However, developing highly active and excellent durability photocatalysts is always the long-term...
Collapse
|