1
|
Mansour C, Esteban MÁ, Hacene OR, Mosbahi DS, Guardiola FA. Comparative study of immunological biomarkers in the carpet shell clams (Ruditapes decussatus) from metal-contaminated sites in the South Lagoon of Tunis (Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12059-12074. [PMID: 36103068 PMCID: PMC9898382 DOI: 10.1007/s11356-022-22902-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The South Lagoon of Tunis (Tunisia) is a Mediterranean lagoon adversely affected by industrial contaminants, harbour activity and untreated urban sewage. In this lagoon, the clam Ruditapes decussatus has been widely used as a biomonitor of seawater pollution through measurements of parameters related to oxidative stress and neurotoxicity. However, few studies have considered parameters of the immune system of this species in the South Lagoon of Tunis. Therefore, the aim of the present work was to evaluate several immune-related parameters in the cell-free haemolymph of carpet shell clams sampled during August and February from three polluted sites in the South Lagoon of Tunis (S1, S2 and S3) and one less polluted site as a reference site (RS) in order to identify suitable biomarkers for environmental quality assessments of this ecosystem. Concerning the immune-related parameters, seasonal factors modulated phenoloxidase, lysozyme, protease and esterase activity, with lower values measured for samples collected in August than for samples collected in February. In fact, bactericidal activity against two of the pathogenic bacteria tested and the activity of most immune-related enzymes were reduced in the cell-free haemolymph of clams collected from the most sampling sites in August compared to February one. In addition, values of abiotic parameters (temperature, salinity and pH) and metal (cadmium, copper, iron, lead and zinc) concentrations in the clams' soft tissues, previously obtained and published by the authors, as well as the values of immune-related parameters were integrated using principal component analyses. Results indicated that the values of all measured immune-related parameters were negatively correlated with the temperature values and the variations most of these parameters highlighted that the chemical industrial area (S3) was the most impacted location within the South Lagoon of Tunis. The present study illustrates that the immune-related parameters measured in carpet shell clam cell-free haemolymph represent suitable biomarkers for environmental quality assessments because they provide effective seasonal and spatial discrimination.
Collapse
Affiliation(s)
- Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Omar Rouane Hacene
- Laboratoire Réseau de Surveillance Environnementale (LRSE), Department of Biology, University of Oran, 1 Ahmed Ben Bella, BP 1524 El M'naouer, 31000, Oran, Algeria
| | - Dalila Saidane Mosbahi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Müller GDAES, Lüchmann KH, Razzera G, Toledo-Silva G, Bebianno MJ, Marques MRF, Bainy ACD. Proteomic response of gill microsomes of Crassostrea brasiliana exposed to diesel fuel water-accommodated fraction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:109-118. [PMID: 29906693 DOI: 10.1016/j.aquatox.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Diesel fuel water-accommodated fraction (diesel-WAF) is a complex mixture of organic compounds that may cause harmful effects to marine invertebrates. Expression of microsomal proteins can be changed by oil exposure, causing functional alterations in endoplasmic reticulum (ER). The aim of this study was to investigate changes in protein expression signatures in microsomes of oysterl Crassostrea brasiliana (=C.gasar) gill after exposure to 10% diesel-WAF for 24 and 72 h. Protein expression signatures of gills of oysters exposed to diesel-WAF were compared to those of unexposed oysters using two-dimensional electrophoresis (2-DE) to identify differentially expressed proteins. A total of 458 protein spots with molecular weights between 30-75 kDa were detected by 2-DE in six replicates of exposed oyster proteomes compared to unexposed ones. Fourteen differentially expressed proteins (six up-regulated and eight down-regulated) were identified. They are: proteins related to xenobiotic biotransformation (cytochrome P450 6 A, NADPH-cytochrome P450 reductase); cytoskeleton (α-tubulin, β-tubulin, gelsolin); processing and degradation of proteins pathways (thioredoxin domain-containing protein E3 ubiquitin-protein ligase MIB2); involved in the biosynthesis of glycolipids and glycoproteins (beta-1,3-galactosyltransferase 1); associated with stress responses (glutamate receptor 4 and 14-3-3 protein zeta, corticotropin-releasing factor-binding protein); plasmalogen biosynthesis (fatty acyl-CoA reductase 1), and sodium-and chloride-dependent glycine transporter 2 and glyoxylate reductase/hydroxypyruvate reductase. Different patterns of protein responses were observed between 24 and 72 h-exposed groups. Expression pattern of microsomal proteins provided a first insight on the potential diesel-WAF effects at protein level in microsomal fraction of oyster gills and indicated new potential biomarkers of exposure and effect. The present work can be a basis for future ecotoxicological studies in oysters aiming to elucidate the molecular mechanisms behind diesel-WAF toxicity and for environmental monitoring programs.
Collapse
Affiliation(s)
- Gabrielle do Amaral E Silva Müller
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Karim Hahn Lüchmann
- Laboratory of Biochemistry and Molecular Biology - LBBM, Fishery Engineering Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Guilherme Razzera
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Guilherme Toledo-Silva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Maria João Bebianno
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; Centre of Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Maria Risoleta Freire Marques
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil.
| |
Collapse
|
3
|
Luna-Acosta A, Breitwieser M, Renault T, Thomas-Guyon H. Recent findings on phenoloxidases in bivalves. MARINE POLLUTION BULLETIN 2017; 122:5-16. [PMID: 28673617 DOI: 10.1016/j.marpolbul.2017.06.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
The production of melanin is a complex process involving biochemical cascades, such as the pro-phenoloxidase (proPO) system, and enzymes, such as phenoloxidases (POs). Different studies have shown a strong correlation between the decrease in PO activities and the occurrence of diseases in bivalve invertebrates, leading to mortalities in the host. Results of these studies suggest that POs could play a fundamental role in defense mechanisms in bivalves. This article reviews the fundamental knowledge on the proPO system in bivalves and the methods used to assess PO activities. Finally, this is the first report on the major findings of laboratory and field studies that indicate that a type of PO in bivalves, the laccase enzyme, is inducible and involved in the 1) immune 2) antioxidant and 3) detoxification roles in bivalves, and might be an ecological potential biomarker of environmental stress.
Collapse
Affiliation(s)
- A Luna-Acosta
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges - F-17042, La Rochelle Cedex 01, France; Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales (FEAR), Pontificia Universidad Javeriana, Transv. 4 No. 42-00, Bogota, Colombia.
| | - Marine Breitwieser
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges - F-17042, La Rochelle Cedex 01, France.
| | - T Renault
- Ifremer, Département Ressources biologiques et environnement (RBE), 44311 Nantes Cedex 03, France
| | - H Thomas-Guyon
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges - F-17042, La Rochelle Cedex 01, France
| |
Collapse
|
4
|
De Rijcke M, Vandegehuchte MB, Vanden Bussche J, Nevejan N, Vanhaecke L, De Schamphelaere KAC, Janssen CR. Common European harmful algal blooms affect the viability and innate immune responses of Mytilus edulis larvae. FISH & SHELLFISH IMMUNOLOGY 2015; 47:175-181. [PMID: 26348409 DOI: 10.1016/j.fsi.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Like marine diseases, harmful algal blooms (HABs) are globally increasing in frequency, severity and geographical scale. As a result, bivalves will have to face the combined threat of toxic algae and marine pathogens more frequently in the (near) future. These stressors combined may further affect the recruitment of ecologically and economically important bivalve species as HABs can affect the growth, viability and development of their larvae. To date, little is known on the specific effects of HABs on the innate immune system of bivalve larvae. This study therefore investigates whether two common harmful algae can influence the larval viability, development and immunological resilience of the blue mussel Mytilus edulis. Embryos of this model organism were exposed (48 h) to five densities of Pseudo-nitzschia multiseries or Prorocentrum lima cells. In addition, the effect of six concentrations of their respective toxins: domoic acid (DA) and okadaic acid (OA) were assessed. OA was found to significantly reduce larval protein phosphatase activity (p < 0.001) and larval viability (p < 0.01) at concentrations as low as 37.8 μg l(-1). P. multiseries (1400 cells ml(-1)), P. lima (150 cells ml(-1)) and DA (dosed five times higher than typical environmental conditions i.e. 623.2 μg l(-1)) increased the phenoloxidase (PO) innate immune activity of the mussel larvae. These results suggest that the innate immune response of even the earliest life stages of bivalves is susceptible to the presence of HABs.
Collapse
Affiliation(s)
- M De Rijcke
- Ghent University, Faculty of Bioscience Engineering, Department of Applied Ecology and Environmental Biology, Laboratory of Environmental Toxicology and Aquatic Ecology, 9000 Ghent, Belgium.
| | - M B Vandegehuchte
- Ghent University, Faculty of Bioscience Engineering, Department of Applied Ecology and Environmental Biology, Laboratory of Environmental Toxicology and Aquatic Ecology, 9000 Ghent, Belgium
| | - J Vanden Bussche
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, 9820 Merelbeke, Belgium
| | - N Nevejan
- Ghent University, Faculty of Bioscience Engineering, Department of Animal Production, Laboratory of Aquaculture and ARC, 9000 Ghent, Belgium
| | - L Vanhaecke
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, 9820 Merelbeke, Belgium
| | - K A C De Schamphelaere
- Ghent University, Faculty of Bioscience Engineering, Department of Applied Ecology and Environmental Biology, Laboratory of Environmental Toxicology and Aquatic Ecology, 9000 Ghent, Belgium
| | - C R Janssen
- Ghent University, Faculty of Bioscience Engineering, Department of Applied Ecology and Environmental Biology, Laboratory of Environmental Toxicology and Aquatic Ecology, 9000 Ghent, Belgium
| |
Collapse
|
5
|
González-Fernández C, Albentosa M, Campillo JA, Viñas L, Romero D, Franco A, Bellas J. Effect of nutritive status on Mytilus galloprovincialis pollution biomarkers: Implications for large-scale monitoring programs. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:90-105. [PMID: 26277408 DOI: 10.1016/j.aquatox.2015.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/02/2015] [Accepted: 07/09/2015] [Indexed: 05/04/2023]
Abstract
Biomarkers have been extensively used in monitoring programs with the aim of assessing the biological effects of pollutants on marine organisms and determining environmental status. Data obtained from these programs are sometimes difficult to interpret due to the large amount of natural variables affecting biological processes, which could act as confounding factors on biomarker responses. The main aim of this work was to identify the effect of one of these variables, the food availability, and consequently, the mussel nutritive status, on biomarker responses. For that purpose, mussels (Mytilus galloprovincialis) were conditioned to three different food rations for 2 months in order to create three mussel nutritive statuses and afterwards, each status was exposed to three nominal concentrations of fluoranthene (FLU) for 3 weeks. A battery of biomarkers was considered in this study to cover a wide range of organism responses, both physiological (scope for growth - SFG) and biochemical (superoxide dismutase - SOD, catalase - CAT, glutathione reductase - GR, glutathione peroxidase - GPx, glutathione-S-transferase - GST and phenoloxidase - PO activities, and lipid membrane peroxidation - LPO). The results obtained, evidenced that most of the studied biomarkers (SFG, SOD, CAT, GPx, and PO) were strongly affected by mussel nutritive status, showing higher values at lower status, whereas the effect of toxicant was not always evident, masked by the nutritive status effect. This paper demonstrates that toxicants are not the only source of variability modulating pollution biomarkers, and confirms nutritive status as a major factor altering biochemical and physiological biomarkers.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain
| | - Marina Albentosa
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain.
| | - Juan A Campillo
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain
| | - Lucía Viñas
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, E-36390 Vigo, Spain
| | - Diego Romero
- Área de Toxicología, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Angeles Franco
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, E-36390 Vigo, Spain
| | - Juan Bellas
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, E-36390 Vigo, Spain
| |
Collapse
|
6
|
Luna-Acosta A, Renault T, Thomas-Guyon H, Faury N, Saulnier D, Budzinski H, Le Menach K, Pardon P, Fruitier-Arnaudin I, Bustamante P. Detection of early effects of a single herbicide (diuron) and a mix of herbicides and pharmaceuticals (diuron, isoproturon, ibuprofen) on immunological parameters of Pacific oyster (Crassostrea gigas) spat. CHEMOSPHERE 2012; 87:1335-1340. [PMID: 22405722 DOI: 10.1016/j.chemosphere.2012.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 05/31/2023]
Abstract
In the context of massive summer mortality events of the Pacific oyster Crassostrea gigas, the aim of this study was to investigate the early effects on genes, enzymes and haemocyte parameters implicated in immune defence mechanisms in C. gigas oysters exposed to a potentially hostile environment, i.e. to an herbicide alone or within a mixture. Following 2 h of exposure to the herbicide diuron at 1 μg L(-1), the repression of different genes implicated in immune defence mechanisms in the haemocytes and the inhibition of enzyme activities, such as laccase-type phenoloxidase (PO) in the plasma, were observed. The inhibition of superoxide dismutase (SOD) activity in the plasma was also observed after 6 and 24 h of exposure. In the mixture with the herbicides diuron and isoproturon, and the pharmaceutical ibuprofen, catecholase-type PO activity in the plasma and the percentage of phagocytosis in the haemocytes were reduced after 6 h of exposure. Our results showed that early effects on molecular, biochemical and cellular parameters can be detected in the presence of diuron alone or within a mixture, giving an insight of its potential effect in situations that can be found in natural environments, i.e. relatively high concentrations for short periods of time.
Collapse
Affiliation(s)
- A Luna-Acosta
- Littoral Environnement et Sociétés, UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Luna-Acosta A, Saulnier D, Pommier M, Haffner P, De Decker S, Renault T, Thomas-Guyon H. First evidence of a potential antibacterial activity involving a laccase-type enzyme of the phenoloxidase system in Pacific oyster Crassostrea gigas haemocytes. FISH & SHELLFISH IMMUNOLOGY 2011; 31:795-800. [PMID: 21802516 DOI: 10.1016/j.fsi.2011.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/04/2011] [Accepted: 07/10/2011] [Indexed: 05/31/2023]
Abstract
Phenoloxidases (POs) are a group of copper proteins including tyrosinase, catecholase and laccase. In several insects and crustaceans, antibacterial substances are produced through the PO cascade, participating in the direct killing of invading microorganisms. However, although POs are widely recognised as an integral part of the invertebrate immune defence system, experimental evidence is lacking that these properties are conserved in molluscs, and more particularly in the Pacific oyster Crassostrea gigas. In the present study, Vibrio splendidus LGP32 and Vibrio aestuarianus 02/041 growths were affected, after being treated with C. gigas haemocyte lysate supernatant (HLS), and either a common substrate of POs, l-3,4-dihydroxyphenylalanine (L-DOPA), to detect catecholase-type PO activity, or a specific substrate of laccase, p-phenylenediamine (PPD), to detect laccase-type PO activity. Interestingly, a higher bacterial growth inhibition was observed in the presence of PPD than in the presence of L-DOPA. These effects were suppressed when the specific PO inhibitor, phenylthiourea (PTU), was added to the medium. Results of the present study suggest, for the first time in a mollusc species, that antibacterial activities of HLS from C. gigas potentially involve POs, and more particularly laccase catalysed reactions.
Collapse
Affiliation(s)
- Andrea Luna-Acosta
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | | | | | | | | | | | | |
Collapse
|
8
|
Bado-Nilles A, Quentel C, Mazurais D, Zambonino-Infante JL, Auffret M, Thomas-Guyon H, Le Floch S. In vivo effects of the soluble fraction of light cycle oil on immune functions in the European sea bass, Dicentrarchus labrax (Linné). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1896-1904. [PMID: 21764455 DOI: 10.1016/j.ecoenv.2011.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
Hydrocarbons are major contaminants that may affect biota at various trophic levels in estuaries and coastal ecosystems. The effects of accidental pollution by light cycle oil (LCO), a refined product of heavy fuel oil, on bioaccumulation, depuration processes and immune-related parameters in the European sea bass, Dicentrarchus labrax, were investigated in the laboratory after 7 days of exposure and a 2-week recovery period. Exposure of fish to the soluble fraction of LCO (1600ngL(-1)) for 7 days led to the bioaccumulation of some polycyclic aromatic hydrocarbons (PAHs) in muscles: naphthalene, acenaphthene, fluorene, phenanthrene and anthracene. After 7 days of recovery period, half-elimination of naphthalene was reported in fish muscles due to facilitated diffusive loss by the epithelium and a faster elimination rate proven by the presence of a high level of naphthalene biliary metabolites. The other bioaccumulated molecules displayed a slower depuration rate due to their elimination by the formation of hydrophobic metabolites excreted through bile or urine. Three days after the beginning of the recovery period, each contaminated fish showed severe external lesions (tissue necrosis, suppurative exudates, haemorrhagic area). The hypothesis of a possible link with inflammatory phenomenon was supported by (i) an inversion of the leucocyte sub-population percentage, (ii) a significant up-expression in the spleen of the tumour necrosis factor alpha gene, (iii) a significant increase in ACH(50). Moreover, the lack of C3 gene regulation in the spleen suggested a non-renewal of this component. The reduction of phagocytic activity and lysozyme concentration reflected immune suppression. Finally, LCO toxicity in this fish was clearly demonstrated to be related to inflammatory reaction and immune depletion.
Collapse
Affiliation(s)
- Anne Bado-Nilles
- Anses Laboratoire de Ploufragan-Plouzané, Agence nationale de sécurité sanitaire des aliments, de l'environnement et du travail, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Lüchmann KH, Mattos JJ, Siebert MN, Granucci N, Dorrington TS, Bícego MC, Taniguchi S, Sasaki ST, Daura-Jorge FG, Bainy ACD. Biochemical biomarkers and hydrocarbons concentrations in the mangrove oyster Crassostrea brasiliana following exposure to diesel fuel water-accommodated fraction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:652-660. [PMID: 21963596 DOI: 10.1016/j.aquatox.2011.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 05/31/2023]
Abstract
Understanding the toxic mechanisms by which organisms cope to environmental stressful conditions is a fundamental question for ecotoxicology. In this study, we evaluated biochemical responses and hydrocarbons bioaccumulation of the mangrove oyster Crassostrea brasiliana exposed for 96 h to four sublethal concentrations of diesel fuel water-accommodated fraction (WAF). For that purpose, enzymatic activities (SOD, CAT, GPx, GR, G6PDH, GST and GGT), HSP60 and HSP90 immunocontent and lipid peroxidation (LPO) levels were determined in the gill and digestive gland of oysters and related to the hydrocarbons accumulated in the whole soft tissues. The results of this study revealed clear biochemical responses to diesel fuel WAF exposure in both tissues of the oyster. The capacity of C. brasiliana to bioaccumulate aliphatic and aromatic hydrocarbons in a dose-dependent manner is a strong indication of its suitability as a model in biomonitoring programs along the Brazilian coast, which was also validated by the response of the antioxidant defenses, phase II biotransformation and chaperones. HSP60 levels and GGT activity were the most promising biomarkers in the gill, while GST and GR activities stood out as suitable biomarkers for the detection of diesel toxicity in the digestive gland. The decrease of SOD activity and HSP90 levels may also reflect a negative effect of diesel exposure regardless the tissue. The present results provide a sound preliminary report on the biochemical responses of C. brasiliana challenged with a petroleum by-product and should be carefully considered for use in the monitoring of oil and gas activities in Brazil.
Collapse
Affiliation(s)
- Karim H Lüchmann
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Luna-Acosta A, Kanan R, Le Floch S, Huet V, Pineau P, Bustamante P, Thomas-Guyon H. Enhanced immunological and detoxification responses in Pacific oysters, Crassostrea gigas, exposed to chemically dispersed oil. WATER RESEARCH 2011; 45:4103-4118. [PMID: 21665240 DOI: 10.1016/j.watres.2011.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/06/2011] [Accepted: 05/11/2011] [Indexed: 05/30/2023]
Abstract
The aim of this study was to evaluate the effects of chemically dispersed oil on an economically and ecologically important species inhabiting coasts and estuaries, the Pacific oyster Crassostrea gigas. Studies were carried out with juveniles, known to generally be more sensitive to environmental stress than adults. A set of enzyme activities involved in immune defence mechanisms and detoxification processes, i.e. superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), catecholase-type phenoloxidase (PO), laccase-type PO and lysozyme were analysed in different oyster tissues, i.e. the gills, digestive gland and mantle, and in the plasma and the haemoycte lysate supernatant (HLS) of the haemolymph. Results indicated that total PAH body burdens were 2.7 times higher in the presence than in the absence of the chemical dispersant. After 2 days of exposure to chemically dispersed oil, alkylated naphthalenes accounted for 55% of the total PAH body burden, whereas alkylated fluorenes and alkylated dibenzothiophenes accounted for 80% when the chemical dispersant was absent. Importantly, a higher number of enzyme activities were modified when oil was chemically dispersed, especially in the plasma and gills. Moreover, independently of the presence or absence of chemical dispersant, oil exposure generally inhibited enzyme activities in the gills and plasma, while they were generally activated in the mantle and haemocytes. These results suggest that the gills and plasma constitute sensitive compartments in C. gigas, and that the mantle and haemocytes may play an important role in protection against xenobiotics. Among the six enzyme activities that were analysed in these body compartments, five were modulated in the chemical dispersion (CD) treatment while only half of the enzyme activities were modulated in the mechanical dispersion treatment. Furthermore, CD treatment effects were often observed following exposure, but also during depuration periods. These results suggest that immune and/or detoxification responses are likely to be affected when dispersants are used to treat oil spills in shallow waters.
Collapse
Affiliation(s)
- A Luna-Acosta
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Luna-Acosta A, Thomas-Guyon H, Amari M, Rosenfeld E, Bustamante P, Fruitier-Arnaudin I. Differential tissue distribution and specificity of phenoloxidases from the Pacific oyster Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:220-6. [PMID: 21575740 DOI: 10.1016/j.cbpb.2011.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/29/2022]
Abstract
Phenoloxidases (POs) play a key role in melanin production, are involved in invertebrate immune mechanisms, and have been detected in different bivalves. Recently, we identified catecholase- and laccase-like PO activities in plasma and haemocyte lysate supernatant (HLS) of the Pacific oyster Crassostrea gigas. To go further in our investigations, the aims of this study were (i) to determine the tissue distribution of PO activities in C. gigas, and (ii) to identify and characterise the different sub-classes of POs (i.e. tyrosinase, catecholase and/or laccase) involved in these oxido-reductase activities. With dopamine and p-phenylenediamine (PPD) but not with l-tyrosine used as substrates, PO-activities were detected by spectrophotometry in the gills, digestive gland, mantle, and muscle. These results suggest the presence of catecholase and laccase but not of tyrosinase activities in oyster tissues. The highest activity was recovered in the digestive gland. PO-like activities were all inhibited by 1-phenyl-2-thiourea (PTU) and by the specific laccase inhibitor, cethyltrimethylammonium bromide (CTAB). With dopamine as substrate, the catecholase inhibitor 4-hexylresorcinol (4-HR) only inhibited PO in the muscle. SDS-PAGE zymographic assays with dopamine and PPD elicited a unique ~40kDa protein band in the muscle. In the other tissues, laccase-like activities could be related to ~10kDa and/or ~200kDa protein bands. The ~10kDa protein band was also detected in plasma and HLS, confirming the presence of a laccase in the later compartments, and probably in most of the tissues of C. gigas. This is the first time to our knowledge that a ~10kDa protein band is associated to a laccase-like activity in a mollusc species, contributing to the characterisation of phenoloxidase activities in marine bivalves.
Collapse
Affiliation(s)
- Andrea Luna-Acosta
- Littoral Environnement et Sociétés (LIENSs), CNRS-Université de La Rochelle, France.
| | | | | | | | | | | |
Collapse
|