1
|
Shiry N, Alavinia SJ, Impellitteri F, Alavinia SJ, Faggio C. Beyond the surface: Consequences of methyl tert-butyl ether (MTBE) exposure on oxidative stress, haematology, genotoxicity, and histopathology in rainbow trout. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165784. [PMID: 37499819 DOI: 10.1016/j.scitotenv.2023.165784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Concerns have been raised about the possible environmental effects of methyl tert-butyl ether (MTBE), which is widely used as a gasoline additive. This research aimed to look at the consequences of MTBE contamination on rainbow trout (Oncorhynchus mykiss), emphasizing oxidative stress, genotoxicity, and histopathological damage. After determining the LC50-96 h value, the effects of sub-lethal doses of MTBE (0 (control), 90, 180, and 450 ppm) on rainbow trout were investigated. In fish tissues, the levels of oxidative stress indicators such as malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. The comet assay, which measures DNA damage in erythrocytes, was used to determine genotoxicity. Histopathological examinations were done on liver and gill tissues to examine potential structural anomalies. The results of this study show that MTBE exposure caused considerable alterations in rainbow trout. Increased oxidative stress was demonstrated by elevated MDA levels and decreased SOD activity, while the comet assay revealed dose-dependent DNA damage, implying genotoxic effects. Histopathological study revealed liver and gill tissue abnormalities, including cell degeneration, necrosis, and inflammation. Overall, this research highlights the possible sub-lethal effects of MTBE contamination on rainbow trout, stressing the need of resolving this issue. Future research should look at the impacts of chronic MTBE exposure and the possibility of bioaccumulation in fish populations.
Collapse
Affiliation(s)
- Nima Shiry
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran; Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Jalil Alavinia
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran; Department of Aquatic Animal Health, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Seyed Jamal Alavinia
- Department of Epidemiology, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
2
|
Błażewicz A, Grabrucker AM. Metal Profiles in Autism Spectrum Disorders: A Crosstalk between Toxic and Essential Metals. Int J Mol Sci 2022; 24:ijms24010308. [PMID: 36613749 PMCID: PMC9820494 DOI: 10.3390/ijms24010308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Since hundreds of years ago, metals have been recognized as impacting our body's physiology. As a result, they have been studied as a potential cure for many ailments as well as a cause of acute or chronic poisoning. However, the link between aberrant metal levels and neuropsychiatric illnesses such as schizophrenia and neurodevelopmental disorders, such as autism spectrum disorders (ASDs), is a relatively new finding, despite some evident ASD-related consequences of shortage or excess of specific metals. In this review, we will summarize past and current results explaining the pathomechanisms of toxic metals at the cellular and molecular levels that are still not fully understood. While toxic metals may interfere with dozens of physiological processes concurrently, we will focus on ASD-relevant activity such as inflammation/immune activation, mitochondrial malfunction, increased oxidative stress, impairment of axonal myelination, and synapse formation and function. In particular, we will highlight the competition with essential metals that may explain why both the presence of certain toxic metals and the absence of certain essential metals have emerged as risk factors for ASD. Although often investigated separately, through the agonistic and antagonistic effects of metals, a common metal imbalance may result in relation to ASD.
Collapse
Affiliation(s)
- Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence: ; Tel.: +353-61-237756
| |
Collapse
|
3
|
Effect of Methylmercury Exposure on Bioaccumulation and Nonspecific Immune Respsonses in Hybrid Grouper Epinephelus fuscoguttatus × Epinephelus lanceolatus. Animals (Basel) 2022; 12:ani12020147. [PMID: 35049771 PMCID: PMC8772552 DOI: 10.3390/ani12020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The head kidney was primary organ that accumulated methylmercury in hybrid grouper. Muscle tissue had lower methylmercury content than the head kidney and liver. Nonspecific immune responses and bioaccumulation of methylmercury were linked to hybrid grouper health. Abstract Mercury (Hg) is a dangerous heavy metal that can accumulate in fish and is harmful when consumed by humans. This study investigated the bioaccumulation of mercury in the form of methylmercury (MeHg) and evaluated nonspecific immune responses such as phagocytic activity and superoxide anion (O2−) production in hybrid grouper (Epinephelus fuscoguttatus × E. lanceolatus). The hybrid grouper leukocytes were incubated with methylmercury chloride (CH3HgCl) at concentrations of 10–10,000 µg/L to determine cell viability, phagocytic activity, and O2− production in vitro. Subsequently, the grouper were exposed daily to CH3HgCl mixed in the experimental diets at concentrations of 0, 1, 5, and 10 mg/kg for 28 days. The bioaccumulation of MeHg in the liver, head kidney, and muscle tissue was measured, and the phagocytic activity and O2− production were evaluated. In vitro results indicated that cell viability was significantly lower than that of the control group at concentrations > 500 µg/L. The phagocytic rate and O2− production at concentrations ˃ 500 and ˃ 200 µg/L, respectively, were significantly lower than those of the control group. The dietary exposure demonstrated that MeHg accumulated more substantially in the liver and head kidney compared with the muscle tissue in the treatment groups. Moreover, the cumulative concentration significantly increased with higher concentrations and more days of exposure. The phagocytic rate and O2− production in the treatment groups were significantly lower than those in the control group from days 2 and 1, respectively. In conclusion, hybrid grouper accumulated significant MeHg in the liver and head kidney compared with the muscle tissue, and higher concentrations and more exposure days resulted in decreased cell viability, phagocytic activity, and O2− production.
Collapse
|
4
|
Ren Z, Liu J, Dou S, Zhou D, Cui W, Lv Z, Cao L. Tissue-Specific Accumulation and Antioxidant Defenses in Flounder (Paralichthys olivaceus) Juveniles Experimentally Exposed to Methylmercury. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:406-420. [PMID: 33123745 DOI: 10.1007/s00244-020-00775-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Methylmercury (MeHg) is the most toxic form of mercury and can accumulate in the cells of marine organisms, such as fish, causing adverse effects on various physiological functions. This study examined MeHg accumulation and its toxicological role in antioxidant defenses in tissues, including the liver, gills, and muscle of flounder (Paralichthys olivaceus) juveniles. After 30 d of MeHg exposure (0, 0.1, 1.0, 10.0, and 20.0 µg L-1), the accumulation of MeHg in the three tissues correlated positively with the concentration of MeHg and exhibited tissue specificity in the order of liver > gills > muscle. Among the antioxidant markers, the activities of SOD (superoxide dismutase) and GST (glutathione S-transferase) as well as the content of glutathione (GSH) in the liver and gills were induced at 0.1-10.0 µg L-1 but repressed at 20.0 µg L-1. The activities of SOD and GST and the content of GSH in the muscle significantly increased with increasing MeHg concentration. Catalase (CAT) activity in the liver was induced at 0.1-1.0 µg L-1 but inhibited at 10.0-20.0 µg L-1, whereas exposure to MeHg did not remarkably affect CAT activity in the gills and muscle. The levels of lipid peroxidation (LPO) increased dose dependently, showing tissue specificity with the highest level in the liver, then the gills, followed by muscles. Overall, higher sensitivity to oxidative stress induced by MeHg was detected in the liver than the gills and muscle. These findings improve our understanding of the tissue-specific accumulation of heavy metals and their roles in antioxidant responses in marine fish subjected to MeHg exposure.
Collapse
Affiliation(s)
- Zhonghua Ren
- The Institute for Advanced Study of Coastal Ecology, School of Resource and Environmental Engineering, Ludong University, Yantai, 264000, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhu Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dayan Zhou
- Aquatic Species Introduction and Breeding Center of Guangxi, Nanning, 530031, China
| | - Wenting Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhenbo Lv
- The Institute for Advanced Study of Coastal Ecology, School of Resource and Environmental Engineering, Ludong University, Yantai, 264000, China.
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
5
|
Ren Z, Liu J, Huang W, Cao L, Cui W, Dou S. Antioxidant defenses and immune responses of flounder Paralichthys olivaceus larvae under methylmercury exposure. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108589. [PMID: 31404699 DOI: 10.1016/j.cbpc.2019.108589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 01/30/2023]
Abstract
Methylmercury (MeHg) is a highly toxic contaminant in coastal environments and poses threats to marine fish in early life stages (ELSs). However, MeHg toxicity to fish embryos and larvae is not well investigated. This study investigated the antioxidant defenses and immune responses of flounder Paralichthys olivaceus larvae exposed to waterborne MeHg (0, 0.1, 1.0 and 10.0 μg L-1) for 35 days, from embryogenesis to settlement. The results revealed that metal accumulation in the larvae was positively correlated with MeHg concentration, reduced larval growth and survival. The activities of catalase and glutathione reductase were significantly increased at 10.0 μg L-1, while glutathione peroxidase activity and lipid peroxidation level were significantly increased at concentrations over 1.0 μg L-1. The corresponding antioxidant-related genes were upregulated under MeHg exposure (cat and gpx at 10.0 μg L-1; gr over 1.0 μg L-1). Lysozyme content was significantly increased, but immunoglobulin M content was significantly decreased at 10.0 μg L-1. The immune-related genes were significantly upregulated (hsp70 at 0.1 and 10.0 μg L-1; lzm and il-1β over 1.0 μg L-1; tnf-α and il-6 at 10.0 μg L-1) or downregulated (igm, over 0.1 μg L-1). Overall, MeHg exposure induced oxidative stress and caused immunotoxicity at concentrations over 1.0 μg L-1 and 10.0 μg L-1, respectively. The transcription of selected genes correlated with the corresponding biochemical markers in response to MeHg toxicity. These findings improve our knowledge to better understand the mechanisms by which marine fish at ELSs cope with oxidative stress and immunotoxicity induced by MeHg.
Collapse
Affiliation(s)
- Zhonghua Ren
- CAS Key Laboratory of Marine Ecology and Environment Sciences, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinhu Liu
- CAS Key Laboratory of Marine Ecology and Environment Sciences, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310000, China
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environment Sciences, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Wenting Cui
- CAS Key Laboratory of Marine Ecology and Environment Sciences, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environment Sciences, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
6
|
Matos LSD, Silva JOS, Kasper D, Carvalho LN. Assessment of mercury contamination in Brycon falcatus (Characiformes: Bryconidae) and human health risk by consumption of this fish from the Teles Pires River, Southern Amazonia. NEOTROPICAL ICHTHYOLOGY 2018. [DOI: 10.1590/1982-0224-20160106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Brycon falcatus is one of the most highly consumed species of fish within the region in the Teles Pires basin, and has great commercial importance in sport and professional artisanal fishing. The objective of this study was to analyze the presence and concentration of total mercury (THg) in the muscle, liver and gills of B. falcatus, and calculate the risk to human health of THg contamination from ingestion of the fish. THg concentrations were similar in the liver (0.076 mg kg-1) and muscle (0.052 mg kg-1), and higher than in the gills (0.009 mg kg-1). The levels of HgT present in B. falcatus tissues did not influence weight gain and nutritional status. Based on the condition factor, weight and length ratio and hepatosomatic index, it seems that the concentrations of THg did not influence the health and well-being of B. falcatus collected in the Teles Pires River basin. THg concentrations in the muscle of B. falcatus are below the limit recommended by the World Health Organization for people who consume until 250 g of fish per week. The risk of deleterious effects on human health may exist if there is a greater consumption of B. falcatus such as 340 g/day, that is the mean of fish consumption by indigenous and riverine.
Collapse
Affiliation(s)
| | | | | | - Lucélia N. Carvalho
- Universidade Federal de Mato Grosso, Brazil; Universidade Federal de Mato Grosso, Brazil
| |
Collapse
|
7
|
Chauhan V, Srikumar S, Aamer S, Pandareesh MD, Chauhan A. Methylmercury Exposure Induces Sexual Dysfunction in Male and Female Drosophila Melanogaster. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101108. [PMID: 28946640 PMCID: PMC5664609 DOI: 10.3390/ijerph14101108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Abstract
Mercury, an environmental health hazard, is a neurotoxic heavy metal. In this study, the effect of methylmercury (MeHg) exposure was analyzed on sexual behavior in Drosophila melanogaster (fruit fly), because neurons play a vital role in sexual functions. The virgin male and female flies were fed a diet mixed with different concentrations of MeHg (28.25, 56.5, 113, 226, and 339 µM) for four days, and the effect of MeHg on copulation of these flies was studied. While male and female control flies (no MeHg) and flies fed with lower concentrations of MeHg (28.25, 56.5 µM) copulated in a normal manner, male and female flies exposed to higher concentrations of MeHg (113, 226, and 339 µM) did not copulate. When male flies exposed to higher concentrations of MeHg were allowed to copulate with control female flies, only male flies fed with 113 µM MeHg were able to copulate. On the other hand, when female flies exposed to higher concentrations of MeHg were allowed to copulate with control male flies, none of the flies could copulate. After introduction of male and female flies in the copulation chamber, duration of wing flapping by male flies decreased in a MeHg-concentration-dependent manner from 101 ± 24 seconds (control) to 100.7 ± 18, 96 ±12, 59 ± 44, 31 ± 15, and 3.7 ± 2.7 seconds at 28.25, 56.5, 113, 226, and 339 µM MeHg, respectively. On the other hand, grooming in male and female flies increased in a MeHg-concentration-dependent manner. These findings suggest that MeHg exposure causes sexual dysfunction in male and female Drosophila melanogaster. Further studies showed that MeHg exposure increased oxidative stress and decreased triglyceride levels in a concentration–dependent manner in both male and female flies, suggesting that MeHg-induced oxidative stress and decreased triglyceride levels may partly contribute to sexual dysfunction in fruit flies.
Collapse
Affiliation(s)
- Ved Chauhan
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | - Syian Srikumar
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | - Sarah Aamer
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | - Mirazkar D Pandareesh
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | - Abha Chauhan
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| |
Collapse
|
8
|
Maulvault AL, Custódio A, Anacleto P, Repolho T, Pousão P, Nunes ML, Diniz M, Rosa R, Marques A. Bioaccumulation and elimination of mercury in juvenile seabass (Dicentrarchus labrax) in a warmer environment. ENVIRONMENTAL RESEARCH 2016; 149:77-85. [PMID: 27179934 DOI: 10.1016/j.envres.2016.04.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
Warming is an expected impact of climate change that will affect coastal areas in the future. These areas are also subjected to strong anthropogenic pressures leading to chemical contamination. Yet, the consequences of both factors for marine ecosystems, biota and consumers are still unknown. The present work aims to investigate, for the first time, the effect of temperature increase on bioaccumulation and elimination of mercury [(total mercury (THg) and methylmercury (MeHg)] in three tissues (muscle, liver, and brain) of a commercially important seafood species - European seabass (Dicentrarchus labrax). Fish were exposed to the ambient temperature currently used in seabass rearing (18°C) and to the expected ocean warming (+4°C, i.e. 22°C), as well as dietary MeHg during 28 days, followed by a depuration period of 28 days fed with a control diet. In both temperature exposures, higher MeHg contents were observed in the brain, followed by the muscle and liver. Liver registered the highest elimination percentages (EF; up to 64% in the liver, 20% in the brain, and 3% in the muscle). Overall, the results clearly indicate that a warming environment promotes MeHg bioaccumulation in all tissues (e.g. highest levels in brain: 8.1mgkg(-1) ww at 22°C against 6.2mgkg(-1) ww at 18°C after 28 days of MeHg exposure) and hampers MeHg elimination (e.g. liver EF decreases after 28 days of depuration: from 64.2% at 18°C to 50.3% at 22°C). These findings suggest that seafood safety may be compromised in a warming context, particularly for seafood species with contaminant concentrations close to the current regulatory levels. Hence, results point out the need to strengthen research in this area and to revise and/or adapt the current recommendations regarding human exposure to chemical contaminants through seafood consumption, in order to integrate the expected effects of climate change.
Collapse
Affiliation(s)
- Ana Luísa Maulvault
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal.
| | - Ana Custódio
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa, Portugal; Instituto Superior de Agronomia (ISA), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Patrícia Anacleto
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Tiago Repolho
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Pedro Pousão
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa, Portugal
| | - Maria Leonor Nunes
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Mário Diniz
- UCIBIO, REQUIMTE Chemistry Department, Centre of Fine Chemistry and Biotechnology, Faculty of Sciences and Technology, Nova University of Lisbon (CQFB-FCT/UNL), 2829-516 Caparica, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - António Marques
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| |
Collapse
|
9
|
Peng X, Liu F, Wang WX. Organ-specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2074-2083. [PMID: 26756981 DOI: 10.1002/etc.3363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/17/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Low mercury (Hg) concentrations down to several nanograms Hg per gram of wet tissue are documented in certain fish species such as herbivorous fish, and the underlying mechanisms remain speculative. In the present study, bioaccumulation and depuration patterns of inorganic Hg(II) and methylmercury (MeHg) in a herbivorous rabbitfish Siganus canaliculatus were investigated at organ and subcellular levels following waterborne or dietary exposures. The results showed that the efflux rate constants of Hg(II) and MeHg were 0.104 d(-1) and 0.024 d(-1) , respectively, and are probably the highest rate constants recorded in fish thus far. The dietary MeHg assimilation efficiency (68%) was much lower than those in other fish species (∼90%). The predominant distribution of MeHg in fish muscle was attributable to negligible elimination of MeHg from muscle (< 0) and efficient elimination of MeHg from gills (0.12 d(-1) ), liver (0.17 d(-1) ), and intestine (0.20 d(-1) ), as well as efficient transportation of MeHg from other organs into muscle. In contrast, Hg(II) was much more slowly distributed into muscle but was efficiently eliminated by the intestine (0.13 d(-1) ). Subcellular distribution indicated that some specific membrane proteins in muscle were the primary binding pools for MeHg, and both metallothionein-like proteins and Hg-rich granules were the important components in eliminating both MeHg and Hg(II). Overall, the present study's results suggest that the low tissue Hg concentration in the rabbitfish was partly explained by its unique biokinetics. Environ Toxicol Chem 2016;35:2074-2083. © 2016 SETAC.
Collapse
Affiliation(s)
- Xiaoyan Peng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Fengjie Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
10
|
Chauhan V, Chauhan A. Effects of methylmercury and alcohol exposure in Drosophila melanogaster: Potential risks in neurodevelopmental disorders. Int J Dev Neurosci 2016; 51:36-41. [PMID: 27151262 DOI: 10.1016/j.ijdevneu.2016.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022] Open
Abstract
Extensive evidence suggests the role of oxidative stress in autism and other neurodevelopmental disorders. In this study, we investigated whether methylmercury (MeHg) and/or alcohol exposure has deleterious effects in Drosophila melanogaster (fruit flies). A diet containing different concentrations of MeHg in Drosophila induced free radical generation and increased lipid peroxidation (markers of oxidative stress) in a dose-dependent manner. This effect of MeHg on oxidative stress was enhanced by further exposure to alcohol. It was observed that alcohol alone could also induce free radical generation in flies. After alcohol exposure, MeHg did not affect the immobilization of flies, but it increased the recovery time in a concentration-dependent manner. MeHg significantly inhibited the activity of alcohol dehydrogenase (ADH) in a dose-dependent manner. Linear regression analysis showed a significant negative correlation between ADH activity and recovery time upon alcohol exposure in the flies fed a diet with MeHg. This relationship between ADH activity and recovery time after alcohol exposure was confirmed by adding 4-methyl pyrazole (an inhibitor of ADH) to the diet for the flies. These results suggest that consumption of alcohol by pregnant mothers who are exposed to MeHg may lead to increased oxidative stress and to increased length of time for alcohol clearance, which may have a direct impact on the development of the fetus, thereby increasing the risk of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ved Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Abha Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
11
|
Deng L, Li Y, Yan X, Xiao J, Ma C, Zheng J, Liu S, Yang R. Ultrasensitive and highly selective detection of bioaccumulation of methyl-mercury in fish samples via Ag⁰/Hg⁰ amalgamation. Anal Chem 2015; 87:2452-8. [PMID: 25609026 DOI: 10.1021/ac504538v] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylmercury (CH3Hg(+)), the common organic source of mercury, is well-known as one of the most toxic compounds that is more toxic than inorganic or elemental mercury. In seabeds, the deposited Hg(2+) ions are converted into CH3Hg(+) by bacteria, where they are subsequently consumed and bioaccumulated in the tissue of fish, and finally, to enter the human diet, causing severe health problems. Therefore, sensitive and selective detection of bioaccumulation of CH3Hg(+) in fish samples is desirable. However, selective assay of CH3Hg(+) in the mercury-containing samples has been seriously hampered by the difficulty to distinguish CH3Hg(+) from ionic mercury. We report here that metal amalgamation, a natural phenomenon occurring between mercury atoms and certain metal atoms, combining with DNA-protected silver nanoparticles, can be used to detect CH3Hg(+) with high sensitivity and superior selectivity over Hg(2+) and other heavy metals. In our proposed approach, discrimination between CH3Hg(+) and Hg(2+) ions was realized by forming Ag/Hg amalgam with a CH3Hg(+)-specific scaffold. We have found that Ag/Hg amalgam can be formed on a CH3Hg(+)-specific DNA template between silver atoms and mercury atoms but cannot between silver atoms and CH3Hg(+). With a dye-labeled DNA strand, the sensor can detect CH3Hg(+) down to the picomolar level, which is >125-fold sensitive over Hg(2+). Moreover, the presence of 50-fold Hg(2+) and 10(6)-fold other metal ions do not interfere with the CH3Hg(+) detection. The results shown herein have important implications for the fast, easy, and selective detection and monitoring of CH3Hg(+) in environmental and biological samples.
Collapse
Affiliation(s)
- Li Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Huang SSY, Hung SSO, Chan HM. Maintaining tissue selenium species distribution as a potential defense mechanism against methylmercury toxicity in juvenile white sturgeon (Acipenser transmontanus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:88-95. [PMID: 25170596 DOI: 10.1016/j.aquatox.2014.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/06/2014] [Accepted: 08/10/2014] [Indexed: 06/03/2023]
Abstract
Selenium (Se) has been shown to antagonize mercury (Hg) toxicity. We have previously demonstrated that orally intubated selenomethionine (SeMet) and methylmercury (MeHg) reduced tissue Se accumulation, as well as blood and kidney Hg concentrations in juvenile white sturgeon (Acipenser transmontanus). However, the form of Se accumulated is not known. In this study, three organoseleniums: selenocysteine (Sec), Se-methyl-selenocysteine (MSeCys), and SeMet and two inorganic Se species: selenate and selenite were determined and quantified in the blood at different post-intubation periods (12, 24, 48h) and in the muscle, liver, and kidneys at 48h in white sturgeon orally intubated with a single dose of control (carrier), SeMet (500μg Se/kg body weight; BW), MeHg (850μg Hg/kg BW), and both (Se+Hg; at 500μg Se/kg and 850μg Hg/kg BW). When only SeMet was intubated, the accumulative/unmodified pathway took precedent in the blood, white muscle, liver, and kidneys. In the presence of MeHg, however, active metabolic transformation and de novo synthesis of biologically active Se forms are seen in the liver and kidneys, as indicated by a gradual increase in blood Sec:SeMet ratios and Se metabolites. In the white muscle, mobilization of endogenous Se storage by MeHg is supported by the absence of tissue SeMet and detectable levels of blood SeMet. In contrast, co-intubation with SeMet increased muscle SeMet. The high levels of unknown Se metabolites and detectable levels of selenite in the kidney reflect its role as the major excretory organ for Se. Selenium metabolism is highly regulated in the kidneys, as Se speciation was not affected by MeHg or by its co-intubation with SeMet. In the Se+Hg group, the proportion of SeMet in the liver has decreased to nearly 1/8th of that of the SeMet only group, resulting in a more similar selenocompound distribution profile to that of the MeHg only group. This is likely due to the increased need for Se metabolites necessary for MeHg demethylation in the liver. Our study demonstrated that in the presence of MeHg, regulating tissue Se speciation, hence, Se bioavailability, is more an important strategy than maintaining total Se levels in major organs of juvenile white sturgeon.
Collapse
Affiliation(s)
- Susie Shih-Yin Huang
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Silas S O Hung
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Hing Man Chan
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.
| |
Collapse
|
13
|
The Role of Heavy Metal Pollution in Neurobehavioral Disorders: a Focus on Autism. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2014. [DOI: 10.1007/s40489-014-0028-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Huang SSY, Strathe AB, Fadel JG, Johnson ML, Lin P, Liu TY, Hung SSO. The interactive effects of selenomethionine and methylmercury on their absorption, disposition, and elimination in juvenile white sturgeon. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:274-282. [PMID: 23089250 DOI: 10.1016/j.aquatox.2012.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/18/2012] [Accepted: 09/22/2012] [Indexed: 06/01/2023]
Abstract
Selenium (Se) and mercury (Hg) are prevalent pollutants of industrialized watersheds. However, when co-administered, Se has protective effects on organisms from Hg. The mechanism is not fully understood, but it is thought that Se reduces Hg availability, either by forming biologically inert complexes and/or associating with selenoproteins. Despite concerns with aquatic contaminations, relatively little information is available on the interaction in aquatic organisms. In the present study, the interactive effects of Se and Hg on their absorption, disposition, and elimination were examined in juvenile white sturgeon, a benthic fish species at high risk to exposures of both contaminants. Selenium and Hg were provided as L-selenomethionine (SeMet) and methylmercury (MeHg), respectively. Groups of 10 sturgeon were orally intubated with a single dose of either 0 (control), SeMet (500 μg Se/kg body weight; BW), MeHg (850 μg Hg/kg BW), or their combination (Se/Hg; 500 μg Se/kg and 850 μg Hg/kg BW). The blood was repeatedly sampled and urine collected from the fish, over a 48 h post intubation period. At 48 h, the fish were sacrificed for Se and Hg tissue concentration and distribution. The co-administration of SeMet and MeHg significantly (p<0.05) lowered blood concentrations of both Se and Hg and tissue Se concentrations. Similarly, assimilation of Se and Hg was also reduced significantly. The interaction has a more quantitative effect on Se metabolism because the reduction in the overall tissue Se is a consequence of reduced Se absorption at the gut and not from the metabolic effects after absorption. In contrast, given the pulse increase in blood Hg concentration, tissue redistribution, and increased urinary elimination, the interactive effect on tissue Hg concentration is likely to be post-absorption. Even in the absence of exogenous SeMet, Se and Hg co-accumulated in tissue at a Se:Hg molar ratio greater than 1. Thus, similar to mammals, maintaining at least a 1:1 molar ratio of Se and Hg is of great physiological importance in the white sturgeon. Interestingly, SeMet did not divert Hg from the brain. Allocation of Se from the kidneys may have occurred in order to maintain the high Se:Hg molar ratios in the brain of white sturgeon. In the current study, the combined use of kinetic analysis and that of the conventional approach of measuring tissue concentration changes provided a comprehensive understanding of the interactive effect of SeMet and MeHg on their respective metabolic processes in juvenile white sturgeon.
Collapse
|