1
|
Feng M, Cheng H, Zhang P, Wang K, Wang T, Zhang H, Wang H, Zhou L, Xu J, Zhang M. Stoichiometric stability of aquatic organisms increases with trophic level under warming and eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160106. [PMID: 36370785 DOI: 10.1016/j.scitotenv.2022.160106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The balance of stoichiometric traits of organisms is crucial for nutrient cycling and energy flow in ecosystems. However, the impacts of different drivers on stoichiometric (carbon, C; nitrogen, N; and phosphorus, P) variations of organisms have not been well addressed. In order to understand how stoichiometric traits vary across trophic levels under different environmental stressors, we performed a mesocosm experiment to explore the impacts of warming (including +3 °C consistent warming above ambient and heat waves ranging from 0 to 6 °C), eutrophication, herbicide and their interactions on stoichiometric traits of organisms at different trophic levels, which was quantified by stable nitrogen isotopes. Results showed that herbicide treatment had no significant impacts on all stochiometric traits, while warming and eutrophication significantly affected the stoichiometric traits of organisms at lower trophic levels. Eutrophication increased nutrient contents and decreased C: nutrient ratios in primary producers, while the response of N:P ratios depended on the taxonomic group. The contribution of temperature treatments to stoichiometric variation was less than that of eutrophication. Heat waves counteracted the impacts of eutrophication, which was different from the effects of continuous warming, indicating that eutrophication impacts on organism stoichiometric traits depended on climate scenarios. Compared to environmental drivers, taxonomic group was the dominant driver that determined the variations of stoichiometric traits. Furthermore, the stoichiometric stability of organisms was strongly positively correlated with their trophic levels. Our results demonstrate that warming and eutrophication might substantially alter the stoichiometric traits of lower trophic levels, thus impairing the nutrient transfer to higher trophic level, which might further change the structure of food webs and functions of the ecosystems.
Collapse
Affiliation(s)
- Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Kang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Libin Zhou
- Institute of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|
2
|
Fusilero A, De Rop J, Spanoghe P, Arts GHP, De Schamphelaere KAC. Mixture Toxicity of Herbicides with Dissimilar Modes of Action to Myriophyllum spicatum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2209-2220. [PMID: 35698929 DOI: 10.1002/etc.5401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/26/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Considering the vital role of rooted macrophytes in the aquatic ecosystem, validating assumptions on the interactive effects of herbicides with different modes of action at an environmentally relevant mixture ratio is necessary. We investigated the effects of diflufenican (a carotenoid biosynthesis inhibitor) and iodosulfuron-methyl-sodium (IMS; an acetolactate synthase inhibitor) in a 14-day growth inhibition experiment with Myriophyllum spicatum, wherein single compounds and their combination were tested in parallel (n = 84). The assessment was done using three different methods: significance testing, model deviation ratio (MDR), and mixture interaction factor (MIF). Interactions relative to both concentration addition and independent action were assessed via significance testing. This revealed that diflufenican and IMS acted antagonistically relative to both models for fresh weight and total shoot length (p < 0.05) and that there was slight synergism for the number of side shoots (p < 0.001) relative to concentration addition. The MDR and MIF can only assess interactions relative to the concentration addition model. According to MDR, the mixture appeared to show no interaction (neither antagonistic nor synergistic), whereas the MIF method revealed that the compounds acted antagonistically for fresh weight and that there was a slight synergism for total shoot length and number of side shoots. We conclude that inferences about mixture toxicity interactions are method- and endpoint-dependent, which can have implications for regulatory mixtures assessment. Environ Toxicol Chem 2022;41:2209-2220. © 2022 SETAC.
Collapse
Affiliation(s)
- Abegail Fusilero
- GhenToxLab, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Rotam Crop Protection Europe, Lyon, France
| | - Jasmine De Rop
- Laboratory for Crop Protection Chemistry, Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Pieter Spanoghe
- Laboratory for Crop Protection Chemistry, Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Gertie H P Arts
- Wageningen Environmental Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | |
Collapse
|
3
|
Peace A, Frost PC, Wagner ND, Danger M, Accolla C, Antczak P, Brooks BW, Costello DM, Everett RA, Flores KB, Heggerud CM, Karimi R, Kang Y, Kuang Y, Larson JH, Mathews T, Mayer GD, Murdock JN, Murphy CA, Nisbet RM, Pecquerie L, Pollesch N, Rutter EM, Schulz KL, Scott JT, Stevenson L, Wang H. Stoichiometric Ecotoxicology for a Multisubstance World. Bioscience 2021. [DOI: 10.1093/biosci/biaa160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Nutritional and contaminant stressors influence organismal physiology, trophic interactions, community structure, and ecosystem-level processes; however, the interactions between toxicity and elemental imbalance in food resources have been examined in only a few ecotoxicity studies. Integrating well-developed ecological theories that cross all levels of biological organization can enhance our understanding of ecotoxicology. In the present article, we underline the opportunity to couple concepts and approaches used in the theory of ecological stoichiometry (ES) to ask ecotoxicological questions and introduce stoichiometric ecotoxicology, a subfield in ecology that examines how contaminant stress, nutrient supply, and elemental constraints interact throughout all levels of biological organization. This conceptual framework unifying ecotoxicology with ES offers potential for both empirical and theoretical studies to deepen our mechanistic understanding of the adverse outcomes of chemicals across ecological scales and improve the predictive powers of ecotoxicology.
Collapse
Affiliation(s)
- Angela Peace
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas, United States
| | - Paul C Frost
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Nicole D Wagner
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, United States
| | | | - Chiara Accolla
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, Minneapolis, Minnesota, United States
| | | | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, Texas, United States
| | - David M Costello
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States
| | - Rebecca A Everett
- Department of Mathematics and Statistics, Haverford College, Haverford, Pennsylvania, United States
| | - Kevin B Flores
- Department of Mathematics and the Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina, United States
| | - Christopher M Heggerud
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Roxanne Karimi
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States
| | - Yun Kang
- Arizona State University, Mesa, Arizona, United States
| | - Yang Kuang
- Arizona State University, Tempe, Arizona, United States
| | - James H Larson
- US Geological Survey's Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States
| | - Teresa Mathews
- Environmental Sciences Division of Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
| | - Gregory D Mayer
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, United States
| | - Justin N Murdock
- Department of Biology, Tennessee Tech University, Cookeville, Tennessee, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Roger M Nisbet
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Laure Pecquerie
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, Plouzane, France
| | - Nathan Pollesch
- University of Wisconsin's Aquatic Sciences Center and with the US Environmental Protection Agency's Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, United States
| | - Erica M Rutter
- Department of Applied Mathematics, University of California, Merced, Merced, California, United States
| | - Kimberly L Schulz
- Department of Environmental and Forest Biology, State University of New York's College of Environmental Science and Forestry, Syracuse, New York, United States
| | - J Thad Scott
- Department of Biology, Baylor University, Waco, Texas, United States
| | - Louise Stevenson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; with the Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California; and with the Department of Biological Sciences at Bowling Green State University, in Bowling Green, Ohio, United States
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Bundschuh M, Zubrod JP, Petschick LL, Schulz R. Multiple Stressors in Aquatic Ecosystems: Sublethal Effects of Temperature, Dissolved Organic Matter, Light and a Neonicotinoid Insecticide on Gammarids. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:345-350. [PMID: 32642796 PMCID: PMC7497685 DOI: 10.1007/s00128-020-02926-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Whether and to which extent the effects of chemicals in the environment interact with other factors remains a scientific challenge. Here we assess the combined effects of temperature (16 vs. 20°C), light conditions (darkness vs. 400 lx), dissolved organic matter (DOM; 0 vs. 6 mg/L) and the model insecticide thiacloprid (0 vs. 3 µg/L) in a full-factorial experiment on molting and leaf consumption of Gammarus fossarum. Thiacloprid was the only factor significantly affecting gammarids' molting. While DOM had low effects on leaf consumption, temperature, light and thiacloprid significantly affected this response variable. The various interactions among these factors were not significant suggesting additivity. Only the interaction of the factors temperature and thiacloprid suggested a tendency for antagonism. As most stressors interacted additively, their joint effects may be predictable with available models. However, synergistic interactions are difficult to capture while being central for securing ecosystem integrity.
Collapse
Affiliation(s)
- Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75007, Uppsala, Sweden.
| | - Jochen P Zubrod
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
- Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, 76857, Eußerthal, Germany
| | - Lara L Petschick
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
- Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, 76857, Eußerthal, Germany
| |
Collapse
|
5
|
Varga M, Horvatić J, Žurga P, Brusić I, Moslavac M. Phytotoxicity assessment of isoproturon on growth and physiology of non-targeted aquatic plant Lemna minor L. - A comparison of continuous and pulsed exposure with equivalent time-averaged concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105225. [PMID: 31220755 DOI: 10.1016/j.aquatox.2019.105225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Phenylurea herbicides are often present in the aquatic ecosystems and may be accumulated by the non-targeted organisms and impose a negative effect on the organism and the community. This study aims to investigate and compare the effects of two different isoproturon (IPU) pulse exposure scenarios on the non-targeted aquatic plant Lemna minor with effects observed in the standard test with continuous exposure. The obtained results showed that continuous IPU treatment causes significant reduction of photosynthetic pigment concentration and proteins as well as inhibition of L. minor growth. The activities of CAT, G-POX, and APX were significantly induced to diminish the accumulation of ROS under IPU treatment, but the induction of antioxidant enzymes was not sufficient to protect the plants from herbicide-induced oxidative stress. The growth of L. minor under pulse exposure to IPU recovers fast, but pulse treatment results in significant physiological changes in treated plants. The accumulation of H2O2 and lipid peroxidation products, alongside the reduced concentration of proteins and photosynthetic pigments in pulse treatment after a recovery period, indicates that IPU causes prolonged oxidative stress in L. minor plants. The recovery potential of L. minor plants after treatment with herbicides may have an important role in maintaining the population of essential primary producers in aquatic ecosystems, but IPU-induced physiological changes could potentially have a significant role in modulating the response of the plants to the next exposure event.
Collapse
Affiliation(s)
- Martina Varga
- University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia.
| | - Janja Horvatić
- University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Paula Žurga
- Teaching Institute of Public Health of Primorsko-goranska County, Krešimirova 52, 51000 Rijeka, Croatia
| | - Iva Brusić
- Teaching Institute of Public Health of Primorsko-goranska County, Krešimirova 52, 51000 Rijeka, Croatia
| | - Marko Moslavac
- University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| |
Collapse
|
6
|
Oscar MA, Barak S, Winters G. The Tropical Invasive Seagrass, Halophila stipulacea, Has a Superior Ability to Tolerate Dynamic Changes in Salinity Levels Compared to Its Freshwater Relative, Vallisneria americana. FRONTIERS IN PLANT SCIENCE 2018; 9:950. [PMID: 30022993 PMCID: PMC6040085 DOI: 10.3389/fpls.2018.00950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/12/2018] [Indexed: 05/30/2023]
Abstract
The tropical seagrass species, Halophila stipulacea, originated from the Indian Ocean and the Red Sea, subsequently invading the Mediterranean and has recently established itself in the Caribbean Sea. Due to its invasive nature, there is growing interest in understanding this species' capacity to adapt to new conditions. One approach to understanding the natural tolerance of a plant is to compare the tolerant species with a closely related non-tolerant species. We compared the physiological responses of H. stipulacea exposed to different salinities, with that of its nearest freshwater relative, Vallisneria americana. To achieve this goal, H. stipulacea and V. americana plants were grown in dedicated microcosms, and exposed to the following salt regimes: (i) H. stipulacea: control (40 PSU, practical salinity units), hyposalinity (25 PSU) and hypersalinity (60 PSU) for 3 weeks followed by a 4-week recovery phase (back to 40 PSU); (ii) V. americana: control (1 PSU), and hypersalinity (12 PSU) for 3 weeks, followed by a 4-week recovery phase (back to 1 PSU). In H. stipulacea, leaf number and chlorophyll content showed no significant differences between control plants and plants under hypo and hypersalinities, but a significant decrease in leaf area under hypersalinity was observed. In addition, compared with control plants, H. stipulacea plants exposed to hypo and hypersalinity were found to have reduced below-ground biomass and C/N ratios, suggesting changes in the allocation of resources in response to both stresses. There was no significant effect of hypo/hypersalinity on dark-adapted quantum yield of photosystem II (Fv/Fm) suggesting that H. stipulacea photochemistry is resilient to hypo/hypersalinity stress. In contrast to the seagrass, V. americana exposed to hypersalinity displayed significant decreases in above-ground biomass, shoot number, leaf number, blade length and Fv/Fm, followed by significant recoveries of all these parameters upon return of the plants to non-saline control conditions. These data suggest that H. stipulacea shows remarkable tolerance to both hypo and hypersalinity. Resilience to a relatively wide range of salinities may be one of the traits explaining the invasive nature of this species in the Mediterranean and Caribbean Seas.
Collapse
Affiliation(s)
- Michelle A. Oscar
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Dead-Sea & Arava Science Center, Neve Zohar, Israel
| | - Simon Barak
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | | |
Collapse
|
7
|
Gong L, Zhang S, Chen D, Liu K, Lu J. Response of biofilms-leaves of two submerged macrophytes to high ammonium. CHEMOSPHERE 2018; 192:152-160. [PMID: 29101854 DOI: 10.1016/j.chemosphere.2017.09.147] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/20/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
Submerged macrophytes can provide attached surface for biofilms (known as periphyton) growth. In the present study, the alterations in biofilms formation, and chemical compositions and physiological responses were investigated on leaves of Vallisneria asiatica and Hydrilla verticillata exposed to 0.1 mg L-1 (control) or with 10 mg L-1 NH4+-N for 13 days. Results from physiological and biochemical indices (content of H2O2, malondialdehyde, total chlorophyll and activity of superoxide dismutase, catalase and peroxidase) showed that high ammonium caused oxidative damage to leaves of two species of plant. Multifractal analysis (based on scanning electron microscope images) showed that for the same plant, the values of width △α (△α = αmax-αmin) of the f(α) and Δf (Δf = f(αmin)-f(αmax)) were smaller on leaves surface of two species of plant treated with 10 mg L-1 NH4+-N for 13 days than their controls, suggesting high ammonium treatments reduced morphological heterogeneity of leaf surface and enhanced area of the colony-like biofilms. X-ray photoelectron spectroscopy analysis showed that C, O, N and P were dominant elements on leaves surface of two species of plant and ammonium application increased the percentage of C but decreased that of O. High ammonium increased C1 (C-C or C-H) percentage but decreased C2 (C-O) and C3 (O-C-O or C=O) percentage on leaves surface of two species of plant, indicating that ammonium stress changed the surface chemical states and thus might reduce the capacity of leaves to adsorb nutrients from water column. Our results provided useful information to understand ammonium induced toxicity to submerged macrophytes.
Collapse
Affiliation(s)
- Lixue Gong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Deqiang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Kaihui Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jian Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| |
Collapse
|
8
|
Wieczorek MV, Bakanov N, Lagadic L, Bruns E, Schulz R. Response and recovery of the macrophytes Elodea canadensis and Myriophyllum spicatum following a pulse exposure to the herbicide iofensulfuron-sodium in outdoor stream mesocosms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1090-1100. [PMID: 27696510 DOI: 10.1002/etc.3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/25/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Interest in stream mesocosms has recently revived for higher tier aquatic macrophyte risk assessment of plant protection products mainly because 1) the highest predicted environmental concentrations for the assessment of effects are frequently derived from stream scenarios, and 2) they allow an effect assessment using stream-typical pulse exposures. Therefore, the present stream mesocosm study used an herbicide pulse exposure and evaluated the responses of Elodea canadensis and Myriophyllum spicatum. Macrophytes were exposed for 24 h to 1 μg/L, 3 μg/L, 10 μg/L, and 30 μg/L of the herbicide iofensulfuron-sodium with a subsequent recovery period of 42 d. Biological endpoints were growth rates of the main, side, and total shoot length, the shoot number, the maximum root length, and the dry weight. The total shoot length was identified as the most sensitive endpoint; the growth rate of the total shoot length was inhibited by up to 66% and 45% in M. spicatum and E. canadensis, respectively. The lowest no observed effect concentrations (NOECs) were observed at day 7 and/or day 14 after herbicide treatment and were 1 μg/L for M. spicatum and 3 μg/L for E. canadensis. The no-observed-ecologically-adverse-effect concentrations (NOEAECs) were 10 μg/L and 30 μg/L for M. spicatum and E. canadensis, respectively. Such or similar mesocosm designs are useful to simulate typical stream exposures and estimate herbicide effects on aquatic macrophytes in stream systems. Environ Toxicol Chem 2017;36:1090-1100. © 2016 SETAC.
Collapse
Affiliation(s)
- Matthias V Wieczorek
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Nikita Bakanov
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | | | | | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
9
|
Nuttens A, Gross EM. Sucrose modifies growth and physiology in axenically grown Myriophyllum spicatum with potential effects on the response to pollutants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:969-975. [PMID: 27597637 DOI: 10.1002/etc.3610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/04/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Sucrose as a carbon source in axenic tests affects plant growth and physiology. The high sucrose concentration in Organisation for Economic Co-operation and Development (OECD) guideline 238 for the submerged growing aquatic plant Myriophyllum spicatum might modify pollutant effects, thus impairing environmental risk assessment. In a factorial design experiment with axenic M. spicatum exposed to 3 sucrose concentrations (no, low, and high) with or without cadmium, growth, dry matter content, content in pigments or phenolic compounds, and elemental stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) were measured. The results show that sucrose is crucial for growth but can be used at lower concentrations than currently considered. Sucrose-treated plants had higher dry matter content and C content but lower contents of chlorophyll and N. Cadmium affected the content in chlorophyll, phenolic compounds, and elemental stoichiometry. Interactive effects were observed on length growth, C and N content, and the C:N and N:P molar ratios. Remarkably, cadmium led to increased shoot length at low, but not at high, sucrose concentration. This contrasting effect might result from differences in osmotic potential caused by sucrose. Overall, the results suggest a strong effect of sucrose concentration on the growth and physiology of M. spicatum and modifications of the response to cadmium. Further studies should establish the lowest sucrose level needed to account for realistic environmental risk assessment based on the axenic OECD 238. Environ Toxicol Chem 2017;36:969-975. © 2016 SETAC.
Collapse
Affiliation(s)
- Andréïna Nuttens
- LIEC UMR 7360 CNRS, Université de Lorraine, Metz, Lorraine, France
| | | |
Collapse
|