1
|
Mangold-Döring A, Grimard C, Green D, Petersen S, Nichols JW, Hogan N, Weber L, Hollert H, Hecker M, Brinkmann M. A Novel Multispecies Toxicokinetic Modeling Approach in Support of Chemical Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9109-9118. [PMID: 34165962 PMCID: PMC9066611 DOI: 10.1021/acs.est.1c02055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Standardized laboratory tests with a limited number of model species are a key component of chemical risk assessments. These surrogate species cannot represent the entire diversity of native species, but there are practical and ethical objections against testing chemicals in a large variety of species. In previous research, we have developed a multispecies toxicokinetic model to extrapolate chemical bioconcentration across species by combining single-species physiologically based toxicokinetic (PBTK) models. This "top-down" approach was limited, however, by the availability of fully parameterized single-species models. Here, we present a "bottom-up" multispecies PBTK model based on available data from 69 freshwater fishes found in Canada. Monte Carlo-like simulations were performed using statistical distributions of model parameters derived from these data to predict steady-state bioconcentration factors (BCFs) for a set of well-studied chemicals. The distributions of predicted BCFs for 1,4-dichlorobenzene and dichlorodiphenyltrichloroethane largely overlapped those of empirical data, although a tendency existed toward overestimation of measured values. When expressed as means, predicted BCFs for 26 of 34 chemicals (82%) deviated by less than 10-fold from measured data, indicating an accuracy similar to that of previously published single-species models. This new model potentially enables more environmentally relevant predictions of bioconcentration in support of chemical risk assessments.
Collapse
Affiliation(s)
- Annika Mangold-Döring
- Department for Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, 52074, Germany
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Chelsea Grimard
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Stephanie Petersen
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - John W. Nichols
- US Environmental Protection Agency, Duluth, Minnesota, 55804, USA
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- Western College of Veterinary Medicine, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Henner Hollert
- Department for Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, 52074, Germany
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences Goethe University Frankfurt, Frankfurt, 60438, Germany
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5C8, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, S7N 3H5, Canada
- Corresponding author: Dr. Markus Brinkmann, 44 Campus Drive, S7N 5B3 Canada, Phone: +1 (306) 966 1204,
| |
Collapse
|
2
|
Pyrzanowski K, Zięba G, Leszczyńska J, Adamczuk M, Dukowska M, Przybylski M. Food resource partitioning between juvenile and mature weatherfish Misgurnus fossilis. Ecol Evol 2021; 11:4460-4469. [PMID: 33976822 PMCID: PMC8093735 DOI: 10.1002/ece3.7340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
This study represents a description of the diet composition of one of the largest European cobitids, the weatherfish Misgurnus fossilis. Specimens were collected in a drainage canal, representing a typical habitat for weatherfish, and with gut content analysis conducted with regard to individual total length and maturity stage. Overall, the weatherfish diet mainly consisted of Copepoda, Cladocera, Ostracoda, Oligochaeta, Asellus aquaticus, Chironomidae and Coleoptera larvae, Gastropoda, and detritus. To evaluate size-related patterns of resource use, fish were assigned to two size classes, defined according to size at first maturation. ANOSIM analyses revealed major ontogenetic shifts in feeding strategy, which were related to size and maturity, with a significant ontogenetic shift in feeding pattern, marked by differences in the proportions of the main taxonomic groups of prey consumed. Copepoda and Cladocera dominated in the diet of small and immature individuals, while large weatherfish primarily fed on detritus. Similarly, cluster analysis of diet classified into these food types showed distinct two groups comprising juvenile and mature fish. The weatherfish is a food opportunist using all available resources, but spatially showed a change in feeding sites. Smaller and sexually immature individuals more often use prey caught in the water column and among macrophytes, while larger (sexually mature) individuals occupying the bottom, much more often use detritus as a food base.
Collapse
Affiliation(s)
- Kacper Pyrzanowski
- Department of Ecology and Vertebrate ZoologyFaculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
| | - Grzegorz Zięba
- Department of Ecology and Vertebrate ZoologyFaculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
| | - Joanna Leszczyńska
- Department of Ecology and Vertebrate ZoologyFaculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
| | - Małgorzata Adamczuk
- Department of Hydrobiology and Protection of EcosystemsFaculty of Environmental BiologyUniversity of Life Sciences in LublinLublinPoland
| | - Małgorzata Dukowska
- Department of Ecology and Vertebrate ZoologyFaculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
| | - Mirosław Przybylski
- Department of Ecology and Vertebrate ZoologyFaculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
| |
Collapse
|
3
|
Brys R, Halfmaerten D, Neyrinck S, Mauvisseau Q, Auwerx J, Sweet M, Mergeay J. Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis). JOURNAL OF FISH BIOLOGY 2021; 98:399-414. [PMID: 32154579 DOI: 10.1111/jfb.14315] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/24/2019] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
The European weather loach (Misgurnus fossilis) is a cryptic and poorly known fish species of high conservation concern. The species is experiencing dramatic population collapses across its native range to the point of regional extinction. Although environmental DNA (eDNA)-based approaches offer clear advantages over conventional field methods for monitoring rare and endangered species, accurate detection and quantification remain difficult and quality assessment is often poorly incorporated. In this study, we developed and validated a novel digital droplet PCR (ddPCR) eDNA-based method for reliable detection and quantification, which allows accurate monitoring of M. fossilis across a number of habitat types. A dilution experiment under laboratory conditions allowed the definition of the limit of detection (LOD) and the limit of quantification (LOQ), which were set at concentrations of 0.07 and 0.14 copies μl-1 , respectively. A series of aquarium experiments revealed a significant and positive relationship between the number of individuals and the eDNA concentration measured. During a 3 year survey (2017-2019), we assessed 96 locations for the presence of M. fossilis in Flanders (Belgium). eDNA analyses on these samples highlighted 45% positive detections of the species. On the basis of the eDNA concentration per litre of water, only 12 sites appeared to harbour relatively dense populations. The other 31 sites gave a relatively weak positive signal that was typically situated below the LOQ. Combining sample-specific estimates of effective DNA quantity (Qe ) and conventional field sampling, we concluded that each of these weak positive sites still likely harboured the species and therefore they do not represent false positives. Further, only seven of the classified negative samples warrant additional sampling as our analyses identified a substantial risk of false-negative detections (i.e., type II errors) at these locations. Finally, we illustrated that ddPCR outcompetes conventional qPCR analyses, especially when target DNA concentrations are critically low, which could be attributed to a reduced sensitivity of ddPCR to inhibition effects, higher sample concentrations being accommodated and higher sensitivity obtained.
Collapse
Affiliation(s)
- Rein Brys
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | | | - Sabrina Neyrinck
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Quentin Mauvisseau
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
- SureScreen Scientifics Ltd, Morley, UK
| | - Johan Auwerx
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
- SureScreen Scientifics Ltd, Morley, UK
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| |
Collapse
|
4
|
Capela R, Garric J, Castro LFC, Santos MM. Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135740. [PMID: 31838430 DOI: 10.1016/j.scitotenv.2019.135740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
This review article gathers the available information on the use of embryo-tests as high-throughput tools for toxicity screening, hazard assessment and prioritization of new and existing chemical compounds. The approach is contextualized considering the new legal trends for animal experimentation, fostering the 3R policy, with reduction of experimental animals, addressing the potential of embryo-tests as high-throughput toxicity screening and prioritizing tools. Further, the current test guidelines, such as the ones provided by OECD and EPA, focus mainly in a limited number of animal lineages, particularly vertebrates and arthropods. To extrapolate hazard assessment to the ecosystem scale, a larger diversity of taxa should be tested. The use of new experimental animal models in toxicity testing, from a representative set of taxa, was thoroughly revised and discussed in this review. Here, we critically review current tools and the main advantages and drawbacks of different animal models and set researcher priorities.
Collapse
Affiliation(s)
- Ricardo Capela
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France
| | - Jeanne Garric
- IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France.
| | - Luís Filipe Costa Castro
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
5
|
Zheng M, Han Y, Xu C, Han H, Zhang Z. Discrimination of typical cyclic compounds and selection of toxicity evaluation bioassays for coal gasification wastewater (CGW) based on toxicity mechanism of actions (MOAs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:324-334. [PMID: 29981980 DOI: 10.1016/j.scitotenv.2018.06.295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/27/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
This paper originally investigated toxicity discrimination of typical cyclic compounds and bioassays selection on toxicity evaluation for coal gasification wastewater (CGW) effluent with mechanism-oriented investigation. Initially, representative cyclic toxicants were selected and classified with quantitative structure-toxicity relationship (QSTR). Nitrogen heterocyclic compounds (NHCs) and polycyclic aromatic hydrocarbons (PAHs) were basically discriminated as nonpolar narcotics with significant correlation to hydrophobicity (p < 0.05, R2 = 0.8668-0.9635), while phenols were regarded as polar narcotics and reactive compounds due to slight correlation to hydrophobicity (p > 0.05, R2 < 0.5). Furthermore, specific mechanism of actions (MOAs) to various organisms revealed that phenols were discriminated as critical source of acute toxicity in CGW, with short-term visible and irreversible damage. However, NHCs and PAHs, which exerted accumulation toxicity rather than acute toxicity, might result in potential mutagenicity and unpredictable risk along the food chain. Afterwards, based on species sensitivity to typical toxicants and application in real CGW effluent, non-applicability of Chlorella vulgaris (C. vulgaris) was validated in toxicity evaluation. While Daphnia magna (D. magna) was suggested as a toxicity bioassay in entire effluent due to the highest sensitivity and applicability. Tetrahymena thermophile (T. pyriformis) might be applicable in effluent with low biodegradability due to similar evaluation results (TU = 8.90) to D. magna (TU = 6.67) in aerobic effluent. Finally, the relationship between toxicity and bioavailability based on typical pollutants and model species illustrated necessity for dualism toxicity-biodegradability investigation on CGW.
Collapse
Affiliation(s)
- Mengqi Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhengwen Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
Schreiber B, Fischer J, Schiwy S, Hollert H, Schulz R. Towards more ecological relevance in sediment toxicity testing with fish: Evaluation of multiple bioassays with embryos of the benthic weatherfish (Misgurnus fossilis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:391-400. [PMID: 29156260 DOI: 10.1016/j.scitotenv.2017.11.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/27/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The effects of sediment contamination on fish are of high significance for the protection of ecosystems, human health and economy. However, standardized sediment bioassays with benthic fish species, that mimic bioavailability of potentially toxic compounds and comply with the requirements of alternative test methods, are still scarce. In order to address this issue, embryos of the benthic European weatherfish (Misgurnus fossilis) were exposed to freeze-dried sediment (via sediment contact assays (SCA)) and sediment extracts (via acute fish embryo toxicity tests) varying in contamination level. The extracts were gained by accelerated solvent extraction with (i) acetone and (ii) pressurized hot water (PHWE) and subsequently analyzed for polycyclic aromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzodioxins and dibenzofurans. Furthermore, embryos of the predominately used zebrafish (Danio rerio) were exposed to extracts from the two most contaminated sediments. Results indicated sufficient robustness of weatherfish embryos towards varying test conditions and sensitivity towards relevant sediment-bound compounds. Furthermore, a compliance of effect concentrations derived from weatherfish embryos exposed to sediment extracts (96h-LC50) with both measured gradient of sediment contamination and previously published results was observed. In comparison to zebrafish, weatherfish embryos showed higher sensitivity to the bioavailability-mimicking extracts from PHWE but lower sensitivity to extracts gained with acetone. SCAs conducted with weatherfish embryos revealed practical difficulties that prevented an implementation with three of four sediments tested. In summary, an application of weatherfish embryos, using bioassays with sediment extracts from PHWE might increase the ecological relevance of sediment toxicity testing: it allows investigations using benthic and temperate fish species considering both bioavailable contaminants and animal welfare concerns.
Collapse
Affiliation(s)
- Benjamin Schreiber
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany.
| | - Jonas Fischer
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany; Center for Environmental Research and Technology, General and Theoretical Ecology, University of Bremen, Leobener Strasse, Bremen, Germany
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| |
Collapse
|
7
|
Schreiber B, Monka J, Drozd B, Hundt M, Weiss M, Oswald T, Gergs R, Schulz R. Thermal requirements for growth, survival and aerobic performance of weatherfish larvae Misgurnus fossilis. JOURNAL OF FISH BIOLOGY 2017; 90:1597-1608. [PMID: 28097662 DOI: 10.1111/jfb.13261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Thermal requirements of larval weatherfish Misgurnus fossilis were investigated in terms of growth, survival and aerobic performance. Growth and survival of M. fossilis larvae acclimated to five temperatures (11, 15, 19, 23 and 27° C) were measured over 25 days. In the upper temperature treatments (19, 23 and 27° C), survival of larvae was stable throughout the entire rearing period (>75%), whereas 11 and 15° C resulted in severe declines in survival (to <10%). Growth of larvae (expressed as dry mass and total length) was highest at 19 and 23° C, but significantly decreased at 27° C. Routine metabolic rate of 3 days post-hatch larvae was estimated as oxygen consumption rate (ṀO2 ) during acute exposure (30 min to 1 h) to seven temperatures (11, 15, 19, 23, 27, 31 and 35° C). Larval oxygen uptake increased with each consecutive temperature step from 11 to 27° C, until a plateau was reached at temperatures >27° C. All larvae of the 35° C regime, however, died within the ṀO2 measurement period. M. fossilis larvae show greater than expected tolerance of high temperatures. On the other hand, low temperatures that are within the range of likely habitat conditions are critical because they might lead to high mortality rates when larvae are exposed over periods >10 days. These findings help to improve rearing conditions and to identify suitable waters for stocking and thus support the management of re-introduction activities for endangered M. fossilis.
Collapse
Affiliation(s)
- B Schreiber
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - J Monka
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - B Drozd
- University of South Bohemia in České Budějovice, FFPW USB, CENAKVA, IAPW, Husova tř. 458/102, 370 05, České Budějovice, Czech Republic
| | - M Hundt
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - M Weiss
- Alfred Wegener Institute for Polar and Marine Research (AWI), Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - T Oswald
- Struktur und Genehmigungsdirektion Süd (Rheinland-Pfalz), Friedrich-Ebert-Str. 14, 67433, Neustadt, Germany
| | - R Gergs
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
- Federal Environment Agency, Schichauweg 58, 12307, Berlin, Germany
| | - R Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| |
Collapse
|