1
|
Tinant G, Neefs I, De Groote A, Page MM, Rees JF, Larondelle Y, Debier C. Docosapentaenoic (22:5 n-6) and docosahexaenoic (22:6 n-3) acids exhibit highly lipogenic properties in rainbow trout preadipocytes. Comp Biochem Physiol B Biochem Mol Biol 2025; 278:111087. [PMID: 39993557 DOI: 10.1016/j.cbpb.2025.111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Dietary polyunsaturated fatty acids are essential for fish health. Adipose tissue is the major tissue for fatty acid storage in rainbow trout (Oncorhynchus mykiss), and its development and function can be impacted by the fatty acids themselves. In the present study, the effects of seven fatty acids, oleic (OA, 18:1 n-9), α-linolenic (ALA, 18:3 n-3), eicosapentaenoic (EPA, 20:5 n-3), docosahexaenoic (DHA, 22:6 n-3), linoleic (LA, 18:2 n-6), arachidonic (AA, 20:4 n-6), and docosapentaenoic (DPA, 22:5 n-6) acids, on adipogenesis were investigated in primary cultures of rainbow trout preadipocytes. In terms of lipid accumulation, DPA and DHA appeared to be the most lipogenic fatty acids, while all treatments modified the fatty acid composition of the cellular phospholipids and neutral lipids. The fatty acid of interest added to the culture medium was the most abundant in preadipocytes, while the first bioconversion products were detected in lower amounts. In terms of transcriptional effects, DPA increased the expression of the early transcription factor CCAAT/enhancer binding protein δ, while DHA upregulated the expression of genes involved in neutral lipid synthesis, notably lipoprotein lipase, fatty acid transport protein 1 and glycerol-3-phosphate dehydrogenase. Both fatty acids decreased the expression of fatty acid synthase. These results highlight that DPA and DHA exert a significant effect on lipid deposition in rainbow trout preadipocytes, potentially through different pathways, and confirm that fatty acids have major impacts on preadipocyte lipid metabolism and adipogenesis.
Collapse
Affiliation(s)
- Gilles Tinant
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium.
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Alice De Groote
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Melissa M Page
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Jean-François Rees
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
2
|
Tinant G, Van Larebeke M, Lemaire B, Courteille M, Gardin C, Neefs I, Das K, Page MM, Rees JF, Larondelle Y, Debier C. Dietary methylmercury and fatty acids affect the lipid metabolism of adipose tissue and liver in rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106673. [PMID: 37669601 DOI: 10.1016/j.aquatox.2023.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Methylmercury (MeHg) is a pervasive environmental contaminant in aquatic ecosystems that can reach elevated concentrations in fish of high trophic levels, such as salmonids. The present study aims at investigating the individual and combined impacts of dietary MeHg and fatty acids on lipid metabolism in juvenile rainbow trout (Oncorhynchus mykiss) with a focus on two key organs, adipose tissue and liver. MeHg and fatty acids are both known to act on energy homeostasis although little is known about their interplay on lipid metabolism in fish. Fish were fed diets enriched in linoleic acid (LA, 18:2 n-6), α-linolenic acid (ALA, 18:3 n-3), eicosapentaenoic acid (EPA, 20:5 n-3) or docosahexaenoic acid (DHA, 22:6 n-3) for ten weeks, with the addition of MeHg to the diets during the last six weeks (0, 2.4 or 5.5 mg MeHg/kg dry matter). LA and ALA are polyunsaturated fatty acids (PUFA) typical of plant-derived oils whereas EPA and DHA are n-3 long chain PUFA largely found in fish oil, all used in feed formulation in aquaculture. The results showed that the LA-enriched diet induced a higher whole-body lipid content compared to the three other diets. On the contrary, the addition of MeHg led to a significant reduction of the whole-body lipid content, regardless of the diet. Interestingly, the adipocytes were larger both in presence of LA, compared to EPA and DHA, or MeHg, indicating a lipogenic effect of these two compounds. No effect was, however, observed on lipid accumulation per gram of adipose tissue. The fatty acid composition of adipose tissue and liver was significantly modified by the dietary lipids, reflecting both the fatty acid composition of the diets and the high bioconversion capacity of the rainbow trout. Exposure to MeHg selectively led to a release of n-6 PUFA from the hepatic membranes of fish fed the LA-enriched diet, showing a disruption of the pathways using n-6 PUFA. This study highlights the significant impact of MeHg exposure and dietary fatty acids on lipid metabolism in fish. Further investigation is needed to elucidate the underlying mechanisms and to explore the potential involvement of other organs.
Collapse
Affiliation(s)
- Gilles Tinant
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium.
| | - Mélusine Van Larebeke
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Benjamin Lemaire
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Marine Courteille
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Cécile Gardin
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Krishna Das
- Laboratory of Oceanology, Université de Liège, 11 Allée du 6 Août, B6C, 4000 Liège, Belgium
| | - Melissa M Page
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Jean-François Rees
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
3
|
Hosseinzadeh M, Gilabert A, Porte C. Precision cut tissue slices to investigate the effects of triclosan exposure in Mytilus galloprovincialis. Toxicol In Vitro 2022; 85:105477. [PMID: 36122805 DOI: 10.1016/j.tiv.2022.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
Precision-cut tissue slices (PCTS) are frequently used in mammalian research, but its application in the area of aquatic toxicology is still humble. This work proposes the use of PCTS to investigate the effects of the antimicrobial triclosan (TCS) in the mussel Mytilus galloprovincialis. PCTS sectioned from the digestive gland (400 μm) were exposed to 10, 100, and 500 nM TCS for 24 h, and the expression of selected genes, together with the biomarkers, carboxylesterases (CbE) and glutathione S-transferases (GST), and the analysis of lipids in PCTS and culture medium, were used to investigate the molecular initiating events of triclosan in the digestive gland of mussels. Significant dysregulation in the expression of phenylalanine-4-hydroxylase (PAH), glutamate dehydrogenase (GDH), fatty acid synthase (FASN), and 7-dehydrocholesterol reductase (DHCR7), involved in energy, phenylalanine and lipid metabolism, were detected. The analysis of lipids evidenced significant changes in cholesteryl esters (CEs) and membrane lipids in the culture medium of exposed PCTS, suggesting dysregulation of energy and lipid metabolism that can affect lipid dynamics in mussels exposed to triclosan.
Collapse
Affiliation(s)
- Mahaboubeh Hosseinzadeh
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment IDAEA-CSIC, C/Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Alejandra Gilabert
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment IDAEA-CSIC, C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Cinta Porte
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment IDAEA-CSIC, C/Jordi Girona, 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
4
|
Short-term mercury exposure disrupts muscular and hepatic lipid metabolism in a migrant songbird. Sci Rep 2022; 12:11470. [PMID: 35794224 PMCID: PMC9259677 DOI: 10.1038/s41598-022-15680-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Methylmercury (MeHg) is a global pollutant that can cause metabolic disruptions in animals and thereby potentially compromise the energetic capacity of birds for long-distance migration, but its effects on avian lipid metabolism pathways that support endurance flight and stopover refueling have never been studied. We tested the effects of short-term (14-d), environmentally relevant (0.5 ppm) dietary MeHg exposure on lipid metabolism markers in the pectoralis and livers of yellow-rumped warblers (Setophaga coronata) that were found in a previous study to have poorer flight endurance in a wind tunnel than untreated conspecifics. Compared to controls, MeHg-exposed birds displayed lower muscle aerobic and fatty acid oxidation capacity, but similar muscle glycolytic capacity, fatty acid transporter expression, and PPAR expression. Livers of exposed birds indicated elevated energy costs, lower fatty acid uptake capacity, and lower PPAR-γ expression. The lower muscle oxidative enzyme capacity of exposed birds likely contributed to their weaker endurance in the prior study, while the metabolic changes observed in the liver have potential to inhibit lipogenesis and stopover refueling. Our findings provide concerning evidence that fatty acid catabolism, synthesis, and storage pathways in birds can be dysregulated by only brief exposure to MeHg, with potentially significant consequences for migratory performance.
Collapse
|
5
|
Rabeh I, Telahigue K, Hajji T, Fouzai C, El Cafsi M, Soudani N. Changes in fatty acid profile of Holothuria forskali muscle following acute mercury exposure. GRASAS Y ACEITES 2021. [DOI: 10.3989/gya.0335201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study aimed to document the interaction between mercury (Hg), as a model chemical stressor to an aquatic organism, and Fatty acid (FA) profile in the longitudinal muscle of the sea cucumber Holothuria forskali. To assess the sensitivity of this species to the toxic effects of Hg, young H. forskali were exposed to gradual doses of Hg (40, 80 and160 µg·L-1) for 96 h. The results showed that following Hg exposure, the FA profile of H. forskali corresponded to an increase in the level of saturated fatty acids, and the decrease in the level of monounsaturated and polyunsaturated fatty acids. The most prominent changes in the FA composition were recorded at the lowest dose with noticeable decreases in linoleic, arachidonic and eicosapentaenoic acid levels and an increase of docosahexaenoic acid. The occurrence of a state of oxidative stress induced by Hg contamination was evidenced by the enhanced levels of malondialdehyde, hydrogen peroxide and lipid hydroperoxide. Overall, the low concentration of mercury exerted the most obvious effects on lipid metabolism, suggesting that changes in fatty acid composition may be act as an early biomarker to assess mercury toxicity in this ecologically and economically important species.
Collapse
|
6
|
Olsvik PA, Azad AM, Yadetie F. Bioaccumulation of mercury and transcriptional responses in tusk (Brosme brosme), a deep-water fish from a Norwegian fjord. CHEMOSPHERE 2021; 279:130588. [PMID: 33901891 DOI: 10.1016/j.chemosphere.2021.130588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
High concentrations of mercury (Hg) have been documented in deep-water fish species from some Norwegian fjords. In this study, tusk (Brosme brosme) was sampled from four locations in the innermost parts of Sognefjorden in Western Norway. Total Hg and methylmercury (MeHg) levels were measured in liver tissue. To search for potential sublethal effects of Hg, we characterized the hepatic transcriptome in tusk with high and low levels of Hg bioaccumulation using global transcriptomics analysis (RNA-seq). The results showed that there was a significant correlation between fish weight and accumulated concentrations of MeHg but not total Hg. MeHg accounted for 30-40% of total Hg in liver of most of the fish, although at concentrations above 2-3 mg Hg/kg wet weight the percentage of MeHg dropped considerably. Transcriptome analysis resulted in hundreds of differentially expressed genes in the liver of tusk with high Hg levels. Functional enrichment analysis suggested that the top affected pathways are associated with protein folding, adipogenesis, notch signaling, and lipid metabolism (beta-oxidation and phospholipids). Based on transcriptional responses pointing to well-known effects of Hg compounds in fish, the study suggests that tusk in Sognefjorden could be negatively impacted by Hg bioaccumulation.
Collapse
Affiliation(s)
- Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Institute of Marine Research, Nordnes, Bergen, Norway.
| | - Atabak M Azad
- Institute of Marine Research, Nordnes, Bergen, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Ferain A, Delbecque E, Neefs I, Dailly H, De Saeyer N, Van Larebeke M, Cornet V, Larondelle Y, Rees JF, Kestemont P, De Schamphelaere KAC, Debier C. Interplay between dietary lipids and cadmium exposure in rainbow trout liver: Influence on fatty acid metabolism, metal accumulation and stress response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105676. [PMID: 33341509 DOI: 10.1016/j.aquatox.2020.105676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/17/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The present study aimed at investigating interactive effects between dietary lipids and both short- and long-term exposures to a low, environmentally realistic, cadmium (Cd) concentration. Juvenile rainbow trout were fed four isolipidic diets (31.7 g/kg) enriched in either linoleic acid (LA, 18:2n-6), alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3) or docosahexaenoic acid (DHA, 22:6n-3). From the 4th week of this 10-week experiment, the lipid level of the diet was increased (120.0 g/kg) and half of the fish fed each diet were aqueously exposed to Cd (0.3 μg/L) while the other half were not exposed to Cd (control). Fish were sampled and their liver was harvested for fatty acid profile, hepatic Cd and calcium concentrations, total glutathione level and gene expression assessment, either (i) after 4 weeks of feeding and 24 h of Cd contamination (day 29) (short-term Cd exposure) or (ii) after 10 weeks of feeding and 6 weeks of Cd contamination (day 70) (long-term Cd exposure). We found that both dietary lipids and Cd exposure influenced fatty acid homeostasis and metabolism. The hepatic fatty acid profile mostly reflected that of the diet (e.g. n-3/n-6 ratio) with some differences, including selective retention of specific long chain polyunsaturated fatty acids (LC-PUFAs) like DHA and active biotransformation of dietary LA and ALA into LC-PUFAs. Cd effects on hepatic fatty acid profiles were influenced by the duration of the exposure and the nutritional status of the fish. The effects of diet and Cd exposure on the fatty acid profiles were only sparsely explained by variation of the expression pattern of genes involved in fatty acid metabolism. The biological responses to Cd were also influenced by dietary lipids. Fish fed the ALA-enriched diet seemed to be the least affected by the Cd exposure, as they showed a higher detoxifying ability against Cd with an early upregulation of protective metallothionein a (MTa) and apoptosis regulator BCL2-Like1 (BCLx) genes, an increased long-term phospholipid synthesis and turnover and fatty acid bioconversion efficiency, as well as a lower long-term accumulation of Cd in their liver. In contrast, fish fed the EPA-enriched diet seemed to be the most sensitive to a long-term Cd exposure, with an impaired growth performance and a decreased antioxidant capacity (lower glutathione level). Our results highlight that low, environmentally realistic aqueous concentrations of Cd can affect biological response in fish and that these effects are influenced by the dietary fatty acid composition.
Collapse
Affiliation(s)
- Aline Ferain
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium.
| | - Eva Delbecque
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Hélène Dailly
- Earth and Life Institute, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Nancy De Saeyer
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Mélusine Van Larebeke
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), UNamur, rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Jean-François Rees
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), UNamur, rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
8
|
Tinant G, Neefs I, Das K, Rees JF, Larondelle Y, Debier C. Methylmercury displays pro-adipogenic properties in rainbow trout preadipocytes. CHEMOSPHERE 2021; 263:127917. [PMID: 33297014 DOI: 10.1016/j.chemosphere.2020.127917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) is a ubiquitous contaminant largely found in aquatic environments, especially in species at high trophic level such as salmonids. The aim of this study was to evaluate the effects of MeHg on adipocyte differentiation and lipid metabolism in rainbow trout. Primary cultured preadipocytes were exposed to increasing concentrations of MeHg during six days with or without a hormonal cocktail. Main results showed a dose-dependent intracellular accumulation of neutral lipids with a preferential uptake of n-3 polyunsaturated fatty acids. Interestingly, this accumulation occurred after a fairly low uptake of MeHg by preadipocytes and was maintained after the cellular exposure to MeHg. In membrane phospholipids, arachidonic acid (20:4 n-6) was released in a dose-dependent manner. At the transcriptional level, the expression of several adipocyte-specific genes (perilipin 2 and apolipoprotein Eb) as well as lipid-related genes (fatty acid synthase and fatty acid binding protein 11a) was up-regulated in preadipocytes exposed to MeHg. These results highlight for the first time the disrupting effect of MeHg in trout adipocyte metabolism, providing new insights regarding the role of environmental pollutants in adipose tissue dysfunction and related pathologies.
Collapse
Affiliation(s)
- Gilles Tinant
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix Du Sud 4-5/L7.07.03, 1348, Louvain-la-Neuve, Belgium.
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix Du Sud 4-5/L7.07.03, 1348, Louvain-la-Neuve, Belgium
| | - Krishna Das
- Laboratory of Oceanology, Université de Liège, 11 Allée Du 6 Août, B6C, 4000, Liège, Belgium
| | - Jean-François Rees
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix Du Sud 4-5/L7.07.03, 1348, Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix Du Sud 4-5/L7.07.03, 1348, Louvain-la-Neuve, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix Du Sud 4-5/L7.07.03, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
9
|
Roszkowska A, Yu M, Bessonneau V, Ings J, McMaster M, Smith R, Bragg L, Servos M, Pawliszyn J. In vivo solid-phase microextraction sampling combined with metabolomics and toxicological studies for the non-lethal monitoring of the exposome in fish tissue. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:109-115. [PMID: 30884389 DOI: 10.1016/j.envpol.2019.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Various environmental studies have employed the biomonitoring of fish in their aquatic ecosystems in order to identify potential metabolic responses to the exposome. In this study, we applied in vivo solid-phase microextraction (SPME) to perform non-lethal sampling on the muscle tissue of living fish to extract toxicants and various endogenous metabolites. Sixty white suckers (Catastomus commersonii) were sampled from sites upstream, adjacent, and downstream from the oil sands development region of the Athabasca River (Alberta, Canada) in order to track their biochemical responses to potential contaminants. In vivo SPME sampling facilitated the extraction of a wide range of endogenous metabolites, mainly related to lipid metabolism. The obtained results revealed significant changes in the levels of numerous metabolites, including eicosanoids, linoleic acids, and fat-soluble vitamins, in fish sampled in different areas of the river, thus demonstrating SPME's applicability for the direct monitoring of exposure to different environmental toxicants. In addition, several classes of toxins, including petroleum-related compounds, that can cause serious physiological impairment were tentatively identified in the extracts. In vivo SPME, combined with the analysis of contaminants and endogenous metabolites, provided important information about the exposome; as such, this approach represents a potentially powerful and non-lethal tool for identifying the mechanisms that produce altered metabolic pathways in response to the mixtures of different environmental pollutants.
Collapse
Affiliation(s)
- Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Miao Yu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Vincent Bessonneau
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Jennifer Ings
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Mark McMaster
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Richard Smith
- Mass Spectrometry Facility, University of Waterloo, Waterloo, Ontario, Canada
| | - Leslie Bragg
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
10
|
Ferain A, Bonnineau C, Neefs I, De Saeyer N, Lemaire B, Cornet V, Larondelle Y, De Schamphelaere KAC, Debier C, Rees JF. Exploring the interactions between polyunsaturated fatty acids and cadmium in rainbow trout liver cells: a genetic and proteomic study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:100-113. [PMID: 30352337 DOI: 10.1016/j.aquatox.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) have key biological roles in fish cells. We recently showed that the phospholipid composition of rainbow trout liver cells (RTL-W1 cell line) modulates their tolerance to an acute cadmium (Cd) challenge. Here, we investigated (i) the extent to which PUFAs and Cd impact fatty acid homeostasis and metabolism in these cells and (ii) possible mechanisms by which specific PUFAs may confer cytoprotection against Cd. First, RTL-W1 cells were cultivated for one week in growth media spiked with 50 μmol L-1 of either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), linoleic acid (LA, 18:2n-6) or arachidonic acid (AA, 20:4n-6) in order to modulate their fatty acid profile. Then, the cells were challenged with Cd (0, 50 or 100 μmol L-1) for 24 h prior to assaying viability, fatty acid profile, intracellular Cd content, proteomic landscape and expression levels of genes involved in fatty acid metabolism, synthesis of PUFA-derived signalling molecules and stress response. We observed that the fatty acid supply and, to a lesser extent, the exposure to Cd influenced cellular fatty acid homeostasis and metabolism. The cellular fatty acid composition of fish liver cells modulated their tolerance to an acute Cd challenge. Enrichments in ALA, EPA, and, to a lesser extent, AA conferred cytoprotection while enrichment in LA had no impact on cell viability. The present study ruled out the possibility that cytoprotection reflects a decreased Cd burden. Our results rather suggest that the PUFA-derived cytoprotection against Cd occurs through a reduction of the oxidative stress induced by Cd and a differential induction of the eicosanoid cascade, with a possible role of peroxiredoxin and glutaredoxin (antioxidant enzymes) as well as cytosolic phospholipase A2 (enzyme initiating the eicosanoid cascade).
Collapse
Affiliation(s)
- Aline Ferain
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium.
| | - Chloé Bonnineau
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, 5, 69625 Villeurbanne, France
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy De Saeyer
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Benjamin Lemaire
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, B-5000 Namur, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-François Rees
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|