1
|
Wang B, Yin Z, Liu J, Tang C, Zhang Y, Wang L, Li H, Luo Y. Diquat Induces Cell Death and dopamine Neuron Loss via Reactive Oxygen Species Generation in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:152-162. [PMID: 39745087 PMCID: PMC11740995 DOI: 10.1021/acs.est.4c07783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025]
Abstract
Diquat (DQ), a contact herbicide extensively utilized in both agricultural and nonagricultural domains, exhibits a high correlation with neuronal disorders. Nevertheless, the toxicity and underlying mechanisms associated with exposure to environmental concentrations of DQ remain ambiguous. Here, we report dose-dependent cellular neurotoxicity of DQ in Caenorhabditis elegans. First, DQ significantly compromised the development and brood size of worms, shortened the lifespan, and caused epidermal abnormalities. An unbiased transcriptomic analysis disclosed several pathways related to cell death and peroxisome homeostasis underlying this organismal-level toxicity. Moreover, exposure of DQ to C. elegans led to a notable increase of embryonic cell death. Concurrently, DQ exposure specifically caused the loss of dopamine neurons but not two other types of neurons in adulthood, which is in accordance with DQ-induced muscle-related defects such as pharyngeal pumping, body bends, and head thrashes. Mechanistically, DQ exposure induces the generation of reactive oxygen species (ROS) and enhances glutathione-related ROS scavenging pathway. Protein levels and activities of mitochondrial electron transport chain complexes were specifically impaired in the DQ-treated worms. Collectively, this study suggests an ROS-mediated cell death pathway involving the neuronal and behavioral toxicity of DQ, which offers a novel mitochondria-related perspective to elucidate the general toxicity caused by a widely distributed herbicide, DQ, at near-environment concentrations.
Collapse
Affiliation(s)
- Bing Wang
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Zibo Yin
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Jusong Liu
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Cheng Tang
- School
of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yunfei Zhang
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Lanying Wang
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Hanzeng Li
- School
of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanping Luo
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| |
Collapse
|
2
|
Shi L, Wang X, Dai Y, Zhou W, Wu S, Shao B, Nabanoga GN, Ji C, Zhao M. Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio. Sci Rep 2024; 14:31358. [PMID: 39733025 PMCID: PMC11682118 DOI: 10.1038/s41598-024-82905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms. In addition, DQ can degrade into its metabolites, diquat-monopyridone (DQ-M) and diquat-dipyridone (DQ-D) in the environment, while the ecological risks of the metabolites remain uncertain. Herein, the aquatic ecological risks of DQ and its metabolites were compared using zebrafish as model non-target organisms. Results indicated that DQ and its metabolites did not induce significant acute toxicity to zebrafish embryos at environmentally relevant levels. However, exposure to DQ and DQ-D resulted in oxidative stress in zebrafish larvae. DQ treatment led to increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) in the larvae, while DQ-D increased internal MDA and GSH levels. Moreover, the activities of the antioxidative enzymes, superoxide dismutase (SOD) and catalase (CAT) were significantly suppressed by DQ and DQ-D. Besides, the expression levels of oxidative stress-related genes (Mn-SOD, CAT, and GPX) were disturbed accordingly after DQ and DQ-D treatments. These findings highlighted the importance of a more comprehensive understanding of the ecological risks of agrochemical substitutions as well as agrochemical metabolites. Such knowledge is crucial for significant improvements in agrochemical regulation and policy-making in the future.
Collapse
Affiliation(s)
- Lanxin Shi
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, People's Republic of China
| | - Yaoyao Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wendong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Bo Shao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
| | | | - Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
3
|
Adeola AO, Paramo L, Fuoco G, Naccache R. Emerging hazardous chemicals and biological pollutants in Canadian aquatic systems and remediation approaches: A comprehensive status report. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176267. [PMID: 39278485 DOI: 10.1016/j.scitotenv.2024.176267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Emerging contaminants can be natural or synthetic materials, as well as materials of a chemical, or biological origin; these materials are typically not controlled or monitored in the environment. Canada is home to nearly 7 % of the world's renewable water supply and a wide range of different kinds of water systems, including the Great Lake, rivers, canals, gulfs, and estuaries. Although the majority of these pollutants are present in trace amounts (μg/L - ng/L concentrations), several studies have reported their detrimental impact on both human health and the biota. In Canadian aquatic environments, concentrations of pharmaceuticals (as high as 115 μg/L), pesticides (as high as 1.95 μg/L), bioavailable heavy metals like dissolved mercury (as high as 135 ng/L), and hydrocarbon/crude oil spills (as high as 4.5 million liters) have been documented. Biological threats such as genetic materials of the contagious SARS-CoV-2 virus have been reported in the provinces of Québec, Ontario, Saskatchewan and Manitoba provinces, as well as in the Nunavut territory, with a need for more holistic research. These toxins and emerging pollutants are associated with nefarious short and long-term health effects, with the potential for bioaccumulation in the environment. Hence, this Canadian-focused report provides the footprints for water and environmental sustainability, in light of this emerging threat to the environment and society. Several remediation pathways/tools that have been explored by Canadian researchers, existing challenges and prospects are also discussed. The review concludes with preventive measures and strategies for managing the inventory of emerging contaminants in the environment.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - Luis Paramo
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Gianluca Fuoco
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
4
|
Li F, Song G, Wang X, Sun Y, Zhou S, Zhang Y, Hua J, Zhu B, Yang L, Zhang W, Zhou B. Evidence for Adverse Effects on Liver Development and Regeneration in Zebrafish by Decabromodiphenyl Ethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19419-19429. [PMID: 37946494 DOI: 10.1021/acs.est.3c06747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Decabromodiphenyl ethane (DBDPE), a ubiquitous emerging pollutant, could be enriched in the liver of organisms, but its effects and mechanisms on liver development and regeneration remain largely unknown. In the present study, we first investigated the adverse effects on liver development and found decreased area and intensity of fluorescence in transgenic zebrafish larvae exposed to DBDPE; further results in wild-type zebrafish larvae revealed a possible mechanism involving disturbed MAPK/Fox O signaling pathways and cell cycle arrest as indicated by decreased transcription of growth arrest and DNA-damage-inducible beta a (gadd45ba). Subsequently, an obstructed recovery process of liver tissue after partial hepatectomy was characterized by the changing profiles of ventral lobe-to-intestine ratio in transgenic female adults upon DBDPE exposure; further results confirmed the adverse effects on liver regeneration by the alterations of the hepatic somatic index and proliferating cell nuclear antigen expression in wild-type female adults and also pointed out a potential role of a disturbed signaling pathway involving cell cycles and glycerolipid metabolism. Our results not only provided novel evidence for the hepatotoxicity and underlying mechanism of DBDPE but also were indicative of subsequent ecological and health risk assessment.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanqi Zhou
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
5
|
Park H, Song G, Hong T, An G, Park S, Lim W. Exposure to the herbicide fluridone induces cardiovascular toxicity in early developmental stages of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161535. [PMID: 36638995 DOI: 10.1016/j.scitotenv.2023.161535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Fluridone is a systemic herbicide used to control a range of invasive aquatic plants in irrigation systems, lake, and reservoirs. Since aquatic herbicides are more likely to have a hazardous impact on ecosystems than terrestrially applied herbicides, a risk assessment is needed to determine whether to expand or limit their use. The aim of this study was to investigate the developmental toxicity of fluridone using zebrafish. Diverse toxicological results were observed for the sub-lethal endpoints, including lack of hatching, reduced heartbeat and disturbed blood circulation through dysmorphic heart, and edema formation. Abnormal apoptosis was observed in the brain and yolk sac of fluridone-exposed larvae. A computational analysis was used to predict chemical properties in non-target organisms and revealed that fluridone was highly relevant in the cardiovascular system. Double transgenic zebrafish (fli1a:EGFP;cmlc2:dsRed) were used to evaluate the effects of fluridone on the cardiovascular system during embryonic development. Ectopic growth of sub-intestinal vessels and sprouting angiogenesis in the hindbrain region were highly inhibited. Additionally, essential genes involved in the VEGF signaling and heart development were differentially expressed in dose-dependent manner. Collectively, our toxicological findings in fluridone exposure highlight defects in the cardiovascular development causing embryonic lethality that could damage aquatic communities and natural ecosystems.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam 52725, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Xiao Y, Lin X, Zhou M, Ren T, Gao R, Liu Z, Shen W, Wang R, Xie X, Song Y, Hu W. Metabolomics analysis of the potential toxicological mechanisms of diquat dibromide herbicide in adult zebrafish (Danio rerio) liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1039-1055. [PMID: 35831485 DOI: 10.1007/s10695-022-01101-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Although diquat is a widely used water-soluble herbicide in the world, its sublethal adverse effects to fish have not been well characterised. In this study, histopathological examination and biochemical assays were applied to assess hepatotoxicity and combined with gas chromatography-mass spectrometry (GC-MS)-based metabolomics analysis to reveal overall metabolic mechanisms in the liver of zebrafish (Danio rerio) after diquat exposure at concentrations of 0.34 and 1.69 mg·L-1 for 21 days. Results indicated that 1.69 mg·L-1 diquat exposure caused cellular vacuolisation and degeneration with nuclear abnormality and led to the disturbance of antioxidative system and dysfunction in the liver. No evident pathological injury was detected, and changes in liver biochemistry were not obvious in the fish exposed to 0.34 mg·L-1 diquat. Multivariate statistical analysis revealed differences between profiles obtained by GC-MS spectrometry from control and two treatment groups. A total of 17 and 22 metabolites belonging to different classes were identified following exposure to 0.34 and 1.69 mg·L-1 diquat, respectively. The metabolic changes in the liver of zebrafish are mainly manifested as inhibition of energy metabolism, disorders of amino acid metabolism and reduction of antioxidant capacity caused by 1.69 mg·L-1 diquat exposure. The energy metabolism of zebrafish exposed to 0.34 mg·L-1 diquat was more inclined to rely on anaerobic glycolysis than that of normal zebrafish, and interference effects on lipid metabolism were observed. The metabolomics approach provided an innovative perspective to explore possible hepatic damages on fish induced by diquat as a basis for further research.
Collapse
Affiliation(s)
- Ye Xiao
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Xiang Lin
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Meilan Zhou
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Tianyu Ren
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Ruili Gao
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Zhongqun Liu
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Wenjing Shen
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Rong Wang
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Xi Xie
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Yanting Song
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Wenting Hu
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China.
| |
Collapse
|
7
|
Beale DJ, Jones OA, Bose U, Broadbent JA, Walsh TK, van de Kamp J, Bissett A. Omics-based ecosurveillance for the assessment of ecosystem function, health, and resilience. Emerg Top Life Sci 2022; 6:185-199. [PMID: 35403668 PMCID: PMC9023019 DOI: 10.1042/etls20210261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Current environmental monitoring efforts often focus on known, regulated contaminants ignoring the potential effects of unmeasured compounds and/or environmental factors. These specific, targeted approaches lack broader environmental information and understanding, hindering effective environmental management and policy. Switching to comprehensive, untargeted monitoring of contaminants, organism health, and environmental factors, such as nutrients, temperature, and pH, would provide more effective monitoring with a likely concomitant increase in environmental health. However, even this method would not capture subtle biochemical changes in organisms induced by chronic toxicant exposure. Ecosurveillance is the systematic collection, analysis, and interpretation of ecosystem health-related data that can address this knowledge gap and provide much-needed additional lines of evidence to environmental monitoring programs. Its use would therefore be of great benefit to environmental management and assessment. Unfortunately, the science of 'ecosurveillance', especially omics-based ecosurveillance is not well known. Here, we give an overview of this emerging area and show how it has been beneficially applied in a range of systems. We anticipate this review to be a starting point for further efforts to improve environmental monitoring via the integration of comprehensive chemical assessments and molecular biology-based approaches. Bringing multiple levels of omics technology-based assessment together into a systems-wide ecosurveillance approach will bring a greater understanding of the environment, particularly the microbial communities upon which we ultimately rely to remediate perturbed ecosystems.
Collapse
Affiliation(s)
- David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Oliver A.H. Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, VIC 3083, Australia
| | - Utpal Bose
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - James A. Broadbent
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Thomas K. Walsh
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| |
Collapse
|
8
|
|
9
|
Acar A. In vivo toxicological assessment of diquat dibromide: cytotoxic, genotoxic, and biochemical approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47550-47561. [PMID: 33893917 DOI: 10.1007/s11356-021-13936-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Diquat dibromide is a comprehensive herbicide commonly used in the cultivation of cotton, soybeans, and other crops to combat unwanted weeds. In this study, the half-maximal effective concentration (EC50) value of diquat dibromide was determined 60 mg/L in the Allium root growth inhibition test. ½ × EC50 (30 mg/L), EC50 (60 mg/L), and 2 × EC50 (120 mg/L) concentrations of diquat dibromide were applied to Allium cepa L. bulbs for 72 h to investigate the dose-dependent toxic effects. To determine the toxic effects cytogenetic, biochemical and physiological parameters were used. Physiological effects were investigated by determination of the percentage of rooting, relative injury rate, root length, and weight gain. Genetic effects were evaluated by the frequency of chromosomal abnormalities (CAs), micronucleus (MN) formation, mitotic index (MI) rate, and comet assay. Biochemical parameters were evaluated with antioxidant enzyme activities and lipid peroxidation by determining malondialdehyde (MDA) level, superoxide dismutase (SOD) activity, catalase (CAT) activity, and glutathione (GSH) level. Also, chlorophyll pigment contents (a, b, and total) in green leaves were calculated to elucidate the effect of diquat dibromide on plants and the biosphere. The findings show that increasing doses of diquat dibromide caused a decrease in all physiological parameters and MI ratio, promoting MN and CAs and tail DNA formation in genetic parameters. It was determined by the increases in MDA level, SOD, and CAT activities and decreases in GSH levels that diquat dibromide administration caused oxidative stress depending on the dose. Also, chlorophyll pigment levels (a, b, and total) measured in leaf tissues decreased with the application dose. Considering that the toxic effects caused by diquat dibromide and that organisms other than unwanted plants will be exposed during the application, its use should be abandoned and biocontrol methods should be used instead. In cases where use is compulsory, doses that will not harm the environment and organisms should be determined and used.
Collapse
Affiliation(s)
- Ali Acar
- Vocational School of Health Services, Department of Medical Services and Techniques, Giresun University, Giresun, Turkey.
| |
Collapse
|
10
|
Chen J, Su Y, Lin R, Lin F, Shang P, Hussain R, Shi D. Effects of Acute Diquat Poisoning on Liver Mitochondrial Apoptosis and Autophagy in Ducks. Front Vet Sci 2021; 8:727766. [PMID: 34458360 PMCID: PMC8385319 DOI: 10.3389/fvets.2021.727766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Diquat (DQ) is an effective herbicide and is widely used in agriculture. Due to persistent and frequent applications, it can enter into aquatic ecosystem and induce toxic effects to exposed aquatic animals. The residues of DQ via food chain accumulate in different tissues of exposed animals including humans and cause adverse toxic effects. Therefore, it is crucial and important to understand the mechanisms of toxic effects of DQ in exposed animals. We used ducks as test specimens to know the effects of acute DQ poisoning on mechanisms of apoptosis and autophagy in liver tissues. Results on comparison of various indexes of visceral organs including histopathological changes, apoptosis, autophagy-related genes, and protein expression indicated the adverse effects of DQ on the liver. The results of our experimental trial showed that DQ induces non-significant toxic effects on pro-apoptotic factors like BAX, BAK1, TNF-α, caspase series, and p53. The results revealed that anti-apoptotic gene Parkin was significantly upregulated, while an upward trend was also observed for Bcl2, suggesting that involvement of the anti-apoptotic factors in ducklings plays an important role in DQ poisoning. Results showed that DQ significantly increased the protein expression level of the autophagy factor Beclin 1 in the liver. Results on key autophagy factors like LC3A, LC3B, and p62 showed an upward trend at gene level, while the protein expression level of both LC3B and p62 reduced that might be associated with process of translation affected by the pro-apoptotic components such as apoptotic protease that inhibits the occurrence of autophagy while initiating cell apoptosis. The above results indicate that DQ can induce cell autophagy and apoptosis and the exposed organism may resist the toxic effects of DQ by increasing anti-apoptotic factors.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Renzhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Macii F, Detti R, Bloise FR, Giannarelli S, Biver T. Spectroscopic Analysis of the Binding of Paraquat and Diquat Herbicides to Biosubstrates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2412. [PMID: 33801256 PMCID: PMC7967551 DOI: 10.3390/ijerph18052412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022]
Abstract
The study of the interaction of persistent organic pollutants with biosubstrates helps to unravel the pathways for toxicity, however, few mechanistic data are present in the literature for these systems. We analyzed the binding of paraquat (PQ) and diquat (DQ) herbicides to natural calf thymus DNA and a DNA G-quadruplex by spectrophotometric titrations, ethidium bromide exchange tests, viscometry, and melting experiments. The interaction with bovine serum albumin (BSA) protein was studied spectrofluorimetrically at different temperatures. The retention of the targets on positive, negative, and neutral micellar aggregates and liposomes was analyzed by ultrafiltration experiments. Despite some favorable features, PQ and DQ only externally bind natural DNA and do not interact with DNA oligonucleotides. Both herbicides bind bovine serum albumin (BSA). PQ binds BSA mainly according to an electrostatics-driven process. However, ultrafiltration data also show that some hydrophobic contribution participates in the features of these systems. The practical problems related to unfavorable spectroscopic signals and inner filter effects are also discussed. Overall, both herbicides show a low affinity for nucleic acids and weak penetration into liposomes; in addition, the equilibrium constants values found for BSA system suggest optimal conditions for transport in the body.
Collapse
Affiliation(s)
- Francesca Macii
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Rebecca Detti
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Francesca Rita Bloise
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Stefania Giannarelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
12
|
Anderson JC, Marteinson SC, Prosser RS. Prioritization of Pesticides for Assessment of Risk to Aquatic Ecosystems in Canada and Identification of Knowledge Gaps. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:171-231. [PMID: 34625837 DOI: 10.1007/398_2021_81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pesticides can enter aquatic environments via direct application, via overspray or drift during application, or by runoff or leaching from fields during rain events, where they can have unintended effects on non-target aquatic biota. As such, Fisheries and Oceans Canada identified a need to prioritize current-use pesticides based on potential risks towards fish, their prey species, and habitats in Canada. A literature review was conducted to: (1) Identify current-use pesticides of concern for Canadian marine and freshwater environments based on use and environmental presence in Canada, (2) Outline current knowledge on the biological effects of the pesticides of concern, and (3) Identify general data gaps specific to biological effects of pesticides on aquatic species. Prioritization was based upon recent sales data, measured concentrations in Canadian aquatic environments between 2000 and 2020, and inherent toxicity as represented by aquatic guideline values. Prioritization identified 55 pesticides for further research nationally. Based on rank, a sub-group of seven were chosen as the top-priority pesticides, including three herbicides (atrazine, diquat, and S-metolachlor), three insecticides (chlorpyrifos, clothianidin, and permethrin), and one fungicide (chlorothalonil). A number of knowledge gaps became apparent through this process, including gaps in our understanding of sub-lethal toxicity, environmental fate, species sensitivity distributions, and/or surface water concentrations for each of the active ingredients reviewed. More generally, we identified a need for more baseline fish and fish habitat data, ongoing environmental monitoring, development of marine and sediment-toxicity benchmarks, improved study design including sufficiently low method detection limits, and collaboration around accessible data reporting and management.
Collapse
Affiliation(s)
| | - Sarah C Marteinson
- National Contaminants Advisory Group, Ecosystems and Oceans Science Sector, Fisheries and Oceans Canada, Ottawa, ON, Canada.
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
13
|
López-Pedrouso M, Varela Z, Franco D, Fernández JA, Aboal JR. Can proteomics contribute to biomonitoring of aquatic pollution? A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115473. [PMID: 32882465 DOI: 10.1016/j.envpol.2020.115473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Aquatic pollution is one of the greatest environmental problems, and therefore its control represents one of the major challenges in this century. In recent years, proteomics has emerged as a powerful tool for searching protein biomarkers in the field of pollution biomonitoring. For biomonitoring marine contamination, there is a consensus that bivalves are preferred organisms to assess organic and inorganic pollutants. Thus, the bivalve proteome was intensively studied, particularly the mussel. It is well documented that heavy metal pollution and organic chemicals altered the structural proteins causing degradation of tissues of molluscs. Also, it is well known that proteins involved in stress oxidative such as glutathione and enzymes as catalase, superoxide dismutase or peroxisomes are overexpressed in response to contaminants. Additionally, using bivalves, other groups of proteins proposed as pollution biomarkers are the metabolic proteins. Even though other marine species are used to monitor the pollution, the presence of proteomic tools in these studies is scarce. Concerning freshwater pollution field, a great variety of animal species (fish and crustaceans) are used as biomonitors in proteomics studies compared to plants that are scarcely analysed. In fish species, proteins involved in stress oxidative such as heat shock family or proteins from lipid and carbohydrate metabolism were proposed as candidate biomarkers. On the contrary, for crustaceans there is a lack of proteomic studies individually assessing the contaminants. Novel scenarios, including emerging contaminants and new threats, will require proteomic technology for a systematic search of protein biomarkers and a greater knowledge at molecular level of those cellular pathways induced by contamination.
Collapse
Affiliation(s)
- M López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela, 15872, A Coruña, Spain.
| | - Z Varela
- CRETUS Institute, Department of Functional Biology, Ecology Unit, University of Santiago de Compostela, Santiago de Compostela, 15872, A Coruña, Spain
| | - D Franco
- Centro Tecnológico de La Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao Das Viñas, 32900, Ourense, Spain
| | - J A Fernández
- CRETUS Institute, Department of Functional Biology, Ecology Unit, University of Santiago de Compostela, Santiago de Compostela, 15872, A Coruña, Spain
| | - J R Aboal
- CRETUS Institute, Department of Functional Biology, Ecology Unit, University of Santiago de Compostela, Santiago de Compostela, 15872, A Coruña, Spain
| |
Collapse
|
14
|
Toropov AA, Toropova AP, Benfenati E. QSAR model for pesticides toxicity to Rainbow Trout based on "ideal correlations". AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105589. [PMID: 32841884 DOI: 10.1016/j.aquatox.2020.105589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Pesticides have an impact on the aquatic environment, with ecological effects. The regulation of this impact is of key importance. One of the components of the planning of agricultural and industrial activities is the development of databases and models in order to identify substances that may cause damage. In this study, a quantitative structure-activity relationship (QSAR) approach was established for the prediction of acute toxicity toward rainbow trout of various pesticides. The so-called index of ideality of correlation is the main component of this approach. The validation of this approach has been carried out with three random splits into the training and validation sets. The range of statistical quality of models obtained here for the validation set is R2 = [0.81-0.86] and RMSE = [0.55-0.65].
Collapse
Affiliation(s)
- Andrey A Toropov
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy
| | - Alla P Toropova
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy.
| | - Emilio Benfenati
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy
| |
Collapse
|