1
|
Shen C, Pan X, Wu X, Xu J, Zheng Y, Dong F. Prediction of Potential Risk for Flupyradifurone and Its Transformation Products to Hydrobionts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15151-15163. [PMID: 38941616 DOI: 10.1021/acs.jafc.4c03004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Flupyradifurone (FPF) is considered the latest generation of neonicotinoid insecticides. Here, we investigated the toxicity and ecological risk of FPF and its aerobic transformation products (TPs) to aquatic species using the method of prediction. We found that FPF exhibited moderate or high toxicity to some aquatic species. The 5% hazardous concentration of FPF was 3.84 μg/L for aquatic organisms. We obtained 91 aerobic TPs for FPF, and almost half of FPF TPs exhibited toxicity to fish or Daphnia. Eleven of the TPs of FPF exhibited a high or moderate risk to aquatic ecosystems. All FPF TPs with high and moderate risks contained a 6-chloropyridine ring structure, indicating that the derivant of a pyridine ring exhibits potential risks to aquatic ecosystems. Our results provide insight into the potential risk of FPF to aquatic ecosystems and could be used to help set criteria to control pollution caused by FPF.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- East China Branch of the National Center for Agricultural Biosafety Sciences/Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
2
|
Hopkins AP, Hoverman JT. Strobilurin fungicide increases the susceptibility of amphibian larvae to trematode infections. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106864. [PMID: 38422928 DOI: 10.1016/j.aquatox.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The global rise in fungal pathogens has driven the increased usage of fungicides, yet our understanding of their ecotoxicity remains largely limited to acute toxicity. While such data is critical for projecting the risk of fungicide exposure to individual species, the contamination of natural systems with fungicides also has the potential to alter species interactions within communities including host-parasite relationships. We examined the effects of the fungicide pyraclostrobin on the susceptibility of larval American bullfrogs (Rana catesbeiana) to trematode (echinostome) infections using a controlled laboratory experiment. Following a 2-wk exposure to 0, 1.0, 5.2, or 8.4 µg/L of pyraclostrobin, tadpoles were then exposed to parasites either in the 1) presence (continued/simultaneous exposure) or 2) absence (fungicide-free water) of pyraclostrobin. We found that when exposed to pyraclostrobin during parasite exposure, meta cercariae counts increased 4 to 8 times compared to control tadpoles. Additionally, parasite loads were approximately 2 times higher in tadpoles with continued fungicide exposures compared to tadpoles that were moved to fresh water following fungicide exposure. This research demonstrates that fungicides at environmentally relevant concentrations can indirectly alter host-parasite interactions, which could elevate disease risk. It also underscores the need for studies that expand beyond traditional toxicity experiments to assess the potential community and ecosystem-level implications of environmental contaminants.
Collapse
Affiliation(s)
- Andrew P Hopkins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States.
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Wang Y, Shen J, Li X, Lang H, Zhang L, Fang H, Yu Y. Higher temperature and daily fluctuations aggravate clothianidin toxicity towards Limnodrilus hoffmeisteri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166655. [PMID: 37647951 DOI: 10.1016/j.scitotenv.2023.166655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
In nature, aquatic organisms may suffer from chemical pollution, together with thermal stress resulted from global warming. However, limited information is available on the combined effects of pesticide with climate change on aquatic organisms. In this study, the acute toxicity of clothianidin to Limnodrilus hoffmeisteri as well as its effect on the induction of oxidative stress under both constant temperature and daily temperature fluctuation (DTF) regimes was investigated. Results showed that clothianidin exhibited the minimal toxicity to L. hoffmeisteri at 25 °C, which was magnified by both increased or decreased temperatures and 10 °C DTF. At different temperatures (15 °C, 25 °C and 35 °C), clothianidin exposure led to the elevated reactive oxygen species (ROS) levels and activated the antioxidant enzymes to resist against the oxidative stress. However, the antioxidant response induced by clothianidin was overwhelmed at high temperature as evidenced by decreased glutathione (GSH) content. Significant elevation of catalase (CAT) and peroxidase (POD) activities but depletion of GSH was also observed in worms treated with clothianidin under DTF after 24 h. The results indicated that high temperature and DTF could aggravate the clothianidin-induced oxidative stress. Moreover, the critical thermal maximum (CTmax) of the worms decreased with the increasing clothianidin concentrations, suggesting that exposure to clothianidin could reduce the heat tolerance of L. hoffmeisteri. Our work highlights the crucial importance to integrate temperature changes into risk assessment of pesticides under global warming.
Collapse
Affiliation(s)
- Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiatao Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Lang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Wang M, Hou J, Deng R. Co-exposure of environmental contaminants with unfavorable temperature or humidity/moisture: Joint hazards and underlying mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115432. [PMID: 37660530 DOI: 10.1016/j.ecoenv.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
In the context of global climate change, organisms in their natural habitats usually suffer from unfavorable climatic conditions together with environmental pollution. Temperature and humidity (or moisture) are two central climatic factors, while their relationships with the toxicity of contaminants are not well understood. This review provides a synthesis of existing knowledge on important interactions between contaminant toxicity and climatic conditions of unfavorable temperature, soil moisture, and air humidity. Both high temperature and low moisture can extensively pose severe combined hazards with organic pollutants, heavy metal ions, nanoparticles, or microplastics. There is more information on the combined effects on animalia than on other kingdoms. Prevalent mechanisms underlying their joint effects include the increased bioavailability and bioaccumulation of contaminants, modified biotransformation of contaminants, enhanced induction of oxidative stress, accelerated energy consumption, interference with cell membranes, and depletion of bodily fluids. However, the interactions of contaminants with low temperature or high humidity/moisture, particularly on plants and microorganisms, are relatively vague and need to be further revealed. This work emphasizes that the co-exposure of chemical and physical stressors results in detrimental effects generally greater than those caused by either stressor. It is necessary to take this into consideration in the ecological risk assessment of both environmental contamination and climate change.
Collapse
Affiliation(s)
- Mingpu Wang
- School of Civil Engineering, Chongqing University, Chongqing 400045, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
5
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
6
|
Abstract
In 1978, the theory behind helminth parasites having the potential to regulate the abundance of their host populations was formalized based on the understanding that those helminth macroparasites that reduce survival or fecundity of the infected host population would be among the forces limiting unregulated host population growth. Now, 45 years later, a phenomenal breadth of factors that directly or indirectly affect the host-helminth interaction has emerged. Based largely on publications from the past 5 years, this review explores the host-helminth interaction from three lenses: the perspective of the helminth, the host, and the environment. What biotic and abiotic as well as social and intrinsic host factors affect helminths? What are the negative, and positive, implications for host populations and communities? What are the larger-scale implications of the host-helminth dynamic on the environment, and what evidence do we have that human-induced environmental change will modify this dynamic? The overwhelming message is that context is everything. Our understanding of second-, third-, and fourth-level interactions is extremely limited, and we are far from drawing generalizations about the myriad of microbe-helminth-host interactions.Yet the intricate, co-evolved balance and complexity of these interactions may provide a level of resilience in the face of global environmental change. Hopefully, this albeit limited compilation of recent research will spark new interdisciplinary studies, and application of the One Health approach to all helminth systems will generate new and testable conceptual frameworks that encompass our understanding of the host-helminth-environment triad.
Collapse
Affiliation(s)
- M E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, QuebecH9X 3V9, Canada
| |
Collapse
|
7
|
Billet LS, Wuerthner VP, Relyea RA, Hoverman JT, Hua J. Population-level variation in insecticide tolerance across three life stages of the trematode Echinostoma trivolvis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106626. [PMID: 37437313 DOI: 10.1016/j.aquatox.2023.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/18/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Ecotoxicological studies using single test populations may miss the inherent variation of natural systems and limit our understanding of how contaminants affect focal species. Though population-level variation in pesticide tolerance is commonly observed in host taxa, few studies have assessed population-level differences in the tolerance of parasites to different contaminants. We investigated population-level variation in insecticide tolerance of three Echinostoma trivolvis life stages (egg, miracidium, and cercaria) to three insecticides (carbaryl, chlorpyrifos, and diazinon). We tested two relevant metrics of insecticide tolerance-baseline and induced-across up to eight different parasite populations per life stage. Across all life stages, the insecticide treatments tended to reduce survival, but the magnitude of their effects often varied significantly among populations. Surprisingly, we found that exposure to chlorpyrifos increased the hatching success of echinostome eggs relative to the control treatment in three of six tested populations. We also found that cercariae shed from snails previously exposed to a sublethal concentration of chlorpyrifos had a significantly lower mortality rate when subsequently exposed to a lethal concentration of chlorpyrifos relative to individuals from snails that were not previously exposed; this suggests inducible tolerance in cercariae. We found no evidence that insecticide tolerance is correlated across parasite life stages within a population. Together the findings of our study demonstrate that single-population toxicity assays may greatly over- or underestimate the effects of pesticides on the survival of free-living parasite stages, insecticide tolerance levels may not be predictable from one parasite life stage to the next, and insecticides can have both expected and counterintuitive effects on non-target taxa.
Collapse
Affiliation(s)
- Logan S Billet
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; School of the Environment, Yale University, New Haven, CT 06520, USA.
| | - Vanessa P Wuerthner
- Biological Sciences Department, Binghamton University, Binghamton, NY 13902, USA
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12198, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Jessica Hua
- Biological Sciences Department, Binghamton University, Binghamton, NY 13902, USA; Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Hermann M, Peeters ETHM, Van den Brink PJ. Heatwaves, elevated temperatures, and a pesticide cause interactive effects on multi-trophic levels of a freshwater ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121498. [PMID: 36965684 DOI: 10.1016/j.envpol.2023.121498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Climate impacts of elevated temperatures and more severe and frequent weather extremes like heatwaves are globally becoming discernible on nature. While a mechanistic understanding is pivotal for ecosystem management, stressors like pesticides may interact with warming, leading to unpredictable effects on freshwater ecosystems. These multiple stressor studies are scarce and experimental designs often lack environmental realism. To investigate the multiple stressor effects, we conducted a microcosm experiment for 48 days comprising benthic macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The fungicide carbendazim (100 μg/L) was investigated combined with temperature scenarios representing elevated temperatures (+4 °C) or heatwaves (+0 to +8 °C), both applied with similar energy input on a daily fluctuating ambient temperature (18 °C ± 1.5 °C), which served as control. Measurements showed the highest carbendazim dissipation in water under heatwaves followed by elevated and ambient temperatures. Average carbendazim concentrations were about 50% in water and 16% in sediment of the nominal concentration. In both heated cosms, zooplankton community dynamics revealed an unexpected shift from Rotifera to Cladocera and Copepoda nauplii, indicating variations in their thermal sensitivity, tolerance and resilience. Notably, warming and heatwaves shaped community responses similarly, suggesting heat intensity rather than distribution patterns determined the community structure. Heatwaves led to significant early and longer-lasting adverse effects that were exacerbated over time with Cladocera and Copepoda being most sensitive likely due to significant carbendazim interactions. Finally, a structural equation model demonstrated significant relationships between zooplankton and macrophytes and significantly negative carbendazim effects on zooplankton, whereas positive on macroinvertebrate abundances. The relationship between macroinvertebrate feeding and abundance was masked by significantly temperature-affected microbial leaf litter decomposition. Despite the thermal tolerance of zooplankton communities, our study highlights an increased pesticide threat under temperature extremes. More intense heatwaves are thus likely to cause significant alterations in community assemblages which will adversely affect ecosystem's processes and functions.
Collapse
Affiliation(s)
- Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands.
| | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| |
Collapse
|