1
|
Nava V, Dar JY, De Santis V, Fehlinger L, Pasqualini J, Adekolurejo OA, Burri B, Cabrerizo MJ, Chonova T, Cour M, Dory F, Drost AM, Figler A, Gionchetta G, Halabowski D, Harvey DR, Manzanares‐Vázquez V, Misteli B, Mori‐Bazzano L, Moser V, Rotta F, Schmid‐Paech B, Touchet CM, Gostyńska J. Zooming in the plastisphere: the ecological interface for phytoplankton-plastic interactions in aquatic ecosystems. Biol Rev Camb Philos Soc 2025; 100:834-854. [PMID: 39542439 PMCID: PMC11885710 DOI: 10.1111/brv.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Phytoplankton is an essential resource in aquatic ecosystems, situated at the base of aquatic food webs. Plastic pollution can impact these organisms, potentially affecting the functioning of aquatic ecosystems. The interaction between plastics and phytoplankton is multifaceted: while microplastics can exert toxic effects on phytoplankton, plastics can also act as a substrate for colonisation. By reviewing the existing literature, this study aims to address pivotal questions concerning the intricate interplay among plastics and phytoplankton/phytobenthos and analyse impacts on fundamental ecosystem processes (e.g. primary production, nutrient cycling). This investigation spans both marine and freshwater ecosystems, examining diverse organisational levels from subcellular processes to entire ecosystems. The diverse chemical composition of plastics, along with their variable properties and role in forming the "plastisphere", underscores the complexity of their influences on aquatic environments. Morphological changes, alterations in metabolic processes, defence and stress responses, including homoaggregation and extracellular polysaccharide biosynthesis, represent adaptive strategies employed by phytoplankton to cope with plastic-induced stress. Plastics also serve as potential habitats for harmful algae and invasive species, thereby influencing biodiversity and environmental conditions. Processes affected by phytoplankton-plastic interaction can have cascading effects throughout the aquatic food web via altered bottom-up and top-down processes. This review emphasises that our understanding of how these multiple interactions compare in impact on natural processes is far from complete, and uncertainty persists regarding whether they drive significant alterations in ecological variables. A lack of comprehensive investigation poses a risk of overlooking fundamental aspects in addressing the environmental challenges associated with widespread plastic pollution.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Jaffer Y. Dar
- ICAR‐Central Soil Salinity Research InstituteKarnal132001India
- Department of Experimental LimnologyLeibniz Institute of Freshwater Ecology and Inland FisheriesMüggelseedamm 310Berlin12587Germany
| | - Vanessa De Santis
- Water Research Institute, National Research CouncilCorso Tonolli 50Verbania‐PallanzaVerbania28922Italy
| | - Lena Fehlinger
- GEA Aquatic Ecology GroupUniversity of Vic ‐ Central University of CataloniaCarrer de la Laura 13Catalonia08500 VicSpain
| | - Julia Pasqualini
- Department of River EcologyHelmholtz Centre for Environmental Research‐UFZBrückstr. 3aMagdeburg39114Germany
| | - Oloyede A. Adekolurejo
- Ecology and Evolution, School of BiologyUniversity of LeedsLeedsLS2 9JTUK
- Department of BiologyAdeyemi Federal University of EducationOndo CityOndoPMB 520Nigeria
| | - Bryan Burri
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Marco J. Cabrerizo
- Department of Ecology & Institute of Water ResearchUniversity of GranadaCampus Fuentenueva s/nGranada18071Spain
- Estación de Fotobiología Playa Unióncasilla de correos 15RawsonChubut9103Argentina
| | - Teofana Chonova
- Department Environmental ChemistryEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstr. 133DübendorfCH‐8600Switzerland
| | | | - Flavia Dory
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Annemieke M. Drost
- Department of Aquatic EcologyNetherlands Institute of EcologyDroevendaalsesteeg 10Wageningen6708 PBThe Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamP.O. Box 94240Amsterdam1090 GEThe Netherlands
| | - Aida Figler
- Department of BioinformaticsSemmelweis UniversityTűzoltó utca 7‐9Budapest1094Hungary
| | - Giulia Gionchetta
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA)Spanish Council of Scientific Research (CSIC)Barcelona0803Spain
| | - Dariusz Halabowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental ProtectionUniversity of LodzBanacha 12/16Lodz90‐237Poland
| | - Daniel R. Harvey
- Lake Ecosystems Group, UK Centre for Ecology & HydrologyLancaster Environment CentreLibrary Avenue, BailriggLancasterLA1 4APUK
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Víctor Manzanares‐Vázquez
- Department of Research and DevelopmentCoccosphere Environmental AnalysisC/Cruz 39, 29120 Alhaurín el GrandeMálagaSpain
| | - Benjamin Misteli
- WasserCluster Lunz ‐ Biologische StationDr Carl Kupelwieser Promenade 5Lunz am See3293Austria
| | - Laureen Mori‐Bazzano
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Valentin Moser
- Community Ecology, Swiss Federal Institute for ForestSnow and Landscape Research WSLZürcherstrasse 111BirmensdorfCH‐8903Switzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 133DübendorfCH‐8600Switzerland
| | - Federica Rotta
- Department of Earth and Environmental SciencesUniversity of PaviaVia Ferrata 1Pavia27100Italy
- Institute of Earth ScienceUniversity of Applied Science and Arts of Southern SwitzerlandVia Flora Ruchat‐Roncati 15MendrisioCH‐6850Switzerland
| | - Bianca Schmid‐Paech
- University Weihenstephan‐Triesdorf of Applied ScienceAm Hofgarten 4Freising85354Germany
| | - Camille M. Touchet
- Université Claude Bernard ‐ Lyon 1, “LEHNA UMR 5023, CNRS, ENTPE3‐6, rue Raphaël DuboisVilleurbanneF‐69622France
| | - Julia Gostyńska
- Department of Hydrobiology, Faculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznanskiego 6Poznan61‐614Poland
| |
Collapse
|
2
|
Liu M, Hua W, Yu C, Zhang S, Li W, Li C, Peng J, Liu R, Liu H, Qu J. Toxicity mechanism of microplastics on the growth traits and metabolic pathways of Vallisneria natans under different light environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117772. [PMID: 39947062 DOI: 10.1016/j.ecoenv.2025.117772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 03/03/2025]
Abstract
Freshwater plants are threatened by microplastics (MPs). While many studies have reported the effects of MPs on aquatic plants and animals, few have examined the effects of MPs on plant metabolism at different light intensities. We explore cellular, metabolic, and stress responses of Vallisneria natans at different light intensities (0, 20, 90, 160, 280 μmol·m-2·s-1), without and with (50 mg·L-1) MPs. The experiment showed that that the strong light promotes adsorption and accumulation of MPs on leaf and root tissues, affected growth rate, and changed metabolic pathways, inhibited photosynthetic processes, and enhanced oxidative stress responses in V. natans. Metabolomic analysis and experimental validation revealed that the combination of 280 μmol m-2·s-1 and MPs interfered most severely with plant carbon and nitrogen metabolism, lipid metabolism, and amino acid metabolism pathways compared with the combination of 90 μmol m-2·s-1 and MPs. This condition also significantly inhibited the activities of photosynthesis and energy transfer-related regulators and proteins, as well as stimulated oxidative stress-related pathways and exacerbated oxidative stress toxicity responses. The results of the research indicate that the highest light intensity tested can increase the accumulation of MPs, leading to V. natans cell damage, inhibition of photosynthetic metabolism, and the risk of oxidative toxic stress. Our results provide a basis for the analysis of the growth and metabolism processes and risk assessment of aquatic plants under the action of light and MPs.
Collapse
Affiliation(s)
- Meixuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Wei Hua
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chungui Yu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siyu Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Chong Li
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Zhang Y, Ju J, Li M, Ma Z, Lu W, Yang H. Dose-dependent effects of polystyrene nanoplastics on growth, photosynthesis, and astaxanthin synthesis in Haematococcus pluvialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124574. [PMID: 39029865 DOI: 10.1016/j.envpol.2024.124574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Microalgae play an important role in aquatic ecosystems, but the widespread presence of micro- and nano-plastics (MNPs) poses significant threats to them. Haematococcus pluvialis is well-known for its ability to produce the antioxidant astaxanthin when it experiences stress from environmental conditions. Here we examined the effects of polystyrene nanoplastics (PS-NPs) at concentrations of 0.1, 1, and 10 mg/L on H. pluvialis over an 18-day period. Our results show that PS-NPs caused a significant, dose-dependent inhibition of H. pluvialis growth and a reduction in photosynthesis. Furthermore, PS-NPs severely damaged the morphology of H. pluvialis, leading to cell shrinkage, collapse, content release, and aggregation. Additionally, PS-NPs induced a dose-dependent increase in soluble protein content and a decrease in the production of extracellular polymeric substances. These findings indicate that PS-NPs has the potential to adversely affect both the physiology and morphology of H. pluvialis. An increase in reactive oxygen species and antioxidant enzyme activities was also observed, suggesting an oxidative stress response to PS-NPs exposure. Notably, the synthesis of astaxanthin, which is crucial for H. pluvialis's survival under stress, was significantly inhibited in a dose-dependent manner under strong light conditions, along with the down-regulation of genes involved in the astaxanthin biosynthesis pathway. This suggests that PS-NPs exposure reduces H. pluvialis's ability to survive under adverse conditions. This study enhances our understanding of the toxic effects of PS-NPs on microalgae and underscores the urgent need for measures to mitigate MNP pollution to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Min Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenyan Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
4
|
Wang C, Zhang Y, Wang C, He M. Enhancing aggregation of microalgae on polystyrene microplastics by high light: Processes, drivers, and environmental risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135062. [PMID: 38959831 DOI: 10.1016/j.jhazmat.2024.135062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/06/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Microplastics (MPs) are emerging pollutants, causing potential threats to aquatic ecosystems and serious concern in aggregating with microalgae (critical primary producers). When entering water bodies, MPs are expected to sink below the water surface and disperse into varying water compartments with different light intensities. However, how light influences the aggregation processes of algal cells onto MPs and the associated molecular coupling mechanisms and derivative risks remain poorly understood. Herein, we investigated the aggregation behavior between polystyrene microplastics (mPS, 10 µm) and Chlorella pyrenoidosa under low (LL, 15 μmol·m-2·s-1), normal (NL, 55 μmol·m-2·s-1), and high light (HL, 150 μmol·m-2·s-1) conditions from integrated in vivo and in silico assays. The results indicated that under LL, the mPS particles primarily existed independently, whereas under NL and HL, C. pyrenoidosa tightly bounded to mPS by secreting more protein-rich extracellular polymeric substances. Infrared spectroscopy analysis and density functional theory calculation revealed that the aggregation formation was driven by non-covalent interaction involving van der Waals force and hydrogen bond. These processes subsequently enhanced the deposition and adherence capacity of mPS and relieved its phytotoxicity. Overall, our findings advance the practical and theoretical understanding of the ecological impacts of MPs in complex aquatic environments.
Collapse
Affiliation(s)
- Chun Wang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yaru Zhang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China.
| | - Meilin He
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Cheng S, Keang K, Cross JS. Evidence that microplastics at environmentally relevant concentration and size interfere with energy metabolism of microalgal community. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134995. [PMID: 38909468 DOI: 10.1016/j.jhazmat.2024.134995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
To address two current issues in evaluating the toxicity of microplastics (MPs) namely, conflicting results due to species specificity and the ecological irrelevance of laboratory data, this study conducted a 10-day exposure experiment using a microalgal community comprising three symbiotic species. The experiment involved virgin and Benzo[a]pyrene-spiked micron-scale fibers and fragments made of polyethylene terephthalate (PET) and polypropylene (PP). The results showed that, from a physiological perspective, environmentally relevant concentrations of micron-scale MPs decreased saccharide accumulation in microalgal cells, as confirmed by ultrastructural observations. MPs may increase cellular energy consumption by obstructing cellular motility, interfering with nutrient uptake, and causing sustained oxidative stress. Additionally, MPs and adsorbed B[a]P induced DNA damage in microalgae, potentially further disrupting cellular energy metabolism. Ecologically, MPs altered the species abundance in microalgal communities, suggesting they could weaken the ecological functions of these communities as producers and affect ecosystem diversity and stability. This study marks a significant advancement from traditional single-species toxicity experiments to community-level assessments, providing essential insights for ecological risk assessment of microplastics and guiding future mechanistic studies utilizing multi-omics analysis.
Collapse
Affiliation(s)
- Shuo Cheng
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Kimleng Keang
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Jeffrey S Cross
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
6
|
Huang J, Wang H, Xue X, Zhang R. Impacts of microplastic and seawater acidification on unicellular red algae: Growth response, photosynthesis, antioxidant enzymes, and extracellular polymer substances. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106960. [PMID: 38761586 DOI: 10.1016/j.aquatox.2024.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Microplastics (MPs) pollution and seawater acidification have increasingly become huge threats to the ocean ecosystem. Their impacts on microalgae are of great importance, since microalgae are the main primary producers and play a critical role in marine ecosystems. However, the impact of microplastics and acidification on unicellular red algae, which have a unique phycobiliprotein antenna system, remains unclear. Therefore, the impacts of polystyrene-MPs alone and the combined effects of MPs and seawater acidification on the typical unicellular marine red algae Porphyridium purpureum were investigated in the current study. The result showed that, under normal seawater condition, microalgae densities were increased by 17.75-41.67 % compared to the control when microalgae were exposed to small-sized MPs (0.1 μm) at concentrations of 5-100 mg L-1. In addition, the photosystem II and antioxidant enzyme system were not subjected to negative effects. The large-sized MPs (1 μm) boosted microalgae growth at a low concentration of MPs (5 mg L-1). However, it was observed that microalgae growth was significantly inhibited when MPs concentration increased up to 50 and 100 mg L-1, accompanied by the remarkably reduced Fv/Fm value and the elevated levels of SOD, CAT enzymes, phycoerythrin (PE), and extracellular polysaccharide (EPS). Compared to the normal seawater condition, microalgae densities were enhanced by 52.11-332.56 % under seawater acidification, depending on MPs sizes and concentrations, due to the formed CO2-enrichment condition and appropriate pH range. PE content in microalgal cells was significantly enhanced, but SOD and CAT activities as well as EPS content markedly decreased under acidification conditions. Overall, the impacts of seawater acidification were more pronounced than MPs impacts on microalgae growth and physiological responses. These findings will contribute to a substantial understanding of the effects of MPs on marine unicellular red microalgae, especially in future seawater acidification scenarios.
Collapse
Affiliation(s)
- Jianke Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China.
| | - Hanlong Wang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Xiwen Xue
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ruizeng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| |
Collapse
|
7
|
Zhang Y, Wang JX, Liu Y, Zhang JT, Wang JH, Chi ZY. Effects of environmental microplastic exposure on Chlorella sp. biofilm characteristics and its interaction with nitric oxide signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169659. [PMID: 38159749 DOI: 10.1016/j.scitotenv.2023.169659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Microalgal biofilm is promising in simultaneous pollutants removal, CO2 fixation, and biomass resource transformation when wastewater is used as culturing medium. Nitric oxide (NO) often accumulates in microalgal cells under wastewater treatment relevant abiotic stresses such as nitrogen deficiency, heavy metals, and antibiotics. However, the influence of emerging contaminants such as microplastics (MPs) on microalgal intracellular NO is still unknown. Moreover, the investigated MPs concentrations among existing studies were mostly several magnitudes higher than in real wastewaters, which could offer limited guidance for the effects of MPs on microalgae at environment-relevant concentrations. Therefore, this study investigated three commonly observed MPs in wastewater at environment-relevant concentrations (10-10,000 μg/L) and explored their impacts on attached Chlorella sp. growth characteristics, nutrients removal, and anti-oxidative responses (including intracellular NO content). The nitrogen source NO3--N at 49 mg/L being 20 % of the nitrogen strength in classic BG-11 medium was selected for MPs exposure experiments because of least intracellular NO accumulation, so that disturbance of intracellular NO by nitrogen availability could be avoided. Under such condition, 10 μg/L polyethylene (PE) MPs displayed most significant microalgal growth inhibition comparing with polyvinyl chloride (PVC) and polyamide (PA) MPs, showing extraordinarily low chlorophyll a/b ratios, and highest superoxide dismutase (SOD) activity and intracellular NO content after 12 days of MPs exposure. PVC MPs exposed cultures displayed highest malonaldehyde (MDA) content because of the toxic characteristics of organochlorines, and most significant correlations of intracellular NO content with conventional anti-oxidative parameters of SOD, CAT (catalase), and MDA. MPs accelerated phosphorus removal, and the type rather than concentration of MPs displayed higher influences, following the trend of PE > PA > PVC. This study expanded the knowledge of microalgal biofilm under environment-relevant concentrations of MPs, and innovatively discovered the significance of intracellular NO as a more sensitive indicator than conventional anti-oxidative parameters under MPs exposure.
Collapse
Affiliation(s)
- Ying Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jian-Xia Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yang Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Tian Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
8
|
Krikech I, Oliveri Conti G, Pulvirenti E, Rapisarda P, Castrogiovanni M, Maisano M, Le Pennec G, Leermakers M, Ferrante M, Cappello T, Ezziyyani M. Microplastics (≤ 10 μm) bioaccumulation in marine sponges along the Moroccan Mediterranean coast: Insights into species-specific distribution and potential bioindication. ENVIRONMENTAL RESEARCH 2023; 235:116608. [PMID: 37429403 DOI: 10.1016/j.envres.2023.116608] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
Microplastics (MPs) are pervasive in marine environments and widely recognized as emerging environmental pollutants due to the multifaceted risks they exert on living organisms and ecosystems. Sponges (Phylum Porifera) are essential suspension-feeding organisms that may be highly susceptible to MPs uptake due to their global distribution, unique feeding behavior, and sedentary lifestyle. However, the role of sponges in MP research remains largely underexplored. In the present study, we investigate the presence and abundance of MPs (≤10 μm size) in four sponge species, namely Chondrosia reniformis, Ircinia variabilis, Petrosia ficiformis, and Sarcotragus spinosulus collected from four sites along the Mediterranean coast of Morocco, as well as their spatial distribution. MPs analysis was conducted using an innovative Italian patented extraction methodology coupled with SEM-EDX detection. Our findings reveal the presence of MPs in all collected sponge specimens, indicating a pollution rate of 100%. The abundance of MPs in the four sponge species ranged from 3.95×105 to 1.05×106 particles per gram dry weight of sponge tissue, with significant differences observed among sampling sites but no species-specific differences. These results imply that the uptake of MPs by sponges is likely influenced by aquatic environmental pollution rather than the sponge species themselves. The smallest and largest MPs were identified in C. reniformis and P. ficiformis, with median diameters of 1.84 μm and 2.57 μm, respectively. Overall, this study provides the first evidence and an important baseline for the ingestion of small MP particles in Mediterranean sponges, introducing the hypothesis that they may serve as valuable bioindicators of MP pollution in the near future.
Collapse
Affiliation(s)
- Imad Krikech
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, 745 BP, 92004 Larache, Morocco; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Eloise Pulvirenti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Paola Rapisarda
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Maria Castrogiovanni
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Gaël Le Pennec
- Laboratoire de Biotechnologie et de Chimie Marines, EMR CNRS 6076, Université de Bretagne Sud, EA 3884-IUEM, BP 92116, 56321 Lorient, Brittany, France
| | - Martine Leermakers
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy.
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Mohammed Ezziyyani
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, 745 BP, 92004 Larache, Morocco.
| |
Collapse
|
9
|
Wang C, Jiang L, Zhang Y, Wang C, He M. Stealth microplastics pollutants: Toxicological evaluation of polyethylene terephthalate-based glitters on the microalga Desmodesmus sp. and its color effect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95975-95987. [PMID: 37558916 DOI: 10.1007/s11356-023-29147-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
Polyethylene terephthalate-based glitters (PET glitters) are a potential source of primary microplastics in the environment. However, the bioeffects of PET glitters and the associated leachates remain largely unknown. In this study, we investigated the individual and combined toxicity of five colors (silver, black, red, green, and blue) of PET glitters and their corresponding leachates on the cellular responses of Desmodesmus sp. The results indicated that the photosynthesis of Desmodesmus sp. could be partly affected by PET glitters through the shading effect, but not that of growth. Conversely, the leachates of red and green PET glitters significantly inhibited the growth of the microalga, suggesting a higher risk associated with additives leached from these colors of PET glitters. Furthermore, the adverse effects of the co-occurrence of PET glitters and leachates were closely related to oxidative stress responses in the microalgal cells, along with a color effect, which could be mainly attributed to variations in the composition and abundance of toxic additives in different colors of PET glitters. Overall, our findings provide insights into the ecological risks posed by glitters in aquatic environments and emphasize the importance of considering color factors in assessing microplastics toxicity.
Collapse
Affiliation(s)
- Chun Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijuan Jiang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaru Zhang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang, 222005, China
| | - Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Wang C, He M, Wu C, Chen Z, Jiang L, Wang C. Toxicity interaction of polystyrene nanoplastics with sulfamethoxazole on the microalgae Chlamydomonas reinhardtii: A closer look at effect of light availability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117969. [PMID: 37084645 DOI: 10.1016/j.jenvman.2023.117969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
The coexistence of nanoplastics and antibiotics in the aquatic environment has raised a complicated risk for ecosystems and human health. How the environmental factors e.g., light, regulate the interaction between nanoplastics and antibiotics and the resulting combined toxicity is poorly understood. Here, we investigated the individual and combined toxicity of polystyrene nanoplastics (nPS, 100 mg L1) and sulfamethoxazole (SMX, 2.5 and 10 mg L-1) toward the microalgae Chlamydomonas reinhardtii under low (LL, 16 μmol m-2·s-1), normal (NL, 40 μmol m-2·s-1), and high light (HL, 150 μmol m-2·s-1) in terms of cellular responses. Results indicated that the joint toxicity of nPS and SMX commonly exhibited a strong antagonistic/mitigative effect under LL/NL at 24 h, and under NL at 72 h. nPS could adsorb more SMX under LL/NL at 24 h (1.90/1.33 mg g-1) and under NL at 72 h (1.01 mg g-1), thereby alleviating SMX toxicity to C. reinhardtii. However, the self-toxicity of nPS had a negative influence on the degree of antagonism between nPS and SMX. The experimental results coupled with computational chemistry further revealed that the adsorption capacity of SMX on nPS was stimulated by low pH under LL/NL at 24 h (∼7.5), while by less co-existing saline ions (0.83 ppt) and algae-derived dissolved organic matter (9.04 mg L-1) under NL at 72 h. nPS toxicity that was responsible for the toxic action modes was mainly attributed to the shading effect induced by hetero-aggregation and hindrance of light transmittance (>60%), as well as being regulated by additives leaching (0.49-1.07 mg L-1) and oxidative stress. Overall, these findings provided a critical basis for the risk assessment and management of multiple pollutants in the complex natural environment.
Collapse
Affiliation(s)
- Chun Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chonglin Wu
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijuan Jiang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang, 222005, China.
| |
Collapse
|