1
|
Meng Q, Wang Z, Sun K, Wen Z, Xue H. Screening and risk assessment of priority organic micropollutants for control in reclaimed water in China. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137883. [PMID: 40101638 DOI: 10.1016/j.jhazmat.2025.137883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Organic micropollutants (OMPs) in reclaimed water have been frequently detected over the past decades, posing significant risks to ecosystems and human health. Given the complexity of these pollutants and the differences in their risk and toxicity, current assessments remain incomplete. This study conducted a large-scale investigation of OMPs in reclaimed water across China and developed a comprehensive multi-criteria integrated scoring method based on OMP toxicity and exposure potential. This method aims to protect aquatic organisms and human health by screening and prioritizing OMPs in reclaimed water, classifying their priority levels, and creating a prioritized control list. The study quantified OMP exposure potential, environmental persistence, bioaccumulation, and impacts on ecology and human health. The survey detected 369 OMPs from 11 chemical classes, with 325 compounds passing pre-selection. According to the prioritization scheme, 29 OMPs were identified as high priority, 171 as medium priority, and 125 as low priority. The BPs and Other Industrial Chemicals categories had the highest average maximum concentrations, followed by HPCCs and PAEs. High-priority pollutants were dominated by PAHs and PCBs, each comprising 31.03 %. Medium- and low-priority groups were mainly composed of Pesticides. PAHs and PCBs showed higher risk quotients, indicating significant ecological risks, while PCB 126, BaP, and PFOA exhibited high toxicity and potential health risks. This study provides valuable information for controlling priority pollutants in Chinese reclaimed water and establishes a foundation for OMP risk management. Future research should intensify monitoring to ensure the safe and sustainable use of water resources.
Collapse
Affiliation(s)
- Qingling Meng
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.
| | - Zijian Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Kaicheng Sun
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Zhao Wen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
2
|
Martínez-Esteban RP, López-Rodas V, García J, Costas E, García-Balboa C. Environmental and health impacts of heat transfer fluids (HTFs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126201. [PMID: 40187521 DOI: 10.1016/j.envpol.2025.126201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Thermo Solar Systems are growing significantly around the world. Although they are thought to be clean, the analysis of its life cycle evidence a negative impact on the environment, due to unvoluntary spillages of heat fluid transfer (HTF). To know the risk of HTF spills for human health and environment, we selected human cell lines and toxicological model organisms to evaluate both aspects. In concrete, we selected two non-transformed human cell lines of fibroblasts and hepatocytes; Allivibrio fisherii, Dictyosphaerium chlorelloides, Emiliana huxleyi and Artemia salina. Using standardized toxicological tests, we studied the effect of HTF under two scenarios: 1) exposure cells to concentrations on the range from 0.1 to 15 μg/L for short periods (from 30 min to 72 h) and 2) the same concentrations for 20 days. Additionally, we explored the toxic effect of two different HTF samples: commercial and thermal degraded HTF (used). Results proved that commercial is less toxic than used and that microalgae was extremely sensitive (IC50 around 3.5 μg/L) following of Allivibrio fisherii (IC50 around 200 μg/L), human cell lines (IC50 around 1000 μg/L) and crustaceans (IC50 2000 μg/L). The particularities of cell wall composition and the metabolic specialization justify the differences. Furthermore, a very interesting result was that exposure for 20 days produced greater damage than the same dose for periods of 72 h in all the cell types studied. Our results suggest that HTF spillages have a bigger environmental impact than expected, which thermosolar plants are not as environmentally friendly as previously thought.
Collapse
Affiliation(s)
- R P Martínez-Esteban
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n., 28040, Madrid, Spain
| | - V López-Rodas
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n., 28040, Madrid, Spain
| | - J García
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n., 28040, Madrid, Spain
| | - E Costas
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n., 28040, Madrid, Spain
| | - C García-Balboa
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n., 28040, Madrid, Spain.
| |
Collapse
|
3
|
Shen C, Ding X, Rao W, Hu J, Lin T, Zhou XZ, Zheng Y, Dong F, Fan G. Prediction of Potential Risk for Ten Azole and Benzimidazole Fungicides with the Aryl Hydrocarbon Receptor Agonistic Activity to Aquatic Ecosystems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1167-1181. [PMID: 39811929 DOI: 10.1021/acs.jafc.4c09545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Azole and benzimidazole fungicides are widely used agrochemicals to prevent and treat fungal growth and are frequently detected in aquatic environments. Here, we aimed to assess the aquatic ecological risks of ten currently used azole and benzimidazole fungicides, which with the aryl hydrocarbon receptor (AhR) agonistic activity, and their transformation products (TPs). We obtained over 400 types of aerobic TPs for ten fungicides. Some fungicides and their TPs (approximately 26.7%) exhibited the potential AhR agonistic activity and toxicity to different aquatic species. Meanwhile, some compounds with the chlorine element and benzene ring structure exhibited environmental persistence and mobile ability. Several of them were frequently detected in aquatic environments, posing potential risks to aquatic ecosystems. These harmful fungicides and their TPs should be given attention. This study provides important insight into the aquatic ecological risks caused by azole and benzimidazole fungicides, which can provide theoretical guidance for their pollution control.
Collapse
Affiliation(s)
- Chao Shen
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Wenhua Rao
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinfeng Hu
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Tao Lin
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xian-Zhi Zhou
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Guocheng Fan
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
4
|
Chen G, Pan T, Gao D, Liao H, Wang J. Enhanced competitiveness of Spirodela polyrhiza in co-culture with Salvinia natans under combined exposure to polystyrene nanoplastics and polychlorinated biphenyls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176870. [PMID: 39414046 DOI: 10.1016/j.scitotenv.2024.176870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Micro- and nanoplastics (MNPs) and polychlorinated biphenyls (PCBs) are prevalent in the environment and pose potential threats to ecosystems. However, studies on the phytotoxicity of MNPs and PCBs on primary producers are limited. This study investigated the effects of polystyrene nanoplastics (PS-NPs, 10 mg/L) and 2,2',5,5'-tetrachlorobiphenyl (PCB-52, 0.1 mg/L), on the growth of Spirodela polyrhiza and Salvinia natans, and their impact on plant competitive ability under co-culture conditions. Laser confocal microscopy images revealed that PS-NPs accumulated on the leaf and root surfaces of both species. Combined exposure to PS-NPs and PCB-52 significantly inhibited the average specific and relative growth rates (RGR) of both species, reduced chlorophyll a and b levels, and slightly increased carotenoid content, disrupting the photosynthetic system. PCB-52 exacerbated PS-NPs accumulation on plants, leading to increased hydrogen peroxide (H2O2) and superoxide anion (O2-) production in both roots and leaves. This affects the activity of superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and the soluble protein content. The combined treatment with PS-NPs and PCB-52 induced greater ecological stress in both species than the treatment with PS-NPs alone. In addition, the combined treatment with PS-NPs and PCB-52 significantly improved the relative yield and competition balance index of S. polyrhiza, indicating that PS-NPs + PCB-52 enhanced the competitive ability of S. polyrhiza when co-cultured with S. natans. This study confirmed the effects of co-exposure to PS-NPs and PCB-52 on aquatic plant growth and species competition, contributing to better insight into the ecological impacts of MNPs and organic pollutants.
Collapse
Affiliation(s)
- Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Pyl M, Ben Gharbia H, Sdiri K, Oberhänsli F, Friedrich J, Danis B, Metian M. Comparison of biofilm-covered microplastics and sand particles as vectors of PCB-153 to Paracentrotus lividus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107113. [PMID: 39488150 DOI: 10.1016/j.aquatox.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
The microplastics (MPs) vector effect of environmental contaminants (such as polychlorinated biphenyls-PCBs) to organism tissues is currently one of the major concerns regarding MPs pollution in the marine environment. The relative importance of MPs as vectors for the bioaccumulation of contaminants to marine organisms compared to other naturally occurring particles has been poorly investigated and never by using biofilm-covered particles. The present study compares the role of biofilm-covered microplastics and sand particles as vectors for the transfer and bioaccumulation of ¹⁴C-PCB-153 into various body compartments of the sea urchin Paracentrotus lividus. After 14 days of exposure, similar transfer efficiency of ¹⁴C-PCB-153 from both types of biofilm-covered particles was obtained (t-test, p-val = 0.43). The particle type was not found to affect the concentration (two-way ANOVA, p-valper dry weight = 0.92, p-valper lipid weight = 0.80) and distribution (two-way ANOVA, p-val = 0.85) of ¹⁴C-PCB-153 among the different body compartments of sea urchins. These findings suggest that biofilm-covered MPs located on the seafloor may act as similar vectors for the bioaccumulation of PCB-153 in sea urchin tissues compared to other biofouled natural particles such as sand. Overall, the outcomes of this present work align with the growing consensus among various research groups that MPs-mediated bioaccumulation of co-contaminants would be negligible compared to natural bioaccumulation pathways in relation to their abundance in the ocean.
Collapse
Affiliation(s)
- Marine Pyl
- Laboratoire de Biologie marine (CP 160/15), Université Libre de Bruxelles, Av. F.D. Roosevelt 50 B-1050 Brussels, Belgium; International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco.
| | - Hela Ben Gharbia
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - Khalil Sdiri
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - François Oberhänsli
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - Jana Friedrich
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - Bruno Danis
- Laboratoire de Biologie marine (CP 160/15), Université Libre de Bruxelles, Av. F.D. Roosevelt 50 B-1050 Brussels, Belgium
| | - Marc Metian
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| |
Collapse
|
6
|
Ulanova E, Martí Ibáñez R, Domínguez-García P, Díaz-Ferrero J, Gomez-Canela C, Ortiz Almirall X. Impact of legacy and unintentionally produced polychlorinated biphenyls (PCBs) in effluents from two wastewater treatment plants in rivers near Barcelona, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175095. [PMID: 39074743 DOI: 10.1016/j.scitotenv.2024.175095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Polychlorinated biphenyls (PCBs) are a family of 209 congeners listed as Persistent Organic Pollutants in the Stockholm Convention. Although there has been a lot of focus on those congeners present in the Aroclor or Clophen technical mixtures commercialized in the past (legacy PCBs), other industrial processes such as paint and pigment production can generate other congeners as byproducts (Unintentionally Produced PCBs or UP-PCBs). The present study focuses on the analysis of 72 PCB congeners (including 42 UP-PCBs) in the two major rivers surrounding the city of Barcelona -Llobregat and Besós rivers-, and their levels in two wastewater treatment plants during the production of effluents and reclaimed water. It was observed that WWTP can efficiently remove PCBs from untreated water during sludge production where concentrations are six orders of magnitude higher than in water (in the ng g-1 and pg L-1 ranges, respectively). Although PCB levels in the effluent and reclaimed water replenishing the rivers are not negligible, these do not significantly increase the concentrations already found in the studied rivers, and in most cases PCB concentrations in river water are reduced after merging with the reclaimed water due to dilution effect. The presence of UP-PCB-11 (not present in the Aroclor technical mixtures) in the analyzed water and sludge samples is significant (ranging from 22 to 25 % of the total PCB amount in the Besós river), being often one of the most abundant PCB congeners.
Collapse
Affiliation(s)
- Elena Ulanova
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Ramon Martí Ibáñez
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Pol Domínguez-García
- Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Jordi Díaz-Ferrero
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Cristian Gomez-Canela
- Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Xavier Ortiz Almirall
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| |
Collapse
|
7
|
Bensadi L, Azzoug M, Benlaribi R. Occurrence, sources and risk assessment of 12 dioxin-like polychlorinated biphenyls (DL-PCBs) in sediments from the Soummam River protected area, Algeria: A potential threat to the Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 208:117003. [PMID: 39321630 DOI: 10.1016/j.marpolbul.2024.117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/21/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
The levels, the sources and the potential risks associated with twelve dioxin-like PCBs were investigated in the sediments of the Soummam River in northeastern Algeria. Total dl-PCBs concentrations ranged from 3.64 ng/g to 9.38 ng/g with PCB 118 and PCB 105 being the predominant congeners. Principal component analysis suggested that commercial mixtures and municipal waste incineration could be responsible for the presence of PCBs in the region. TEQ values ranged from 12.93 pg/g to 60.98 pg/g indicating adverse effects on aquatic organisms. Moreover, cancer risk assessed via Total Lifetime Cancer Risk (TLCR) suggested that for all the stations, the risk was low but not negligible. Additionally, the non-cancer risk was significant at half of the stations for children but negligible for adults at all the stations. Consequently, measures must be taken by local authorities to protect the environment and the human health.
Collapse
Affiliation(s)
- Lydia Bensadi
- Université de Bejaia, Faculté de Technologie, Laboratoire des Procédés Membranaires et des Techniques de Séparation et de Récupération (LPMTSR), 06000, Bejaia, Algeria.
| | - Moufok Azzoug
- Université de Bejaia, Faculté de Technologie, Laboratoire des Procédés Membranaires et des Techniques de Séparation et de Récupération (LPMTSR), 06000, Bejaia, Algeria
| | - Rabia Benlaribi
- Institut National de Criminalistique et de Criminologie de la Gendarmerie Nationale (INCC/GN), Cheraga, Algeria
| |
Collapse
|
8
|
Cui M, Zheng G, Wu X, Zhang J, Wang Z, Pang Z, Wang S, Hu R, Xu D. Microplastics' vector effect on Co-bioaccumulation of it and polychlorinated biphenyls in Crassostrea hongkongensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117119. [PMID: 39342754 DOI: 10.1016/j.ecoenv.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) and polychlorinated biphenyls (PCBs) are known with high persistence and toxicity, posing urgent threats to food safety and human health. However, little is known about the synergistic effect of MPs on PCBs bioaccumulation on Crassostrea hongkongensis. In the present study, diverse types of MPs were analyzed on sea water and C. hongkongensis sampled from three distinct estuary sites, and film-shaped MPs were discovered to be preferentially ingested by the oysters. Interestingly, the content of MPs and PCBs showed negative correlation (R2 = 0.452, p< 0.001) in the oysters sampled from site 2. Upon MPs and PCBs co-treatment, the in vivo accumulation of PCBs in C. hongkongensis was inhibited by 25.90 % when compared to the group treated with PCBs solely. PCBs stresses significantly induced the expression of genes of CYP2C31, GST, SOD and HSP70 in C. hongkongensis, while, the elevated state was compromised when co-treated with PCBs. The present research alleviates concerns about the potential effects of MPs on promoting PCBs bioaccumulation and provide a better understanding of the combined impact of MPs and PCBs on C. hongkongensis.
Collapse
Affiliation(s)
- Miao Cui
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Gaojun Zheng
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Xin Wu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Jiaying Zhang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zibin Wang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zhicong Pang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Shixu Wang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Ren Hu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Delin Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
9
|
Zhao Q, Zhang Y, Li X, Hu X, Huang R, Xu J, Yin Z, Gu X, Xu Y, Yin J, Zhou Q, Li A, Shi P. Evaluating a river's ecological health: A multidimensional approach. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100423. [PMID: 38693993 PMCID: PMC11061703 DOI: 10.1016/j.ese.2024.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Evaluating the health of river surface water is essential, as rivers support significant biological resources and serve as vital drinking water sources. While the Water Quality Index (WQI) is commonly employed to evaluate surface water quality, it fails to consider biodiversity and does not fully capture the ecological health of rivers. Here we show a comprehensive assessment of the ecological health of surface water in the lower Yangtze River (LYR), integrating chemical and biological metrics. According to traditional WQI metrics, the LYR's surface water generally meets China's Class II standards. However, it also contains 43 high-risk emerging contaminants; nitrobenzenes are found at the highest concentrations, representing 25-90% of total detections, while polycyclic aromatic hydrocarbons present the most substantial environmental risks, accounting for 81-93% of the total risk quotient. Notably, the plankton-based index of biological integrity (P-IBI) rates the ecological health of the majority of LYR water samples (59.7%) as 'fair', with significantly better health observed in autumn compared to other seasons (p < 0.01). Our findings suggest that including emerging contaminants and P-IBI as additional metrics can enhance the traditional WQI analysis in evaluating surface water's ecological health. These results highlight the need for a multidimensional assessment approach and call for improvements to LYR's ecological health, focusing on emerging contaminants and biodiversity rather than solely on reducing conventional indicators.
Collapse
Affiliation(s)
- Qiuyun Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yangyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaodong Hu
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Rui Huang
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Jixiong Xu
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Zilong Yin
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Xinjie Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yuncheng Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
10
|
Walker KA, Rhodes ST, Liberman DA, Gore AC, Bell MR. Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner. Neurotoxicology 2024; 104:95-115. [PMID: 39038526 PMCID: PMC11548868 DOI: 10.1016/j.neuro.2024.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
Collapse
Affiliation(s)
- Katherine A Walker
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Simone T Rhodes
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Deborah A Liberman
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Margaret R Bell
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA; Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Ji C, Wu H, Long A, Xiao L, Feng S, Xu S. Methyltrimethoxysilane modified tin dioxide microspheres with hydrophobic networks and abundant adsorbed oxygen for efficient solid-phase microextraction of polychlorinated biphenyls. Mikrochim Acta 2024; 191:537. [PMID: 39143439 DOI: 10.1007/s00604-024-06616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Methyltrimethoxysilane (MTMS) modified tin dioxide microspheres (MTMS/SnO2) were prepared by a facile hydrothermal method and heated reflux reaction strategy. The characterization results indicate that the modification of MTMS induced the formation of a hydrophobic network within the composites, while maintaining abundant adsorbed oxygen species. Subsequently, the MTMS/SnO2 microspheres were used as a solid-phase microextraction (SPME) coating for the efficient extraction and sensitive determination of trace polychlorinated biphenyls (PCBs) in aqueous solutions coupled to gas chromatography-mass spectrometry. MTMS/SnO2 coating exhibited superior extraction performances for PCBs compared with commercial SPME and pure SnO2 microspheres coatings, owing to the hydrophobic crosslinking and adsorbed oxygen-enhanced hydrogen bonding. The proposed analytical method presented respectable linearity in the concentration range 0.25-1000 ng L-1, with low limits of detection varying from 0.036 to 0.14 ng L-1 for seven PCBs and excellent precision, with relative standard deviations of 5.7-9.8% for a single fiber and 8.2-13.1% for five fibers. Finally, the proposed method was successfully used for determination of PCBs in real water with recoveries ranging from 75.8 to 115.6%. This study proposed a new type SPME coating of MTMS/SnO2 microspheres, which extended the potential of SnO2 in capturing and determining organic pollutants.
Collapse
Affiliation(s)
- Caixia Ji
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Hongwei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, 453000, People's Republic of China
| | - Anying Long
- 113 Geological Brigade, Guizhou Bureau of Geology and Mineral Resources, Liupanshui, 553000, People's Republic of China
| | - Li Xiao
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
12
|
Peng C, Zhang S, Li X. A Novel DLLME Method Involving a Solidifying Hydrophobic Deep Eutectic Solvent Using Hydrophilic Deep Eutectic Solvent as the Dispersant for the Determination of Polychlorinated Biphenyls in Water Samples. Molecules 2024; 29:3480. [PMID: 39124885 PMCID: PMC11314396 DOI: 10.3390/molecules29153480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
This paper presents a novel dispersive liquid-liquid microextraction (DLLME) method that employs solidified hydrophobic deep eutectic solvent (DES) with hydrophilic DES acting as the dispersant. The aim is to enrich polychlorinated biphenyls (PCBs) from water samples for subsequent determination by gas chromatography-mass spectrometry. The effects of both the hydrophobic DES as the extractant and the hydrophilic DES as the dispersant were thoroughly investigated. Optimization of the key factors influencing extraction efficiency was performed, and the method was subsequently validated. Specifically, a hydrophobic DES called DES2, prepared by combining thymol and decanoic acid in a molar ratio of 3:2, was selected as the extraction solvent. Meanwhile, a hydrophilic DES named DES6, prepared from choline chloride and acetic acid in a molar ratio of 1:2, was chosen as a dispersant. Under the optimal extraction conditions, the developed method exhibited excellent linearity over the concentration range of 0.01-5.0 µg/L, low limits of detection ranging from 3.0 to 5.1 ng/L, relative standard deviations less than 4.1%, and enrichment factors between 182 and 204 for PCBs. Finally, the effectiveness of the developed method was successfully demonstrated through residue determination of PCBs in water samples.
Collapse
Affiliation(s)
- Chunlong Peng
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Taizhou 318000, China; (C.P.); (S.Z.)
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Shuochen Zhang
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Taizhou 318000, China; (C.P.); (S.Z.)
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
- School of Food and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
13
|
Demelash Abera B, Alefe Adimas M. Health benefits and health risks of contaminated fish consumption: Current research outputs, research approaches, and perspectives. Heliyon 2024; 10:e33905. [PMID: 39050454 PMCID: PMC11268356 DOI: 10.1016/j.heliyon.2024.e33905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Fish contains high-quality omega-3 fatty acids, protein, vitamins, and minerals and due to this it is termed as an essential component of a balanced diet. But there have been concerns raised about the risks of consuming fish that is contaminated with toxins such as methylmercury, polychlorinated biphenyls (PCBs), dioxins, pesticides, and plastic waste. Consumption of contaminated fish containing these pollutants is raising global mortality and morbidity rates. Scope and approaches The review examines the current research outputs on the health benefits and potential health risks of fish consumption. The review also discusses various approaches to mitigating the health problems caused by fish consumption, highlights the roles of balancing the risks and benefits when consuming fish. Key findings and conclusion Different findings indicated that contaminants cause cancer, kidney failure, adverse neurological effect, cardiovascular diseases, and so on to vulnerable groups such as pregnant, child breast-feeding and children. In conclusion, there is a need to get more tangible evidence about the advantages and disadvantages of fish consumption to safeguard the wellbeing of the society.
Collapse
|
14
|
Zhang Y, Li J, Jiao S, Li Y, Zhou Y, Zhang X, Maryam B, Liu X. Microfluidic sensors for the detection of emerging contaminants in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172734. [PMID: 38663621 DOI: 10.1016/j.scitotenv.2024.172734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
In recent years, numerous emerging contaminants have been identified in surface water, groundwater, and drinking water. Developing novel sensing methods for detecting diverse emerging pollutants in water is urgently needed, as even at low concentrations, these pollutants can pose a serious threat to human health and environmental safety. Traditional testing methods are based on laboratory equipment, which is highly sensitive but complex to operate, costly, and not suitable for on-site monitoring. Microfluidic sensors offer several benefits, including rapid evaluation, minimal sample usage, accurate liquid manipulation, compact size, automation, and in-situ detection capabilities. They provide promising and efficient analytical tools for high-performance sensing platforms in monitoring emerging contaminants in water. In this paper, recent research advances in microfluidic sensors for the detection of emerging contaminants in water are reviewed. Initially, a concise overview is provided about the various substrate materials, corresponding microfabrication techniques, different driving forces, and commonly used detection techniques for microfluidic devices. Subsequently, a comprehensive analysis is conducted on microfluidic detection methods for endocrine-disrupting chemicals, pharmaceuticals and personal care products, microplastics, and perfluorinated compounds. Finally, the prospects and future challenges of microfluidic sensors in this field are discussed.
Collapse
Affiliation(s)
- Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Jiaxuan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Bushra Maryam
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
15
|
Bok S, Korampally VR, Stanley JK, Gangopadhyay K, Gangopadhyay S, Steevens JA. Development of High Surface Area Organosilicate Nanoparticulate Thin Films for Use in Sensing Hydrophobic Compounds in Sediment and Water. BIOSENSORS 2024; 14:288. [PMID: 38920592 PMCID: PMC11201756 DOI: 10.3390/bios14060288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
The scope of this study was to apply advances in materials science, specifically the use of organosilicate nanoparticles as a high surface area platform for passive sampling of chemicals or pre-concentration for active sensing in multiple-phase complex environmental media. We have developed a novel nanoporous organosilicate (NPO) film as an extraction phase and proof of concept for application in adsorbing hydrophobic compounds in water and sediment. We characterized the NPO film properties and provided optimization for synthesis and coatings in order to apply the technology in environmental media. NPO films in this study had a very high surface area, up to 1325 m2/g due to the high level of mesoporosity in the film. The potential application of the NPO film as a sorbent phase for sensors or passive samplers was evaluated using a model hydrophobic chemical, polychlorinated biphenyls (PCB), in water and sediment. Sorption of PCB to this porous high surface area nanoparticle platform was highly correlated with the bioavailable fraction of PCB measured using whole sediment chemistry, porewater chemistry determined by solid-phase microextraction fiber methods, and the Lumbriculus variegatus bioaccumulation bioassay. The surface-modified NPO films in this study were found to highly sorb chemicals with a log octanol-water partition coefficient (Kow) greater than four; however, surface modification of these particles would be required for application to other chemicals.
Collapse
Affiliation(s)
- Sangho Bok
- Department of Electrical and Computer Engineering, University of Denver, 2155 E Wesley Avenue, Denver, CO 80208, USA;
| | - Venumadhav R. Korampally
- Department of Electrical Engineering, Northern Illinois University, 590 Garden Road, Dekalb, IL 60115, USA
| | - Jacob K. Stanley
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Keshab Gangopadhyay
- Department of Electrical Engineering and Computer Science, University of Missouri, 349 Engineering Building West, Columbia, MO 65211, USA (S.G.)
| | - Shubhra Gangopadhyay
- Department of Electrical Engineering and Computer Science, University of Missouri, 349 Engineering Building West, Columbia, MO 65211, USA (S.G.)
| | - Jeffery A. Steevens
- Columbia Environmental Research Center, U.S. Geological Survey, 4200 New Haven Road, Columbia, MO 65201, USA
| |
Collapse
|
16
|
Nunes BZ, Ribeiro VV, Garcia Y, Lourenço RA, Castro ÍB. Chemical contamination affecting filter-feeding bivalves in no-take marine protected areas from Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121102. [PMID: 38759561 DOI: 10.1016/j.jenvman.2024.121102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Marine protected areas (MPAs) are zones geographically delimited under pre-defined management goals, seeking to reduce anthropogenic threats to biodiversity. Despite this, in recent years reports of MPAs affected by chemical contamination has grown. Therefore, this study addresses this critical issue assessing legacy and current chemical contamination in filter-feeder bivalves obtained in very restrictive no-take MPAs from Brazil. The detected pollutants encompass polycyclic aromatic hydrocarbons (PAHs), linear alkylbenzenes (LABs), and persistent organic pollutants (POPs) like dichlorodiphenyltrichloroethane (DDTs) and polychlorinated biphenyls (PCBs). Despite protective measures, bivalves from nine MPAs exhibited high LABs (13.2-1139.0 ng g-1) and DDTs levels (0.1-62.3 ng g-1). PAHs were present in low concentrations (3.1-29.03 ng g-1), as PCBs (0.7-6.4 ng g-1), hexachlorobenzene (0.1-0.2 ng g-1), and Mirex (0.1-0.3 ng g-1). Regardless of the sentinel species, MPAs and management categories, similar accumulation patterns were observed for LABs, DDTs, PAHs, and PCBs. Based on the limits proposed by Oslo Paris Commission, the measured levels of PAHs, PCBs and were below the environmental assessment criteria. Such findings indicate the no biological effects are expected to occur. However, they are higher considering background conditions typically measured in remote or pristine areas and potential simultaneous exposure. Such findings indicate an influence of anthropogenic sources, emphasizing the urgency for monitoring programs guiding strategic management efforts to safeguard these areas.
Collapse
Affiliation(s)
- Beatriz Zachello Nunes
- Programa de Pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, Brazil
| | | | - Yonara Garcia
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, Brazil
| | | | - Ítalo Braga Castro
- Programa de Pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, Brazil; Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, Brazil.
| |
Collapse
|
17
|
Wei Y, Zhou G, Lv G, Wei W, Shera L, Lin H, Chen J, Kang D. PCB169 exposure aggravated the development of non-alcoholic fatty liver in high-fat diet-induced male C57BL/6 mice. Front Nutr 2024; 11:1350146. [PMID: 38779445 PMCID: PMC11110572 DOI: 10.3389/fnut.2024.1350146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Polychlorinated biphenyls (PCBs) are lipophilic environmental toxicants. Epidemiological studies have established a link between PCBs and both metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). Multiple studies have reported that exposure to both PCB156 and PCB126 among the 12 dioxin-like PCBs leads to the development of NAFLD. However, studies to elucidate whether PCB169 induces the development of NAFLD by constructing in vivo models have not been reported. Therefore, we evaluated the effects of exposure to PCB169 (5 mg/kg-bw) on hepatic lipid metabolism in C57BL/6 mice from control diet and high-fat diet cohorts. The results showed that PCB169 exposure reduced body weight and intraperitoneal fat mass in mice on the control diet, but the liver lipid levels were significantly increased, exacerbating NAFLD in mice on a high-fat diet. Through transcriptomics studies, it was found that PCB169 exposure induced significant up-regulation of Pparγ, Fasn, and Aacs genes involved in hepatic lipogenesis, as well as remarkable up-regulation of Hmgcr, Lss, and Sqle genes involved in cholesterol synthesis. Additionally, there was notable down-regulation of Pparα and Cpt1 genes involved in lipid β-oxidation, leading to abnormal lipid accumulation in the liver. In addition, we found that PCB169 exposure significantly activated the Arachidonic acid metabolism, PPAR signaling pathway, Metabolism of xenobiotics by cytochrome P450, and Retinol metabolism pathways, and so on. Our study suggests that PCB169 can modify gene expression related to lipid metabolism, augument lipid accumulation in the liver, and further contribute to the development of NAFLD, thereby revealing the detrimental effects associated with PCB exposure on animal growth and metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinjun Chen
- Department of Veterinary Medicine, College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Danju Kang
- Department of Veterinary Medicine, College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
18
|
Zhao D, Liu Y, Wu C. Reductive dechlorination of 2,4-dichlorophenol by using MWCNTs-Pd/Fe nanocomposites prepared in the presence of ultrasonic irradiation. ULTRASONICS SONOCHEMISTRY 2024; 105:106871. [PMID: 38599129 PMCID: PMC11015519 DOI: 10.1016/j.ultsonch.2024.106871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The research on developing a purification technology for 2,4-dichlorophenol (2,4-DCP) polluted water with high efficiency and the low energy consumption is crucial for achieving several Sustainable Development Goals (SDGs). In order to achieve these goals, MWCNTs-Pd/Fe nanocomposites were prepared by Fe nanoparticles modified with multi-walled carbon nanotubes (MWCNTs) and palladium (Pd) in the presence of ultrasonic irradiation. The MWCNTs-Pd/Fe nanocomposites were characterized by using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-Ray Diffraction (XRD), and others. Characterization results confirmed that the MWCNTs-Pd/Fe was successfully prepared, with the particle size of 80 nm and the specific surface area of 89.5 m2/g confirmed. We studied the reductive dechlorination of 2,4-Dichlorophenol (2,4-DCP) by MWCNTs-Pd/Fe nanocomposites under different conditions, and the optimized experimental results were found when the Pd loading was 0.4 %, the pH was 3, and the temperature was 30 °C. The phenol yield increased from 76.5 % (without ultrasonic irradiation) to 92.3 % (with ultrasonic irradiation) in 300 min and the 2,4-DCP removal rate reached 98.7 % under the optimal conditions. Therefore, ultrasonic irradiation enhanced the performance of MWCNTs-Pd/Fe nanocomposites for 2,4-DCP removal. We also established the degradation mechanism of chlorophenol by analyzing the intermediates, and proposed the degradation kinetics model. The degradation of 2,4-DCP followed the pseudo-first-order kinetics with the rate constant of 0.05988 min-1. Also, this study demonstrated the potential of using ultrasonic irradiation to improve the properties and recovery of MWCNTs-Pd/Fe nanocomposites, contributing to achievement of the Sustainable Development Goals (SDGs), including SDG-3, SDG-6.
Collapse
Affiliation(s)
- Deming Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China.
| | - Yiting Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Chunxin Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| |
Collapse
|
19
|
Abdel-Wareth MTA, Zanaty N, Abd El-Hamid RM, Saleh HA. Polychlorinated biphenyl congeners in water canals and their relationships with water quality parameters: Insights into their risk assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:263-276. [PMID: 38584450 DOI: 10.1080/03601234.2024.2336859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Water pollution with pesticides is one of the most important environmental problems. Polychlorinated biphenyls (PCBs) reach water bodies via agricultural discharge. The aim of this study was to determine the contamination of different water bodies with PCB congeners, and detect the correlation between water quality parameters and seasonal distribution of these PCBs. The results indicated that water canals of AlGharbiah showed the highest ranges of temperature, total dissolved solids (TDS) in spring, and dissolved oxygen (DO) in autumn, while AlQaliobiah water bodies witnessed the highest pH and electrical conductivity (EC) ranges in summer. The highest range of a PCB congener was that of PCB44 (7.96-118.29 µg/g) in sediment samples of Giza, followed by its range (18.01-85.44 µgL-1) in surface water of AlQaliobiah. We found a potential cancer risk from dermal contact with all the investigated PCBs. Principal component analysis (PCA) showed positive correlations between most PCBs and each of EC and TDS, and a negative correlation with DO. While the correlation between PCBs and each of temperature and pH varied according to the geographic location of the governorate. In conclusion, the investigated water canals were contaminated with PCBs, which posed a potential cancer risk and deteriorated water quality.
Collapse
Affiliation(s)
| | - Naglaa Zanaty
- Environmental Studies Department, The National Authority for Remote Sensing and Space Science, Cairo, Egypt
| | - Rania M Abd El-Hamid
- Agricultural Research Centre, Central Agricultural Pesticides Laboratory, Giza, Egypt
| | - Hassnaa A Saleh
- Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
20
|
Chen Y, Chen X, Lin W, Chen J, Zhu Y, Guo Z. Bisphenols in Aquatic Products from South China: Implications for Human Exposure. TOXICS 2024; 12:154. [PMID: 38393249 PMCID: PMC10891950 DOI: 10.3390/toxics12020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
In this study, 245 representative samples of aquatic products were selected from local markets in Shenzhen by stochastic sampling. The samples comprised eight species and fell into three aquatic product categories: fish, crustaceans, and bivalves. A total of eight BPs were determined by liquid chromatography coupled with mass spectrometry, namely, bisphenol A (BPA), bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol B (BPB), bisphenol S (BPS), bisphenol P (BPP), bisphenol Z (BPZ), and bisphenol F (BPF). All BPs were detected in aquatic products, except for BPAF, indicating pervasive contamination by BPs in aquatic products. BPS demonstrated the highest detection rate both before and after enzymatic hydrolysis, whereas BPAP exhibited the lowest detection rate before enzymatic hydrolysis and BPB displayed the lowest detection rate after enzymatic hydrolysis. The concentration difference before and after enzymatic hydrolysis proved to be statistically significant. Moreover, 49-96% of BPs in aquatic products were found in the combined state, underscoring the essentiality of conducting detections on aquatic product samples following enzymatic hydrolysis. While the health risks associated with ingesting BPs residues through aquatic product consumption were found to be minimal for residents at risk of exposure, the results suggest the necessity for more stringent regulations governing the consumption of aquatic products.
Collapse
Affiliation(s)
- Yinhai Chen
- Center for Disease Control and Prevention of Shantou, Shantou 515041, China; (X.C.); (Z.G.)
| | | | | | | | | | | |
Collapse
|
21
|
Xie J, Tu S, Hayat K, Lan R, Chen C, Leng T, Zhang H, Lin T, Liu W. Trophodynamics of halogenated organic pollutants (HOPs) in aquatic food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166426. [PMID: 37598971 DOI: 10.1016/j.scitotenv.2023.166426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Halogenated organic pollutants (HOPs) represent hazardous and persistent compounds characterized by their capacity to accumulate within organisms and endure in the environment. These substances are frequently transmitted through aquatic food webs, engendering potential hazards to ecosystems and human well-being. The trophodynamics of HOPs in aquatic food webs has garnered worldwide attention within the scientific community. Despite comprehensive research endeavors, the prevailing trajectory of HOPs, whether inclined toward biomagnification or biodilution within global aquatic food webs, remains unresolved. Furthermore, while numerous studies have probed the variables influencing the trophic magnification factor (TMF), the paramount determinant remains elusive. Collating a compendium of pertinent literature encompassing TMFs from the Web of Science between 1994 and 2023, our analysis underscores the disparities in attention accorded to legacy HOPs compared to emerging counterparts. A discernible pattern of biomagnification characterizes the behavior of HOPs within aquatic food webs. Geographically, the northern hemisphere, including Asia, Europe, and North America, has demonstrated greater biomagnification than its southern hemisphere counterparts. Utilizing a boosted regression tree (BRT) approach, we reveal that the food web length and type emerge as pivotal determinants influencing TMFs. This review provides a valuable basis for gauging ecological and health risks, thereby facilitating the formulation of robust standards for managing aquatic environments.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ruo Lan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Chuchu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tiantian Leng
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Hanlin Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165272. [PMID: 37406685 DOI: 10.1016/j.scitotenv.2023.165272] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Flame retardants (FRs) are chemical substances used to inhibit the spread of fire in numerous industrial applications, and their abundance in modern manufactured products in the indoor and outdoor environment leads to extensive direct and food chain exposure of humans. Although once considered relatively non-toxic, FRs are demonstrated by recent literature to have disruptive effects on many biological processes, including signaling pathways, genome stability, reproduction, and immune system function. This review provides a summary of research investigating the impact of major groups of FRs, including halogenated and organophosphorus FRs, on animals and humans in vitro and/or in vivo. We put in focus those studies that explained or referenced the modes of FR action at the level of cells, tissues and organs. Since FRs are highly hydrophobic chemicals, their biophysical and biochemical modes of action usually involve lipophilic interactions, e.g. with biological membranes or elements of signaling pathways. We present selected toxicological information about these molecular actions to show how they can lead to damaging membrane integrity, damaging DNA and compromising its repair, changing gene expression, and cell cycle as well as accelerating cell death. Moreover, we indicate how this translates to deleterious bioactivity of FRs at the physiological level, with disruption of hormonal action, dysregulation of metabolism, adverse effects on male and female reproduction as well as alteration of normal pattern of immunity. Concentrating on these subjects, we make clear both the advances in knowledge in recent years and the remaining gaps in our understanding, especially at the mechanistic level.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Leonardo Martin
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Department of Biochemistry and Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
23
|
Monnolo A, Clausi MT, Del Piano F, Santoro M, Fiorentino ML, Barca L, Fusco G, Degli Uberti B, Ferrante L, Mercogliano R, Ferrante MC. Do Organochlorine Contaminants Modulate the Parasitic Infection Degree in Mediterranean Trout ( Salmo trutta)? Animals (Basel) 2023; 13:2961. [PMID: 37760361 PMCID: PMC10526105 DOI: 10.3390/ani13182961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
We investigated the occurrence of organochlorine pollutants (OCs) in the muscle of brown trout and evaluated their potential modulation of parasite infection. The toxicological risk for consumer health was assessed, too. Trout were collected from the Sila National Park (Calabria region, South of Italy). The highest concentrations emerged for the sum of the 6 non-dioxin-like (ndl) indicator polychlorinated biphenyls (Σ6ndl-PCBs), followed by the 1,1,1-trichloro-2,2-di(4-chlorophenyl)-ethane (DDT), dioxin-like PCBs, hexachlorobenzene (HCB), and dieldrin. Measured on lipid weight (LW), the mean value of Σ6ndl-PCBs amounted to 201.9 ng g-1, that of ΣDDTs (the sum of DDT-related compounds) to 100.2 ng g-1, with the major contribution of the DDT-metabolite p,p'-DDE which was detected in all sample units (97.6 ng g-1 on average). Among dioxin-like congeners, PCB 118 showed the highest mean concentration (21.96 ng g-1 LW) and was detected in all sample units. Regression analysis of intestinal parasites on OC concentration was performed, controlling for two potential confounding factors, namely sex and sexual stage. The results evidenced the existence of interactions between the dual stressors in the host-parasite system in the wild. A negative and statistically significant correlation was estimated, suggesting that OCs may decrease parasite infection degree. Regarding the toxicological risk evaluation, OC concentrations were consistently below the current European Maximum Residue Limits.
Collapse
Affiliation(s)
- Anna Monnolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Maria Teresa Clausi
- Experimental Zooprophylactic Institute of Southern Italy, Calabria Section, 88100 Catanzaro, Italy;
| | - Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Maria Lorena Fiorentino
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Lorella Barca
- Experimental Zooprophylactic Institute of Southern Italy, Calabria Section, 87100 Cosenza, Italy;
| | - Giovanna Fusco
- Experimental Zooprophylactic Institute of Southern Italy, 80055 Portici, Italy; (G.F.); (B.D.U.)
| | - Barbara Degli Uberti
- Experimental Zooprophylactic Institute of Southern Italy, 80055 Portici, Italy; (G.F.); (B.D.U.)
| | - Luigia Ferrante
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| |
Collapse
|
24
|
Khalili Doroodzani A, Dobaradaran S, Rahmani E, Nabipour I, Malekizadeh H, Raeisi A, Farhadi A, Mahmudpour M, Afrashteh S, Saeedi R. A comparative monitoring of maternal and cord serum polychlorinated biphenyls levels from Iranian pregnant women between industrial and urban areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120781. [PMID: 36460189 DOI: 10.1016/j.envpol.2022.120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The aim of this study was to compare maternal and fetal exposure to PCBs in pregnant women from a petrochemical and gas area (PGA) and an urban area (UA), by the analyses of serum samples from mother (MS) and cord (CS). After liquid-liquid extracting, samples were analyzed for 12 PCBs congeners by gas chromatography mass spectrometer. Adjusted multiple linear regression models showed the mean levels (μg/L) of total PCBs in the MS and CS samples from the PGA (1.70 ± 0.81 and 1.19 ± 0.43) were significantly higher than those from UA (1.64 ± 0.75 and 1.07 ± 0.38). PCB 44 was predominant in both MS and CS serum samples, and in both PGA (0.80 ± 0.70 and 0.76 ± 0.67) and UA (0.79 ± 0.39 and 0.67 ± 0.34). A negative correlation was found for PCB 52 as one-unit increase in the cord serum levels was associated with 0.024 g decrease in newborn weight. Similarly, one-unit increase in the maternal serum PCB 18 concentrations were associated with 0.09 and 0.086 cm decrease in newborn height and head circumference. The serum levels of PCB 18 and 52 in the mothers who consumed meat and milk at least 1 meal/week were higher than these who consumed meat and milk never or less than 1 meal/month. The findings in this study indicated that higher maternal exposure to PCBs, as result of living in an industrialized area, leads to higher PCBs accumulation in cord blood, which consequently passes to the developing fetus. These events may cause harmful effects on both them in-utero and afterbirth growth and development.
Collapse
Affiliation(s)
- Atefeh Khalili Doroodzani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Elham Rahmani
- OB and GYN Ward, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hasan Malekizadeh
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Raeisi
- Department of Internal Medicine, School of Medicine Shiraz University of Medical Sciences, Bushehr, Iran
| | - Akram Farhadi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Mahmudpour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sima Afrashteh
- Department of Biostatistics and Epidemiology, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|