1
|
Gu J, Lin T, Dai Y, Li H, Zhou Y, Liu X, Qiao Z, Liu Y. In situ synthesis of AuNPs by hyperbranched polyethyleneimine-functionalized apple pomace-derived cellulose as recyclable catalysts for 4-nitrophenol reduction. Int J Biol Macromol 2025; 306:141799. [PMID: 40054806 DOI: 10.1016/j.ijbiomac.2025.141799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
4-Nitrophenol (4-NP) is recognized as a toxic and non-biodegradable organic substance. Currently, an effective approach for treating 4-NP involves reducing it to the more environmentally benign 4-aminopyridine (4-AP), utilizing the catalytic capabilities of gold nanoparticles (AuNPs). However, the treatment process faces several challenges, including the poor stability of AuNPs, the inability to recycle expensive AuNPs, and the high cost of carrier materials carrying AuNPs. To enhance the stability and recycling performance of AuNPs, as well as to identify cost-effective carrier materials, we used apple pomace as the raw material to extract cellulose and oxidize it into easily modifiable DAC. By grafting HPEI onto DAC through a Michael addition reaction, we successfully prepared a novel HPEI-DAC carrier with both reduction performance and easy separation properties. This approach not only maximized the utilization of inexpensive materials but also facilitated the reuse of expensive ones. Taking advantage of the reduction properties and special topology of HPEI-DAC, AuNPs with high stability were prepared in situ. The resulting AuNPs/HPEI-DAC exhibited remarkable catalytic activity and reusability. Impressively, even after 6 rounds of reuse, the catalytic efficiency of AuNPs/HPEI-DAC only decreased from 100 % to 91 %, demonstrating its great potential for the efficient reduction of 4-NP.
Collapse
Affiliation(s)
- Junqi Gu
- School of Chemistry and Materials Science, Ludong University, 264025 Yantai, Shandong Province, People's Republic of China
| | - Tao Lin
- School of Chemistry and Materials Science, Ludong University, 264025 Yantai, Shandong Province, People's Republic of China
| | - Yuqing Dai
- School of Chemistry and Materials Science, Ludong University, 264025 Yantai, Shandong Province, People's Republic of China
| | - Huidong Li
- School of Chemistry and Materials Science, Ludong University, 264025 Yantai, Shandong Province, People's Republic of China
| | - Yao Zhou
- School of Chemistry and Materials Science, Ludong University, 264025 Yantai, Shandong Province, People's Republic of China
| | - Xunyong Liu
- School of Chemistry and Materials Science, Ludong University, 264025 Yantai, Shandong Province, People's Republic of China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, 264006 Yantai, Shandong Province, People's Republic of China.
| | - Zhuhui Qiao
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, 264006 Yantai, Shandong Province, People's Republic of China.
| | - Yi Liu
- School of Chemistry and Materials Science, Ludong University, 264025 Yantai, Shandong Province, People's Republic of China.
| |
Collapse
|
2
|
Mane-Gavade S, Patil SA, Jadhav V, Pattanshetti A, Nipane S, Yu XY, Kim DK, Sabale S. Bio-stabilized AuNPs as a reliable fluorescence sensing probe for Hg 2+: application for environmental water sample. Photochem Photobiol Sci 2025; 24:659-668. [PMID: 40295441 DOI: 10.1007/s43630-025-00718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Gold nanoparticles (AuNPs) have gained attention due to their unique optical and electronic properties. Their exceptional stability, high conductivity, and strong light interaction also make them ideal for sensing applications. In this study, we developed a green microwave-assisted approach for synthesizing uniform (~ 10 nm) AuNPs using Acacia concinna fruit extract as a bio-stabilizing agent. Synthesized AuNPs were employed for a rapid and straightforward AuNPs-based sensing probe for the detection of mercury ions (Hg2+) in aqueous samples and merbromin medicine, exhibiting fluorescence at 793 nm. The sensing probe was established using a fluorescence quenching approach for selective detection of Hg2⁺. Results indicate that the AuNPs demonstrate high selectivity for Hg2⁺ compared to other cations, including Pb2⁺, Cd2⁺, Fe2⁺, Ni2⁺, Ba2⁺, Zn2⁺, Cu2+, Ag+ and Cr6+. A strong correlation between Hg2⁺ concentration and the observed fluorescence intensity ratio (F₀/F) enables precise quantitative detection, with a limit of detection (LOD) of 0.60 µg/mL in water samples. This study highlights the effectiveness of the fluorescence quenching method as a cost-effective, rapid, and simple tool for Hg2⁺ detection in both environmental water samples and medicinal applications.
Collapse
Affiliation(s)
- Shubhangi Mane-Gavade
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, MS, 416101, India
| | - Supriya A Patil
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Vidhya Jadhav
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, MS, 416101, India
| | - Akshata Pattanshetti
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, MS, 416101, India
| | - Sandip Nipane
- Department of Chemistry, Smt. Kasturbai Walchand College, Sangli, MS, 416416, India
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN37830, USA
| | - Deok-Kee Kim
- Department of Semiconductor Systems Engineering, Sejong University, Seoul, 05006, Korea.
| | - Sandip Sabale
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, MS, 416101, India.
- Department of Semiconductor Systems Engineering, Sejong University, Seoul, 05006, Korea.
| |
Collapse
|
3
|
Khalil A, Khan A, Kamal T, Khan AAP, Khan SB, Chani MTS, Alzahrani KA, Ali N. Zn/Al layered double hydroxide and carboxymethyl cellulose composite beads as support for the catalytic gold nanoparticles and their applications in the reduction of nitroarenes. Int J Biol Macromol 2024; 262:129986. [PMID: 38360231 DOI: 10.1016/j.ijbiomac.2024.129986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Until now, many efficient catalysts have been reported that are used for the reduction of nitroarenes. However, a catalyst reusability is a challenge that is often faced in practical environment. In this report, we designed a hydrogel composite (CMC-LDH), which act as support and making it possible to address this challenge. In this research work, zinc/aluminum based layered double hydroxides (Zn/Al LDH) have been assembled with carboxymethyl cellulose (CMC) to prepare CMC/LDH hydrogel beads. The CMC/LDH hydrogel beads were prepared by the ionotropic gelation method. For CMC/LDH/Au preparation, the already prepared CMC/LDH beads were kept in gold ion (Au3+) solution, and their subsequent reduction with sodium borohydride (NaBH4). For the characterization of the prepared samples different instrumental techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and scanning electron microscopy (SEM) were adopted. For the catalytic evaluation of CMC/LDH/Au, it was utilized as a catalyst in 4-NP and 4-NA reduction reactions. The continuity of the reaction was monitored by a UV-visible spectrophotometer. Rate constant (kapp) of 0.48474 min-1 and 0.7486 min-1 were obtained for 4-NP and 4-NA reduction, respectively. The hydrogel beads were recycled and reused for up to five successive cycles without significantly changing their catalytic efficiency.
Collapse
Affiliation(s)
- Ashi Khalil
- Institute of Chemical Sciences, University of Peshawar, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Pakistan
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry department, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Muhammad Tariq Saeed Chani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Khalid A Alzahrani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Chemistry department, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Pakistan.
| |
Collapse
|
4
|
Shandhiya M, Janarthanan B, Sharmila S. A comprehensive review on antibacterial analysis of natural extract-based metal and metal oxide nanoparticles. Arch Microbiol 2024; 206:52. [PMID: 38175198 DOI: 10.1007/s00203-023-03743-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024]
Abstract
Pharmaceutical, food packing, cosmetics, agriculture, energy storage devices widely utilize metal and metal oxide nanoparticles prepared via different physical and chemical methods. It resulted in the release of several dangerous compounds and solvents as the nanoparticles were being formed. Currently, Researchers interested in preparing nanoparticles (NPs) via biological approach due to their unique physiochemical properties which took part in reducing the environmental risks. However, a number of microbial species are causing dangerous illnesses and are a threat to the entire planet. The metal and metal oxide nanoparticles played a significant role in the identification and elimination of microbes when prepared using natural extract. Its biological performance is thus also becoming exponentially more apparent than it was using in conventional techniques. Despite the fact that they hurt germs, their small size and well-defined shape encourage surface contact with them. The generation of Reactive Oxygen Species (ROS), weakens the bacterial cell membrane by allowing internal cellular components to seep out. The bacterium dies as a result of this. Numerous studies on different nanoparticles and their antibacterial efficacy against various diseases are still accessible. The main objective of the biogenic research on the synthesis of key metals and metal oxides (such as gold, silver, titanium dioxide, nickel oxide, and zinc oxide) using various plant extracts is reviewed in this study along with the process of nanoparticle formation and the importance of phytochemicals found in the plant extract.
Collapse
Affiliation(s)
- M Shandhiya
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - B Janarthanan
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - S Sharmila
- Department of Physics, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India.
| |
Collapse
|
5
|
Young Park S, Park K, Oh JW, Park G. Gold nanoparticle encoded with marigold (Tagetes erecta L.) suppressed hyperglycemia -induced senescence in retinal pigment epithelium via suppression of lipid peroxidation. ARAB J CHEM 2023; 16:105120. [DOI: 10.1016/j.arabjc.2023.105120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
6
|
Mutalik C, Saukani M, Khafid M, Krisnawati DI, Darmayanti R, Puspitasari B, Cheng TM, Kuo TR. Gold-Based Nanostructures for Antibacterial Application. Int J Mol Sci 2023; 24:10006. [PMID: 37373154 DOI: 10.3390/ijms241210006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial infections have become a fatal threat because of the abuse of antibiotics in the world. Various gold (Au)-based nanostructures have been extensively explored as antibacterial agents to combat bacterial infections based on their remarkable chemical and physical characteristics. Many Au-based nanostructures have been designed and their antibacterial activities and mechanisms have been further examined and demonstrated. In this review, we collected and summarized current developments of antibacterial agents of Au-based nanostructures, including Au nanoparticles (AuNPs), Au nanoclusters (AuNCs), Au nanorods (AuNRs), Au nanobipyramids (AuNBPs), and Au nanostars (AuNSs) according to their shapes, sizes, and surface modifications. The rational designs and antibacterial mechanisms of these Au-based nanostructures are further discussed. With the developments of Au-based nanostructures as novel antibacterial agents, we also provide perspectives, challenges, and opportunities for future practical clinical applications.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Muhammad Saukani
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Islam Kalimantan MAB, Banjarmasin 70124, Kalimantan Selatan, Indonesia
| | - Muhamad Khafid
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, East Java, Indonesia
| | | | - Rofik Darmayanti
- Dharma Husada Nursing Academy, Kediri 64117, East Java, Indonesia
| | | | - Tsai-Mu Cheng
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Liu D, Zhao Y, Ji J, Liu X, Feng S, Chen X. Design of fluorescence system based on rutin functionalized gold nanoparticles: Sensitive detection of etimicin via a smartphone in the food and human samples. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Azad M, Ali Khan G, Ismail F, Ahmed W. Facile and efficient dye degradation using silver nanoparticles immobilized cotton substrates. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Mahlangu T, Arunachellan I, Sinha Ray S, Onyango M, Maity A. Preparation of Copper-Decorated Activated Carbon Derived from Platamus occidentalis Tree Fiber for Antimicrobial Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5939. [PMID: 36079320 PMCID: PMC9457392 DOI: 10.3390/ma15175939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study focuses on a greener approach to synthesizing activated carbon by carbonizing Platamus occidentalis tree fibers (TFSA) with 98% H2SO4 at 100 °C. The resulted TFSA was employed as an effective adsorbent for copper ions in aqueous media, yielding copper decorated TFSA (Cu@TFSA). The successful adsorption of copper onto the TFSA was proven through extensive characterization techniques. Herein, the TEM and XPS showed that copper nanoparticles were formed in situ on the TFSA surface, without the use of additional reducing and stabilizing agents nor thermal treatment. The surface areas of TFSA and Cu@TFSA were 0.0150 m2/g and 0.3109 m2/g, respectively. Applying the Cu@TFSA as an antimicrobial agent against Escherica coli ( E. coli) and Salmonella resulted in the potential mitigation of complex secondary pollutants from water and wastewater. The Cu@TFSA exhibited outstanding antimicrobial activity against E. coli and Salmonella in both synthetic and raw water samples. This demonstrated a complete growth inhibition observed within 120 min of exposure. The bacteria inactivation took place through the destruction of the bacteria cell wall and was confirmed by the AFM analysis technique. Cu@TFSA has the potential to be used in the water and wastewater treatment sector as antimicrobial agents.
Collapse
Affiliation(s)
- Thembisile Mahlangu
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4000, South Africa
- DSI/CSIR Centre of Nanostructured and Advanced Materials, 1-Meiring Naude Road, Pretoria 0001, South Africa
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Iviwe Arunachellan
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Suprakas Sinha Ray
- DSI/CSIR Centre of Nanostructured and Advanced Materials, 1-Meiring Naude Road, Pretoria 0001, South Africa
| | - Maurice Onyango
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Arjun Maity
- DSI/CSIR Centre of Nanostructured and Advanced Materials, 1-Meiring Naude Road, Pretoria 0001, South Africa
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
10
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
11
|
Novel synthesis of gold nanoparticles using Parkia speciosa Hassk seed extract for enhanced foam stability in hand soap. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02197-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Kamal T, Khalil A, Bakhsh EM, Khan SB, Chani MTS, Ul-Islam M. Efficient fabrication, antibacterial and catalytic performance of Ag-NiO loaded bacterial cellulose paper. Int J Biol Macromol 2022; 206:917-926. [PMID: 35304202 DOI: 10.1016/j.ijbiomac.2022.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
This study reports the synthesis of bacterial cellulose (BC) hydrogel sheets and their utilization as a support for silver‑nickel oxide nanocomposites (Ag/NiO). A two-step facile hydrothermal method was employed for the preparation of Ag/NiO, followed by impregnation into BC hydrogel sheets. A 20% Ag/NiO composition was revealed by dry weight analysis. The stability of nanocomposites-Hydrogel was confirmed by Ag+ and Ni2+ ion release study. The catalytic activity of the BC-Ag/NiO was evaluated against chemical reduction of congo red, methyl orange and methylene blue. The reduction reaction followed pseudo first order kinetics and kapp values of 0.1147 min-1, 0.1323 min-1 and 0.12989 min-1 were obtained for CR, MO, and MB dyes, respectively. The BC-Ag/NiO catalyst could be easily recovered and re-used in another reaction without centrifugation. The synthesized nanocomposites hydrogel was also tested for its antibacterial activity against Gram-negative bacteria, Escherichia coli (E.coli) and Gram-positive bacteria, Staphylococcus aureus (S.aureus).
Collapse
Affiliation(s)
- Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia..
| | - Ashi Khalil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| |
Collapse
|
13
|
Al Hagbani T, Rizvi SMD, Hussain T, Mehmood K, Rafi Z, Moin A, Abu Lila AS, Alshammari F, Khafagy ES, Rahamathulla M, Abdallah MH. Cefotaxime Mediated Synthesis of Gold Nanoparticles: Characterization and Antibacterial Activity. Polymers (Basel) 2022; 14:polym14040771. [PMID: 35215685 PMCID: PMC8875691 DOI: 10.3390/polym14040771] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Cefotaxime (CTX) is a third-generation cephalosporin antibiotic with broad-spectrum activity against Gram negative and Gram positive bacteria. However, like other third-generation cephalosporin antibiotics, its efficacy is declining due to the increased prevalence of multidrug-resistant (MDR) pathogens. Recent advances in nanotechnology have been projected as a practical approach to combat MDR microorganisms. Therefore, in the current study, gold nanoparticles (AuNPs) were prepared using cefotaxime sodium, which acted as a reducing and capping agent, besides having well-established antibacterial activity. The synthesized cefotaxime-loaded gold nanoparticles (C-AuNPs) were characterized by UV-Visible spectroscopy, FTIR, TEM and DLS. In addition, the in vitro antibacterial activity of C-AuNPs was assessed against both Gram-positive and Gram-negative bacteria. UV-Visible spectroscopy verified the formation of C-AuNPs, while TEM and DLS verified their nano-size. In addition, CTX loading onto AuNPs was confirmed by FTIR. Furthermore, the colloidal stability of the synthesized C-AuNPs was ascribed to the higher net negative surface charge of C-AuNPs. Most importantly, the synthesized C-AuNPs showed superior antibacterial activity and lower minimum inhibitory concentration (MIC) values against Gram-negative (Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria, compared with pure CTX. Collectively, CTX was successfully adopted, as reducing and capping agent, to synthesize stable, nano-sized spherical C-AuNPs. Furthermore, loading CTX onto AuNPs could efficiently restore and/or boost the antibacterial activity of CTX against resistant Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (S.M.D.R.); (A.S.A.L.); (F.A.); (M.H.A.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (S.M.D.R.); (A.S.A.L.); (F.A.); (M.H.A.)
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Khalid Mehmood
- Department of Pharmacy, Abbottabad University of Science and Technology, Havelian 22500, Pakistan;
| | - Zeeshan Rafi
- Nanomedicine and Nanotechnology Lab-6 (IIRC), Department of Biosciences, Integral University Lucknow, Lucknow 226026, India;
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (S.M.D.R.); (A.S.A.L.); (F.A.); (M.H.A.)
- Correspondence:
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (S.M.D.R.); (A.S.A.L.); (F.A.); (M.H.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Farhan Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (S.M.D.R.); (A.S.A.L.); (F.A.); (M.H.A.)
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 61421, Saudi Arabia;
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (S.M.D.R.); (A.S.A.L.); (F.A.); (M.H.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
14
|
Anwar Y, Mohammed Ali HSH, Rehman WU, Hemeg HA, Khan SA. Antibacterial Films of Alginate-CoNi-Coated Cellulose Paper Stabilized Co NPs for Dyes and Nitrophenol Degradation. Polymers (Basel) 2021; 13:4122. [PMID: 34883624 PMCID: PMC8659035 DOI: 10.3390/polym13234122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
The development of a solid substrate for the support and stabilization of zero-valent metal nanoparticles (NPs) is the heart of the catalyst system. In the current embodiment, we have prepared solid support comprise of alginate-coated cellulose filter paper (Alg/FP) for the synthesis and stabilization of Co nanoparticles (NPs) named as Alg/FP@Co NPs. Furthermore, Alginate polymer was blended with 1 and 2 weight percent of CoNi NPs to make Alg-CoNi1/FP and Alg-CoNi2/FP, respectively. All these stabilizing matrixes were used as dip-catalyst for the degradation of azo dyes and reduction of 4-nitrophenol (4NP). The effect of initial dye concentration, amount of NaBH4, and catalyst dosage was assessed for the degradation of Congo red (CR) dye by using Alg-CoNi2/FP@Co NPs. Results indicated that the highest kapp value (3.63 × 10-1 min-1) was exhibited by Alg-CoNi2/FP@Co NPs and lowest by Alg/FP@Co NPs against the discoloration of CR dye. Furthermore, it was concluded that Alg-CoNi2/FP@Co NPs exhibited strong catalyst activity against CR, and methyl orange dye (MO) degradation as well as 4NP reduction. Antibacterial activity of the prepared composites was also investigated and the highest l activity was shown by Alg-CoNi2/FP@Co NPs, which inhibit 2.5 cm zone of bacteria compared to other catalysts.
Collapse
Affiliation(s)
- Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Hani S. H. Mohammed Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Waseeq Ur Rehman
- Department of Chemistry, Government Post Graduate College Nowshera, Nowshera 24100, Pakistan;
| | - Hassan A. Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Almadina Almunawra 30001, Saudi Arabia;
| | - Shahid Ali Khan
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Chemistry, University of Swabi, Swabi Anbar, Swabi 23561, Pakistan
| |
Collapse
|
15
|
Chowdhury MA, Hossain N, Shuvho MBA, Kowser MA, Islam MA, Ali MR, EI-Badry YA, EI-Bahy ZM. Improvement of interfacial adhesion performance of the kevlar fiber mat by depositing SiC/TiO2/Al2O3/graphene nanoparticles. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
16
|
López-Miranda JL, Molina GA, Esparza R, González-Reyna MA, Silva R, Estévez M. Green Synthesis of Homogeneous Gold Nanoparticles Using Sargassum spp. Extracts and Their Enhanced Catalytic Activity for Organic Dyes. TOXICS 2021; 9:280. [PMID: 34822671 PMCID: PMC8623730 DOI: 10.3390/toxics9110280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
Sargassum species-based extracts were used to carry out the synthesis of homogeneous gold nanoparticles. Various techniques were used to determine the characteristics and composition of the nanoparticles. The UV-Vis results showed that the 50% water/ethanol extract had the most reducing agents and stabilizers. Therefore, this type of extract was used to synthesize nanoparticles and for their subsequent characterization. Crystallinity and crystal size were evaluated using X-ray diffraction. Size and morphology were analyzed using scanning electron microscopy, showing that the gold nanoparticles were mostly spherical, with a size range of 15-30 nm. The catalytic activity of the gold nanoparticles was evaluated through the degradation of organic dyes: methylene blue, methyl orange, and methyl red. The degradation rates were different, depending on the nature of each dye, the simplest to degrade was methylene blue and methyl red was the most difficult to degrade. The results indicated that the use of Sargassum spp. for the synthesis of gold nanoparticles has potential in the remediation of water that is contaminated with organic dyes. Moreover, given the recent serious environmental and economic problems caused by the overpopulation of Sargassum spp. in the Mexican Caribbean, the findings hold promise for their practical and sustainable use in the synthesis of nanomaterials.
Collapse
Affiliation(s)
- J. Luis López-Miranda
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Gustavo A. Molina
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Marlen Alexis González-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Rodolfo Silva
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Edificio 17, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico;
| | - Miriam Estévez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| |
Collapse
|