1
|
Xing T, Wang Z, Hao X, Mu J, Wang B. Copper Nanoparticles Green-Formulated by Curcuma longa Extract Induce Apoptosis via P53 and STAT3 Signaling Pathways in Bladder Carcinoma Cell. Biol Trace Elem Res 2025; 203:2606-2618. [PMID: 39397139 DOI: 10.1007/s12011-024-04373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
The study outlines the production of new copper nanoparticles infused with Curcuma longa extract to trigger apoptosis through P53 and signal transducer and activator of transcription 3 (STAT3) signaling pathways in bladder carcinoma cells. The structural characteristics of the nanoparticles that were synthesized were analyzed through various sophisticated methods such as transmission electron microscopy (TEM), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FT-IR). During the antioxidant evaluation, the IC50 values for copper nanoparticles and butylated hydroxytoluene (BHT) against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals were found to be 116 µg/mL and 31 µg/mL, respectively. The cells treated with copper nanoparticles underwent evaluation through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for 48 h to determine their anticancer properties on TCCSUP bladder carcinoma cell. The TCCSUP cell line exhibited an IC50 of 290 µg/mL when exposed to copper nanoparticles. The viability of malignant cells decreased upon treatment with copper nanoparticles. Furthermore, the copper nanoparticles presence led to a 65-75% increase in cell apoptosis, along with an increase in Bax and cleaved caspase-8 and a decrease in the Bcl-2. Furthermore, the copper nanoparticles presence resulted in the suppression of colony formation. Notably, the molecular pathway analysis in cells treated with copper NPs demonstrated an increase in p53 expression, along with a decrease in the expression of both total and phosphorylated STAT3. This offers that p53 and STAT3 play a crucial role in the biological efficacies induced by the nanoparticles in human carcinoma cells. The data of our research suggest that copper NPs could have significant potential as an anticancer treatment for human bladder carcinoma cells.
Collapse
Affiliation(s)
- Tianjun Xing
- Department of Urology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Employee New Street, Xinghualing District, Taiyuan, 030013, Shanxi, China
| | - Zhu Wang
- Department of Urology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Employee New Street, Xinghualing District, Taiyuan, 030013, Shanxi, China
| | - Xiaojie Hao
- Department of Urology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Employee New Street, Xinghualing District, Taiyuan, 030013, Shanxi, China
| | - Jingjun Mu
- Department of Urology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Employee New Street, Xinghualing District, Taiyuan, 030013, Shanxi, China
| | - Bin Wang
- Department of Urology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Employee New Street, Xinghualing District, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
2
|
Faghani G, Azarniya A. Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon 2024; 10:e39611. [PMID: 39524817 PMCID: PMC11550055 DOI: 10.1016/j.heliyon.2024.e39611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The growing need for developing reliable and efficient wound dressings has led to recent progress in designing novel materials and formulations for different kinds of wounds caused by traumas, burns, surgeries, and diabetes. In cases of extreme urgency, accelerating wound recovery is of high importance to prevent persistent infection and biofilm formation. The application of nanotechnology in this domain resulted in the creation of distinct nanoplatforms for highly advanced wound-healing therapeutic approaches. Recently developed nanomaterials have been used as antibacterial agents or drug carriers to control wound infection. In the present review, the authors aim to review the recently published research on the effects of incorporating emerging nanomaterials into novel wound dressings and investigate their distinct roles in the wound healing process. It was determined that the metallic nanoparticles (NPs) exhibit antimicrobial and regenerative properties, metal oxide NPs regulate inflammation and promote tissue regeneration, MXene NPs enhance cell adhesion and proliferation, while metal-organic frameworks (MOFs) offer controlled drug delivery capabilities. Further research is required to fully understand the mechanisms and optimize the applications of these NPs in wound healing.
Collapse
Affiliation(s)
- Gholamreza Faghani
- Department of Mechanical Engineering, Khatam-Ol-Anbia (PBU) University, Tehran, Iran
| | - Amir Azarniya
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Kolour AK, Shahrousvand M, Mohammadi-Rovshandeh J, Puppi D, Farzaneh D. Absorbable and biodegradable enzyme-crosslinked gelatin/alginate semi-IPN hydrogel wound dressings containing curcumin. Int J Biol Macromol 2024; 279:134938. [PMID: 39187095 DOI: 10.1016/j.ijbiomac.2024.134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Effective wound management presents a substantial financial and time-related obstacle for healthcare institutions. Enhancing healthcare involves implementing innovative wound treatment methods to minimize healing time and expenses. This study is centered on the development of a non-toxic wound dressing using only two natural polymers and an enzyme. By adding 10 % wt microbial transglutaminase, the mechanical properties of the dressing were improved. This formulation increased the swelling rate by 70 %, deswelling rate by 15 %, conversion rate by 9 %, and networking rate by 20 %. Additionally, the non-toxic dressing showed a cell viability rate of 106 %. In drug delivery tests, explosive release behavior was observed, which is advantageous for open wounds. Cell staining experiments were also carried out to evaluate wound behavior in terms of collagen formation, granulation, and inflammation. The results suggest that the optimized hydrogel has great potential as a wound dressing. Its excellent absorption, antioxidant, and biocompatibility characteristics enhance tissue granulation rate and reduce wound treatment time by half compared to conventional methods, while also minimizing scarring risk. This innovative treatment, which eliminates the need for frequent changes, is beneficial for both secondary intentions and severe open wounds requiring bottom-up healing.
Collapse
Affiliation(s)
- Alireza Kheradvar Kolour
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran.
| | - Jamshid Mohammadi-Rovshandeh
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran.
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| | - Dorsa Farzaneh
- Biomaterials Engineering Department, Faculty of Medical Sciences and Technology, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Mohammadi FS, Araghi M, Nadri S. Core-shell (polyethylene glycol/silk) scaffold containing microfluidic synthesis of curcumin loaded chitosan nanoparticles as a wound healing agent in animal full-thickness injuries. Int J Biol Macromol 2024; 278:134603. [PMID: 39128747 DOI: 10.1016/j.ijbiomac.2024.134603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Wounds refer to physical injuries in which the integrity of the skin or other body organs is disturbed. Wound care includes proper management and treatment of the injuries to promote healing while avoiding infection. Here, a core-shell scaffold is developed comprising polyethylene glycol/silk fibroin-chitosan nanoparticles loaded with curcumin. Chitosan nanoparticles and PEG/Silk fibrous scaffold were synthesized by a microfluidic system and electrospinning technique, respectively. TEM, DLS, and FTIR techniques were used to examine the nanoparticles; whereas nanofibers were characterized by SEM, TEM, and FTIR. Drug loading and release from nanoparticles and scaffolds were assessed by optical spectroscopy. MTT assay and hemolysis test were performed to examine the toxicity of the scaffolds. The hydrophobicity or hydrophilicity of nanofibers was explored by the contact angle test. Scaffolds were examined on the full-thickness wound created on Wistar rats, followed by histological analyses and coagulation tests. The results of FTIR, TEM, and SEM indicated the proper distribution of nanoparticles and core-shell scaffold. The drug loading was about 3 %. About 80 % of the drug was released in the first 7 days. Scaffolds showed hydrophobic properties (114.63° ± 3.6) with no cytotoxicity. The proposed scaffold was able to close 94 % of the wound era after 14 days in the animal model and positively affected re-epithelization and angiogenesis. Moreover, nanofibers containing chitosan nanoparticles exhibited a proper blood coagulation ability in the tail cut model. Finally, it was found that this scaffold, in addition to a biological dressing, can be considered as a drug delivery, and according to the results obtained, this dressing has hydrophobic properties and has also shown good performance against superficial bleeding coagulation. And it has not shown any cytotoxicity for red blood cells and mesenchymal stem cells.
Collapse
Affiliation(s)
- Fatemeh Sadr Mohammadi
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Araghi
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran; Department of pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
5
|
Eweis A, Ahmad MS, El Domany EB, Al-Zharani M, Mubarak M, E Eldin Z, GadelHak Y, Mahmoud R, Hozzein WN. Actinobacterium-Mediated Green Synthesis of CuO/Zn-Al LDH Nanocomposite Using Micromonospora sp. ISP-2 27: A Synergistic Study that Enhances Antimicrobial Activity. ACS OMEGA 2024; 9:34507-34529. [PMID: 39157139 PMCID: PMC11325407 DOI: 10.1021/acsomega.4c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Bacterial resistance to conventional antibiotics has created an urgent need to develop enhanced alternatives. Nanocomposites combined with promising antibacterial nanomaterials can show improved antimicrobial activity compared to that of their components. In this work, green synthesized CuO nanoparticles (NPs) supported on an anionic clay with a hydrotalcite-like structure such as Zn-Al layered double hydroxide (LDH) nanocomposite were investigated as antimicrobial agents. This nanocomposite was synthesized using Micromonospora sp. ISP-2 27 cell-free supernatant to form CuO NPs on the surface of previously synthesized LDH. The prepared samples were characterized using UV-Vis spectrophotometry, XRD, FTIR, Field emission scanning electron microscopy with EDX, zeta potential, and hydrodynamic particle size. UV-vis spectral analysis of the biosynthesized CuO NPs revealed a maximum peak at 300 nm, indicating their successful synthesis. The synthesized CuO NPs had a flower-like morphology with a size range of 43-78 nm, while the LDH support had a typical hexagonal layered structure. The zeta potentials of the CuO NPs, Zn-Al LDH, and CuO NPs/LDH nanocomposite were -21.4, 22.3, and 30.8 mV, respectively, while the average hydrodynamic sizes were 687, 735, and 528 nm, respectively. The antimicrobial activity of the produced samples was tested against several microbes. The results demonstrated that the nanocomposite displayed superior antimicrobial properties compared to those of its components. Among the microbes tested, Listeria monocytogenes ATCC 7644 was more sensitive (30 ± 0.34) to the biosynthesized nanocomposite than to CuO NPs (25 ± 0.05) and Zn-Al LDH (22 ± 0.011). In summary, the use of nanocomposites with superior antimicrobial properties has the potential to offer innovative solutions to the global challenge of antibiotic resistance by providing alternative treatments, reducing the reliance on traditional antibiotics, and contributing to the development of more effective and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Abdullah
A. Eweis
- Department
of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Maged S. Ahmad
- Department
of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ehab B. El Domany
- Biotechnology
and Life Sciences Department, Faculty of Postgraduate Studies for
Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohammed Al-Zharani
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mohammed Mubarak
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Zienab E Eldin
- Department
of Materials Science and Nanotechnology, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Yasser GadelHak
- Department
of Materials Science and Nanotechnology, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Rehab Mahmoud
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| | - Wael N. Hozzein
- Department
of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
6
|
Wang R, Zhang S, Zhang X, Liu Q. Preparation of hydrophobic layered double hydroxide-based composite pigments via octyltriethoxysilane surface modification for cosmetic applications. Dalton Trans 2024; 53:9406-9415. [PMID: 38757980 DOI: 10.1039/d4dt00531g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Pigments play a pivotal role in the cosmetic industry, in which the development of pigments with concurrent color diversity, hydrophobicity, biocompatibility and photostability remains a great challenge. Herein, we report organic-inorganic composite pigments synthesized via a combination of organic dye anions (Ponceau SX and acid green (AG)), layered double hydroxides (LDHs) and octyltriethoxysilane (OTEOS) (denoted as O/Dye-LDHs: O/SX-LDHs and O/AG-LDHs).The prepared composite pigments were characterized via a comprehensive investigation based on X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS-mapping), Fourier transform infrared (FT-IR) spectroscopy, CIE 1976 L*a*b* color scales, static contact angle measurement and HET-CAM assay. The results confirm the successful intercalation of organic dye anions into the interlayer region of LDHs via host-guest interactions and the surface modification of OTEOS on the layer surface, forming a new kind of hydrophobic organic-inorganic composite pigment with a sandwich structure. LDH layer protection and OTEOS coating play crucial roles in the high photostability, good hydrophobicity and satisfactory biocompatibility of pigments. In addition, O/Dye-LDHs exhibit rich color and color adjustability. Impressively, we applied mixture composite pigments with different O/SX-LDH-to-O/AG-LDH ratios to formulate an eye shadow cream, which present a series of popular and natural colours with water resistance to enhance one's attractiveness and appearance. This work provides a promising strategy for the design of safe and efficient composite pigments, demonstrating their potential application in the field of makeup.
Collapse
Affiliation(s)
- Ruiying Wang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.
| | - Shuang Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.
| | - Xi Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.
| | - Qi Liu
- Beijing EWISH Testing Technology Co., Ltd, Beijing, China
| |
Collapse
|
7
|
Mahgoub SM, Essam D, Eldin ZE, Moaty SAA, Shehata MR, Farghali A, Abdalla SEB, Othman SI, Allam AA, El-Ela FIA, Mahmoud R. Carbon supported ternary layered double hydroxide nanocomposite for Fluoxetine removal and subsequent utilization of spent adsorbent as antidepressant. Sci Rep 2024; 14:3990. [PMID: 38368467 PMCID: PMC10874413 DOI: 10.1038/s41598-024-53781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
Fluoxetine (FLX) is one of the most persistent pharmaceuticals found in wastewater due to increased use of antidepressant drugs in recent decades. In this study, a nanocomposite of ternary ZnCoAl layered double hydroxide supported on activated carbon (LAC) was used as an adsorbent for FLX in wastewater effluents. The nanocomposite was characterized using Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis (BET). The adsorption investigations showed that the maximum removal capacity was achieved at pH 10, with a 0.1 g/L adsorbent dose, 50 mL volume of solution, and at a temperature of 25 °C. The FLX adsorption process followed the Langmuir-Freundlich model with a maximum adsorption capacity of 450.92 mg/g at FLX concentration of 50 µg/mL. Density functional theory (DFT) computations were used to study the adsorption mechanism of FLX and its protonated species. The safety and toxicity of the nanocomposite formed from the adsorption of FLX onto LAC (FLX-LAC) was investigated in male albino rats. Acute toxicity was evaluated using probit analysis after 2, 6, and 24 h to determine LD50 and LD100 values in a rat model. The FLX-LAC (20 mg/kg) significantly increased and lengthened the sleep time of the rats, which is important, especially with commonly used antidepressants, compared to the pure standard FLX (7 mg/kg), regular thiopental sodium medicine (30 mg/kg), and LAC alone (9 mg/kg). This study demonstrated the safety and longer sleeping duration in insomniac patients after single-dose therapy with FLX-LAC. Selective serotonin reuptake inhibitors (SSRIs) like FLX were found to have decreased side effects and were considered the first-line mood disorder therapies.
Collapse
Affiliation(s)
- Samar M Mahgoub
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Doaa Essam
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Zienab E Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - S A Abdel Moaty
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed R Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Saif Elden B Abdalla
- Department of Medical Laboratory Science. College of Applied Medical Science, Jazan University, Jazan, Saudi Arabia
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. BOX 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
8
|
Mahmoud R, Kotb NM, GadelHak Y, El-Ela FIA, Shehata AZ, Othman SI, Allam AA, Rudayni HA, Zaher A. Investigation of ternary Zn-Co-Fe layered double hydroxide as a multifunctional 2D layered adsorbent for moxifloxacin and antifungal disinfection. Sci Rep 2024; 14:806. [PMID: 38191628 PMCID: PMC10774404 DOI: 10.1038/s41598-023-48382-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024] Open
Abstract
Layered double hydroxides have recently gained wide interest as promising multifunctional nanomaterials. In this work, a multifunctional ternary Zn-Co-Fe LDH was prepared and characterized using XRD, FTIR, BET, TEM, SEM, and EDX. This LDH showed a typical XRD pattern with a crystallite size of 3.52 nm and a BET surface area of 155.9 m2/g. This LDH was investigated, for the first time, as an adsorbent for moxifloxacin, a common fluoroquinolones antibiotic, showing a maximum removal efficiency and equilibrium time of 217.81 mg/g and 60 min, respectively. Its antifungal activity, for the first time, was investigated against Penicillium notatum, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Mucor fungi at various concentrations (1000-1.95 µg/mL). This LDH was found to be effective against a variety of fungal strains, particularly Penicillium and Mucor species and showed zones of inhibition of 19.3 and 21.6 mm for Penicillium and Mucor, respectively, with an inhibition of 85% for Penicillium species and 68.3% for Mucormycosis. The highest antifungal efficacy results were obtained at very low MIC concentrations (33.3 and 62 µg/ml) against Penicillium and Mucor, respectively. The results of this study suggest a promising multifunctional potential of this LDH for water and wastewater treatment and disinfection applications.
Collapse
Affiliation(s)
- Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Nada M Kotb
- Hydrogeology and Environment Department, Faculty of Earth Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ayman Z Shehata
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. BOX 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
| | - Amal Zaher
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
9
|
Mohamed H, Mahmoud R, Abdelwahab A, Farghali AA, Abo El-Ela FI, Allah AE. Multifunctional ternary ZnMgFe LDH as an efficient adsorbent for ceftriaxone sodium and antimicrobial agent: sustainability of adsorption waste as a catalyst for methanol electro-oxidation. RSC Adv 2023; 13:26069-26088. [PMID: 37664207 PMCID: PMC10472347 DOI: 10.1039/d3ra03426g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
In order to achieve sustainable benefits for the adsorption of wastewater pollutants, spent adsorbents need to be recycled and/or valorized. This work studied a two-dimensional (2D) ZnMgFe layered double hydroxide (LDH) for ceftriaxone sodium (CTX) adsorption. This LDH showed a crystallite size of 9.8 nm, a BET surface area of 367.59 m2 g-1, and a micro-sphere-like morphology. The factors investigated in this study were the adsorbent dose, initial concentration, initial pH, and contact time. ZnMgFe LDH showed 99% removal of CTX with a maximum adsorption capacity of 241.75 mg g-1 at pH = 5. The Dubinin-Radushkevich model was found to be the most adequate isotherm model. The spent adsorbent (ZnMgFe LDH/CTX) was reused as an electro-oxidation catalyst for direct methanol fuel cells. ZnMgFe LDH/CTX showed almost a 10-fold increase in electrochemical activity for all scan rates compared to bare ZnMgFe LDH in 1 M KOH. As methanol concentration increases, the maximum current density generated by both the ZnMgFe LDH and ZnMgFe LDH/CTX samples increases. Moreover, the maximum current density for ZnMgFe LDH/CTX was 47 mA cm-2 at a methanol concentration of 3 M. Both samples possess reasonable stability over a 3600 S time window with no significant deterioration of electrochemical performance. Moreover, the antimicrobial studies showed that ZnMgFe LDH had a significant antifungal (especially Aspergillus, Mucor, and Penicillium species) and antibacterial (with greater action against Gram-positive than negative) impact on several severe infectious diseases, including Aspergillus. This study paves the way for the reuse and valorization of selected adsorbents toward circular economy requirements.
Collapse
Affiliation(s)
- Hala Mohamed
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University 62511 Egypt
| | - Abdalla Abdelwahab
- Faculty of Science, Galala University Sokhna 43511 Suez Egypt
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Ahmed A Farghali
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University 62511 Egypt
| | - Abeer Enaiet Allah
- Chemistry Department, Faculty of Science, Beni-Suef University 62511 Egypt
| |
Collapse
|
10
|
Ansari L, Mashayekhi-Sardoo H, Baradaran Rahimi V, Yahyazadeh R, Ghayour-Mobarhan M, Askari VR. Curcumin-based nanoformulations alleviate wounds and related disorders: A comprehensive review. Biofactors 2023; 49:736-781. [PMID: 36961254 DOI: 10.1002/biof.1945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Despite numerous advantages, curcumin's (CUR) low solubility and low bioavailability limit its employment as a free drug. CUR-incorporated nanoformulation enhances the bioavailability and angiogenesis, collagen deposition, fibroblast proliferation, reepithelization, collagen synthesis, neovascularization, and granulation tissue formation in different wounds. Designing nanoformulations with controlled-release properties ensure the presence of CUR in the defective area during treatment. Different nanoformulations encompassing nanofibers, nanoparticles (NPs), nanospray, nanoemulsion, nanosuspension, nanoliposome, nanovesicle, and nanomicelle were described in the present study comprehensively. Moreover, for some other systems which contain nano-CUR or CUR nanoformulations, including some nanofibers, films, composites, scaffolds, gel, and hydrogels seems the CUR-loaded NPs incorporation has better control of the sustained release, and thereby, the presence of CUR until the final stages of wound healing is more possible. Incorporating CUR-loaded chitosan NPs into nanofiber increased the release time, while 80% of CUR was released during 240 h (10 days). Therefore, this system can guarantee the presence of CUR during the entire healing period. Furthermore, porous structures such as sponges, aerogels, some hydrogels, and scaffolds disclosed promising performance. These architectures with interconnected pores can mimic the native extracellular matrix, thereby facilitating attachment and infiltration of cells at the wound site, besides maintaining a free flow of nutrients and oxygen within the three-dimensional structure essential for rapid and proper wound healing, as well as enhancing mechanical strength.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Yahyazadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Abdel Aziz SAA, GadelHak Y, Mohamed MBED, Mahmoud R. Antimicrobial properties of promising Zn-Fe based layered double hydroxides for the disinfection of real dairy wastewater effluents. Sci Rep 2023; 13:7601. [PMID: 37164994 PMCID: PMC10172331 DOI: 10.1038/s41598-023-34488-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/02/2023] [Indexed: 05/12/2023] Open
Abstract
Bacterial resistance to conventional antibiotics is a serious challenge that requires novel antibacterial agents. Moreover, wastewater from dairy farms might contain countless number of pathogens, organic contaminants and heavy metals that consider a threat to the terrestrial and aquatic environment. Therefore, the development of cost-effective, highly operation-convenient, recyclable multifunctional antimicrobial agents became an urgent necessity. Layered double hydroxides (LDH) have shown promising results as antibacterial agents. However, more work is required to further investigate and improve the antimicrobial performance of LDH structures against pathogens. In this study three Zn-Fe based LDH were investigated for real dairy wastewater disinfection. The three LDH samples were cobalt substituted Zn-Fe LDH (CoZnFe), magnesium substituted Zn-Fe LDH (MgZnFe) and MgZnFe-Triazol LDH (MgZnFe-Tz) nanocomposite. Seventy-five wastewater samples were collected from a dairy farm sewage system. The sensitivity of isolated pathogens was tested against two commonly used disinfectants (Terminator and TH4) and was assessed against the three LDH samples at different concentrations. The overall prevalence of S. agalactiae, S. dysgalactiae and Staph. aureus was significantly at 80.0% (P-value = 0.008, X2 = 9.700). There was variable degree of resistance to the tested disinfectants, whereas the antimicrobial activity of CoZnFe LDH was increased significantly at a concentration of 0.005 mg/L followed by MgZnFe LDH while MgZnFe-Tz LDH showed minor antibacterial potency. It was concluded that CoZnFe LDH showed a better biocidal activity in killing the isolated resistant pathogens, making it a good choice tool in combating the zoonotic microbes in wastewater sources.
Collapse
Affiliation(s)
- Sahar Abdel Aleem Abdel Aziz
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Manar Bahaa El Din Mohamed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt.
| |
Collapse
|
12
|
GadelHak Y, Salama E, Abd-El Tawab S, Mouhmed EA, Alkhalifah DHM, Hozzein WN, Mohaseb M, Mahmoud RK, Amin RM. Waste Valorization of a Recycled ZnCoFe Mixed Metal Oxide/Ceftriaxone Waste Layered Nanoadsorbent for Further Dye Removal. ACS OMEGA 2022; 7:44103-44115. [PMID: 36506177 PMCID: PMC9730514 DOI: 10.1021/acsomega.2c05528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 05/14/2023]
Abstract
Waste valorization of spent wastewater nanoadsorbents is a promising technique to support the circular economy strategies. The terrible rise of heavy metal pollution in the environment is considered a serious threat to the terrestrial and aquatic environment. This led to the necessity of developing cost-effective, operation-convenient, and recyclable adsorbents. ZnCoFe mixed metal oxide (MMO) was synthesized using co-precipitation. The sample was characterized using X-ray powder diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Factors affecting the adsorption process such as pH, the dose of adsorbent, and time were investigated. ZnCoFe MMO showed the maximum adsorption capacity of 118.45 mg/g for ceftriaxone sodium. The spent MMO was recycled as an adsorbent for malachite green (MG) removal. Interestingly, the spent adsorbent showed 94% removal percent for MG as compared to the fresh MMO (90%). The kinetic investigation of the adsorption process was performed and discussed. In addition, ZnCoFe MMO was tested as an antimicrobial agent. The proposed approach opens up a new avenue for recycling wastes after adsorption into value-added materials for utilization in adsorbent production with excellent performance as antimicrobial agents.
Collapse
Affiliation(s)
- Yasser GadelHak
- Department
of Materials Science and Nanotechnology, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef62511, Egypt
| | - Esraa Salama
- Chemistry
Department, Faculty of Sciences. Beni-Suef
University. Beni-Suef62511, Egypt
| | - Samah Abd-El Tawab
- Food
Science and Technology Department, Faculty of Agriculture, Fayoum University, Fayoum63514, Egypt
| | - Eman Abouzied Mouhmed
- Food
Science and Technology Department, Faculty of Agriculture, Fayoum University, Fayoum63514, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Wael N. Hozzein
- Botany
and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef62511, Egypt
| | - Mona Mohaseb
- Physics Department,
Faculty of Science, Beni-Suef University, Beni-Suef62511, Egypt
- Department
of Physics, Faculty of Applied Sciences, Umm-Al-Qura University, Mecca21421, Saudi Arabia
| | - Rehab K. Mahmoud
- Chemistry
Department, Faculty of Sciences. Beni-Suef
University. Beni-Suef62511, Egypt
| | - Rafat M. Amin
- Physics Department,
Faculty of Science, Beni-Suef University, Beni-Suef62511, Egypt
| |
Collapse
|
13
|
Kumari A, Raina N, Wahi A, Goh KW, Sharma P, Nagpal R, Jain A, Ming LC, Gupta M. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics 2022; 14:2288. [PMID: 36365107 PMCID: PMC9698633 DOI: 10.3390/pharmaceutics14112288] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/13/2023] Open
Abstract
Wound healing is an intricate process of tissue repair or remodeling that occurs in response to injury. Plants and plant-derived bioactive constituents are well explored in the treatment of various types of wounds. Curcumin is a natural polyphenolic substance that has been used since ancient times in Ayurveda for its healing properties, as it reduces inflammation and acts on several healing stages. Several research studies for curcumin delivery at the wound site reported the effectiveness of curcumin in eradicating reactive oxygen species and its ability to enhance the deposition of collagen, granulation tissue formation, and finally, expedite wound contraction. Curcumin has been widely investigated for its wound healing potential but its lower solubility and rapid metabolism, in addition to its shorter plasma half-life, have limited its applications in wound healing. As nanotechnology has proven to be an effective technique to accelerate wound healing by stimulating appropriate mobility through various healing phases, curcumin-loaded nanocarriers are used for targeted delivery at the wound sites. This review highlights the potential of curcumin and its nanoformulations, such as liposomes, nanoparticles, and nano-emulsions, etc. in wound healing. This paper emphasizes the numerous biomedical applications of curcumin which collectively prepare a base for its antibiofilm and wound-healing action.
Collapse
Affiliation(s)
- Amrita Kumari
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Neha Raina
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Abhishek Wahi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Pratibha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Riya Nagpal
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Atul Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| |
Collapse
|
14
|
Muire PJ, Thompson MA, Christy RJ, Natesan S. Advances in Immunomodulation and Immune Engineering Approaches to Improve Healing of Extremity Wounds. Int J Mol Sci 2022; 23:4074. [PMID: 35456892 PMCID: PMC9032453 DOI: 10.3390/ijms23084074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/04/2022] Open
Abstract
Delayed healing of traumatic wounds often stems from a dysregulated immune response initiated or exacerbated by existing comorbidities, multiple tissue injury or wound contamination. Over decades, approaches towards alleviating wound inflammation have been centered on interventions capable of a collective dampening of various inflammatory factors and/or cells. However, a progressive understanding of immune physiology has rendered deeper knowledge on the dynamic interplay of secreted factors and effector cells following an acute injury. There is a wide body of literature, both in vitro and in vivo, abstracted on the immunomodulatory approaches to control inflammation. Recently, targeted modulation of the immune response via biotechnological approaches and biomaterials has gained attention as a means to restore the pro-healing phenotype and promote tissue regeneration. In order to fully realize the potential of these approaches in traumatic wounds, a critical and nuanced understanding of the relationships between immune dysregulation and healing outcomes is needed. This review provides an insight on paradigm shift towards interventional approaches to control exacerbated immune response following a traumatic injury from an agonistic to a targeted path. We address such a need by (1) providing a targeted discussion of the wound healing processes to assist in the identification of novel therapeutic targets and (2) highlighting emerging technologies and interventions that utilize an immunoengineering-based approach. In addition, we have underscored the importance of immune engineering as an emerging tool to provide precision medicine as an option to modulate acute immune response following a traumatic injury. Finally, an overview is provided on how an intervention can follow through a successful clinical application and regulatory pathway following laboratory and animal model evaluation.
Collapse
Affiliation(s)
- Preeti J. Muire
- Combat Wound Care Research Department, US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX 78234, USA; (M.A.T.); (R.J.C.)
| | | | | | - Shanmugasundaram Natesan
- Combat Wound Care Research Department, US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX 78234, USA; (M.A.T.); (R.J.C.)
| |
Collapse
|
15
|
Banna AHE, Youssef FS, Elzorba HY, Soliman AM, Mohamed GG, Ismail SH, Mousa MR, Elbanna HA, Osman AS. Evaluation of the wound healing effect of neomycin-silver nano-composite gel in rats. Int J Immunopathol Pharmacol 2022; 36:3946320221113486. [PMID: 35816452 PMCID: PMC9277443 DOI: 10.1177/03946320221113486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives: Both nano silver and neomycin have wound healing properties. Silver nanoparticles have been used as main compounds for therapeutic drug delivery systems against various ailments. The present study aimed to prepare a neomycin silver nano-composite gel easily, rapidly, and cheaply method to improve wound healing. Methods: Forty-five Wistar rats (150-200 g) divided into nine groups: wound untreated, wound fusidic acid treated, wound neomycin treated, three groups with wound and neomycin silver nano-composite gel at 1:1, 1:2, and 1:3 concentrations, respectively, and three groups wound treated silver nano gel at the previous concentrations, respectively. Percentages of wound healing and histopathological examination of the wound area were assessed in all groups. Results: Atomic force microscopy (AFM) and transmission electron microscopy (TEM) images demonstrated the spherical shape of neomycin silver nano-composite gel without aggregation but homogenous dispersion in a gel matrix. Dynamic light scattering (DLS) showed a 4 nm size of nano silver, which agrees with AFM image data analysis but not with TEM image due to the good coating of the gel matrix to silver nanoparticles. Dynamic light scattering Zeta potential was -21 mV, illustrating the high bioactivity of the neomycin silver nano-composite. The groups receiving neomycin silver nano-composite gel showed a significantly higher and dose dependent wound healing compared to other treatment groups. Conclusion: The present work confirmed the potential wound healing activity of neomycin silver nano-composite gel compared to either alone.
Collapse
Affiliation(s)
- Ahmed Hossni El Banna
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fady Sayed Youssef
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Ahmed M Soliman
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Gehad Genidy Mohamed
- Faculty of Nanotechnology for postgraduate studies - Cairo University- Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, Egypt
| | - Sameh Hamed Ismail
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Refaat Mousa
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Afaf Sayed Osman
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan
| |
Collapse
|