1
|
Ahmad S, Ouyang X, Duan S, Khan Z, Shen H. Co-application of zinc and oligosaccharides enhances zinc bioavailability, yield and nutritional quality of rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109964. [PMID: 40327902 DOI: 10.1016/j.plaphy.2025.109964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
Zinc (Zn) deficiency is a major abiotic factor impacting crop performance and human health. The co-application of oligosaccharides (Olg) and Zn (Olg-Zn) is an effective approach in improving Zn bioavailability, crop yield and nutritional quality. The current findings demonstrate that Olg-Zn application enhances photosynthesis, root-shoot biomass, grain yield, Zn uptake and Zn dissolution in gastric and gastrointestinal juices while reducing phytic acid and increasing Zn bioavailability. We conducted hydroponics and soil culture studies to investigate the synergy of Olg-Zn on rice growth, yield and grain quality. We found that the most effective treatments in hydroponics and soil cultures were Olg-Zn3 and Olg-ZnS2, which improved several morphological indices, such as root-shoot length and root-shoot fresh and dry weight. The findings reveal that higher photosynthesis traits and chlorophyll contents were recorded in Olg-Zn3 and Olg-ZnS2 treatments in hydroponics and soil cultures, respectively. Furthermore, compared to single Zn and Olg treatments, the Olg-Zn combination enhanced the uptake of Zn in roots, shoots and grains, resulting in higher grain yield in hydroponics (6.8 %-11.4 %) and soil culture (4.6 %-9.1 %). The application of Olg-Zn reduced phytic acid concentration by 4.7-15.3 % in hydroponics and 5.6-12.3 % in soil culture, improving Zn bioavailability by 2.2-16.6 % and 11.1-15.8 % by upregulating the expression level of Zn transporter genes, ultimately enhancing the nutritional quality of rice. Additionally, Olg-Zn improved Zn dissolution in gastric juice by 3.1-21.4 % and 3.5-19.6 %, and Zn dissolution in gastrointestinal juice was boosted by 3.7-19.7 % and 5.9-17.2 %, facilitating better Zn absorption and bioavailability in humans. However, treatments like Olg-ZnS4 and Olg-ZnS5 in soil culture slightly reduced rice yield and nutritional quality by hindering Zn bioavailability and increasing phytic acid concentration. In summary, this study highlights that an appropriate Olg-Zn combination enhances Zn uptake, leading to improved rice yield and quality, thus potentially benefitting human health.
Collapse
Affiliation(s)
- Sajjad Ahmad
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China.
| | - Xin Ouyang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China.
| | - Songpo Duan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China.
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China.
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
2
|
He Y, Sun H, Li J, Olajide TM, Han B, Yang M, Liao X, Huang J. Synergistic Effects of Zinc Fortification and Ultrasonic Treatment on Bioactive Compounds, Antioxidant Activity, and Metabolomic Profiles of Germinated Black Rice. J Food Sci 2025; 90:e70294. [PMID: 40433914 DOI: 10.1111/1750-3841.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/15/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Fortified germination is regarded as a straightforward and potent approach to boost the nutritional value and bioactive compounds of cereal seeds, and it is also used for cereal micronutrient fortification. Zinc (Zn) and ultrasound treatments have been applied in the fortified germination of cereals. This paper primarily investigated the synergistic effects of Zn fortification at varying concentrations and ultrasonic treatment on germinated black rice and its associated metabolomic profile. The results indicated that Zn fortification coupled with ultrasonic treatment increased Zn content, total flavonoid content, total polyphenol content, and antioxidant properties of germinated black rice. Untargeted metabolomics analysis of germinated black rice without Zn fortification or ultrasound treatment (GBR), ultrasound-treated germinated black rice (UGBR), 150 mg/L Zn-treated germinated black rice (GBR-Zn150), and combined 150 mg/L Zn and ultrasound-treated germinated black rice (UGBR-Zn150) revealed 307 metabolites. The differential metabolites (DMs) analysis demonstrated that UGBR-Zn150 exhibited the most metabolic changes. A notable upregulation of DMs in the phenylpropanoids and polyketides (PPs) was observed. Among these metabolites, gossypetin, taxifoliol, datiscin, and irigenol exhibited a significant positive correlation with antioxidant ability (p < 0.05). The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed four significantly enriched metabolic pathways, which contributed to increased phenolic compounds and gamma-aminobutyric acid (GABA), thereby enhancing its nutritional value and antioxidant properties. These results suggest that Zn fortification combined with ultrasonic treatment may serve as a promising approach for improving the nutritional fortified profile of germinated seeds. PRACTICAL APPLICATION: The synergistic treatment of germination with Zn fortification and ultrasound is an effective approach to enhance the Zn content, nutritional quality, and functional properties of black rice. This method promotes the potential application of germinated black rice in functional foods and provides a novel strategy for addressing Zn deficiency issues.
Collapse
Affiliation(s)
- Yiqing He
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Haiwen Sun
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiacheng Li
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tosin Michael Olajide
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Shanghai, China
| | - Bingyao Han
- College of Sciences, Shanghai University, Shanghai, China
| | - Minxin Yang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Mishra AK, Padbhushan R, Bharti P, Sharma S, Patnaik GP. Evaluation and refinement of zinc management options for field-specific nutrient management in eastern India. Sci Rep 2025; 15:11316. [PMID: 40175377 PMCID: PMC11965399 DOI: 10.1038/s41598-024-84499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/24/2024] [Indexed: 04/04/2025] Open
Abstract
In eastern India, zinc (Zn) has emerged as the most critical micronutrient impacting the yield of rice. Experiments were conducted for 2 years during the Rabi and Kharif rice seasons at 339 on-farm locations in five districts and four agroclimatic zones of Odisha state in eastern India to study the management of Zn in rice nurseries and the transplanted crop. At each location, five treatment plots were established in which nitrogen (N), phosphorus (P) and potassium (K) were applied to rice following site-specific nutrient management as guided by Rice Crop Manager (RCM), a web-based tool. In the three treatments, the rice nursery was treated with compost (4 t ha-1) or 50 or 100 kg Zn sulfate ha-1 (on a nursery basis), while the transplanted crop was supplied with only N, P, and K. In the remaining two treatments, no compost or Zn was applied to the rice nursery, but 12.5 or 25 kg Zn sulfate ha-1 was applied along with N, P, and K to the transplanted crop. Rice grain yield, system yield, and gross return above fertilizer cost (GRF) were significantly greater (p < 0.05) with the application of 50 kg Zn sulfate ha-1 than with the application of compost (farmer practices) to rice nurseries. Applying 100 kg Zn sulfate ha⁻1 to the nursery or 12.5-25 kg Zn sulfate ha⁻1 to transplanted rice did not increase yield or GRF. Higher yield, grain Zn content, and GHG emissions occurred in the Rabi season, with the lowest GHG emissions recorded when the nursery received 100 kg Zn sulfate ha⁻1 in both seasons. The results of this study convincingly prove the usefulness of applying Zn along with site specific nutrient management (SSNM) in rice in eastern India to produce high yields and GRFs and reduce GHG emissions.
Collapse
Affiliation(s)
- Ajay Kumar Mishra
- International Rice Research Institute-India Office, NASC Complex, Pusa, 110012, New Delhi, India
| | - Rajeev Padbhushan
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Preeti Bharti
- International Rice Research Institute-India Office, NASC Complex, Pusa, 110012, New Delhi, India
| | - Sheetal Sharma
- International Rice Research Institute-India Office, NASC Complex, Pusa, 110012, New Delhi, India.
| | - Girija Prasad Patnaik
- International Rice Research Institute-India Office, NASC Complex, Pusa, 110012, New Delhi, India
| |
Collapse
|
4
|
Saleem S, Khan ST. Formulation of a consortium-based Zn biofertilizer, and its quality control, to improve Zn status of wheat grains and Wistar rat blood plasma. PHYSIOLOGIA PLANTARUM 2025; 177:e70206. [PMID: 40189817 DOI: 10.1111/ppl.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/15/2025] [Accepted: 02/15/2025] [Indexed: 05/17/2025]
Abstract
Zn-deficiency causes immense losses to agriculture and leads to various human health issues adding to the burden on the global healthcare system. Growing zinc-dense cereals using Zn-biofertilizer is one of the most enticing solutions to the problem. In this study a Zn-biofertilizer containing a consortium of Zn-solubilizing strains of Streptomyces sp., Pseudomonas sp. and Zinc oxide nanoparticles as source of Zn was prepared. Strains showing an excellent Zn-solubilization efficiency (>200%), additional plant-growth-promoting traits, abiotic stress tolerance, and root colonization were selected. Seven experiments, mainly comparing the influence of bulk and nano-ZnO as Zn-sources in combination with the prepared Zn-biofertilizer on wheat plant growth and grain Zn-fortification were performed. When wheat plants were grown in the presence of prepared biofertilizer and nano-ZnO a significant increase in plant vegetative growth and grain yield was observed. A 35.1%, 60.5% and 67.2% increase in total- plant length, fresh and dry-weight respectively, was observed compared to the control. Similarly, wheat grains per spike, grain yield, and grain protein increased by 17.0%, 13.9%, and 47.5%, respectively. The Atomic Absorption Spectroscopy and SEM-EDX of wheat grains grown with biofertilizer and nano-ZnO reveal a high Zn-content (43.0 ± 0.5 mg kg-1) in the grains. The AAS analysis of the blood from Wistar rats fed with Zn-dense wheat flour obtained in the study shows a higher Zn-content (7.79 ± 0.18 μg ml-1) in the blood than those fed with control flour. This study conclusively proves that the prepared Zn-biofertilizer with ZnO-nanoparticles can improve the Zn-content of wheat, consequently increasing blood Zn-content in rats.
Collapse
Affiliation(s)
- Shaibi Saleem
- Department of Agricultural Microbiology; Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shams Tabrez Khan
- Department of Agricultural Microbiology; Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
5
|
Ayub H, Jabeen U, Ahmad I, Aamir M, Ullah A, Mushtaq A, Behlil F, Javaid B, Syed A, Elgorban AM, Bahkali AH, Zairov R, Ali A. Enhanced anticancer and biological activities of environmentally friendly Ni/Cu-ZnO solid solution nanoparticles. Heliyon 2024; 10:e39912. [PMID: 39687105 PMCID: PMC11647829 DOI: 10.1016/j.heliyon.2024.e39912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/27/2024] [Indexed: 12/18/2024] Open
Abstract
The study investigates the impact of incorporating Ni and Cu into the lattice of ZnO nanoparticles (NPs) to enhance their anticancer and antioxidant properties. Characterization techniques including pXRD, FTIR, UV-visible absorption spectroscopy, FESEM, and EDAX confirm the successful synthesis and structural modifications of Ni/Cu-ZnO NPs. Anticancer activity against breast cancer (MDA) and normal skin (BHK-21) cells reveals dose-dependent cytotoxicity, with Ni/Cu-ZnO NPs exhibiting higher efficacy against MDA cells while being less harmful to BHK-21 cells. Morphological studies corroborate these findings. Additionally, antioxidant assays using TAC, FRAP, and DPPH assay demonstrate the superior antioxidant activity of Ni/Cu-ZnO NPs matched to pure ZnO. Overall, the synergistic effect of Ni and Cu incorporation leads to improved therapeutic potential, making Ni/Cu-ZnO NPs promising candidates for cancer therapy and antioxidant applications. Molecular docking recreations were performed using Auto Dock Vina software to gain more insights and validate the observed biological activities of un-doped ZnO and bi-metal doped ZnO NPs, we investigated the interaction and binding affinities of pure ZnO and bimetallic metal co-doped ZnO for their antioxidant and anticancer studies. Ni/Cu-ZnO have shown good antioxidants and exhibited remarkable anticancer activities.
Collapse
Affiliation(s)
- Huma Ayub
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Uzma Jabeen
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Iqbal Ahmad
- Department of Chemistry, Allama Iqbal Open University, Islamabad, 44000, Pakistan
| | - Muhammad Aamir
- Materials Laboratory, Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Mirpur, (AJK), Pakistan
| | - Asad Ullah
- Center for Advanced Studies in Vaccinology & Biotechnology (CASVAB), Quetta, Pakistan
| | - Ayesha Mushtaq
- Department of Biochemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Farida Behlil
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Binish Javaid
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Mirpur, (AJK), Pakistan
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rustem Zairov
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, 420008, 1/29 Lobachevskogo str., Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Asad Ali
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187, Luleå, Sweden
| |
Collapse
|
6
|
Gökmen GG, Mirsafi FS, Leißner T, Akan T, Mishra YK, Kışla D. Zinc oxide nanomaterials: Safeguarding food quality and sustainability. Compr Rev Food Sci Food Saf 2024; 23:e70051. [PMID: 39530622 DOI: 10.1111/1541-4337.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
In this era, where food safety and sustainability are paramount concerns, the utilization of zinc oxide (ZnO) nanoparticles (NPs) is a promising solution to enhance the safety, quality, and sustainability of food products. ZnO NPs in the food industry have evolved significantly over time, reflecting advancements in synthesizing methods, antimicrobial activities, and risk assessment considerations for human health and the environment. This comprehensive review delves into the historical trajectory, current applications, and prospects of ZnO NPs in food-related contexts. Synthesizing methods, ranging from solvothermal and solgel techniques to laser ablation and microfluidic reactors, have facilitated the production of ZnO NPs with tailored properties suited for diverse food applications. The remarkable antimicrobial activity of ZnO NPs against a wide spectrum of pathogens has garnered attention for their potential to enhance food safety and extend shelf-life. Furthermore, comprehensive risk assessment methodologies have been employed to evaluate the potential impacts of ZnO NPs on human health and the environment, regarding toxicity, migration, and ecological implications. By navigating the intricate interplay between synthesis methods, antimicrobial efficacy, inhibitory mechanisms, and risk assessment protocols, by elucidating the multifaceted role of ZnO NPs in shaping the past, present, and future of the food industry, this review offers valuable insights and promising avenues for researchers, policymakers, and industry stakeholders to enhance food safety, quality, and sustainability.
Collapse
Affiliation(s)
- Gökhan Gurur Gökmen
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| | - Fatemeh Sadat Mirsafi
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Till Leißner
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Tamer Akan
- Department of Physics, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Odunpazarı, Turkey
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Duygu Kışla
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| |
Collapse
|
7
|
Das I, Borah D. Microbial biosurfactant-mediated green synthesis of zinc oxide nanoparticles (ZnO NPs) and exploring their role in enhancing chickpea and rice seed germination. DISCOVER NANO 2024; 19:174. [PMID: 39487377 PMCID: PMC11530582 DOI: 10.1186/s11671-024-04134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Malnutrition is one of the greatest challenges faced by humanity, which may be addressed by improving crop productivity to ensure food security. However, extensive use of synthetic fertilizers can lead to soil fertility degradation. This study highlights the potential of combining nanotechnology with biotechnology to enhance the germination rates of commercially important crop seeds. Bacterial biosurfactant extracted from a newly isolated Klebsiella sp. strain RGUDBI03 was used as a reducing and capping agent for the synthesis of zinc oxide nanoparticles (ZnO NPs) through a simple method. Extensive characterization of ZnO NPs through electron microscopic analysis showed well-dispersed, homogeneous NPs with a size range of 2-10 nm. High-resolution transmission electron microscopy (HR-TEM) images also revealed molecular fringes of 0.26 nm in single crystal ZnO NPs, with approximately 50% of the NPs exhibiting a size range of 2-4 nm. X-ray diffraction (XRD) results of ZnO NPs indicated the presence of (100), (002), (101), (102), (200), and (112) planes, confirming their crystalline nature. The presence of C = C-H, C = C, C-H, and C = C groups in both the bacterial biosurfactant and ZnO NPs, as depicted by Fourier-transform infrared spectroscopy (FTIR) spectra, confirmed the function of the biosurfactant as a reducing and capping agent. The nano-primed chickpea (Cicer arietinum) and rice (Oryza sativa) seeds showed an increase in water uptake rate, 89% and 92% respectively, compared to the control (73% and 44%), leading to an enhanced germination rate of 98% and 76%, compared to their respective controls (80% and 30%) under optimized conditions. Additionally, the nano-primed seeds exhibited higher levels of α-amylase activity in both seeds (0.37 mg/g for chickpea and 2.49 mg/g for rice) compared to the control. Notably, the ZnO NP priming solution exhibited no cytotoxicity on red blood cells and earthworms (Eudrilus eugeniae), indicating their non-cytotoxic and eco-friendly nature for future field trials.
Collapse
Affiliation(s)
- Indukalpa Das
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035, India
| | - Debajit Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035, India.
| |
Collapse
|
8
|
Sorahinobar M, Saadati F, Khaksar S. Zinc oxide nanoparticle biofortification of lentil seedlings enhances plant growth and zinc bioavailability in rats. Sci Rep 2024; 14:24708. [PMID: 39433785 PMCID: PMC11494182 DOI: 10.1038/s41598-024-74653-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
This study aimed to evaluate the potential of zinc oxide nanoparticles (ZnO NPs) in the biofortification of lentil seedlings and subsequently improve the Zn status in rats. In the first phase of the study, the effects of various ZnO NPs concentrations (0, 10, 20, 40, 80, and 160 ppm) on the lentil growth, Zn accumulation, and other physiological parameters were investigated. Subsequently, the rats were fed ZnO NP-biofortified lentil seedlings (20 and 160 ppm) to assess their impact on animal health and Zn status. The results highlighted a concentration-dependent response of lentil seedlings to ZnO NPs, with optimal growth observed at 20 ppm, whereas higher concentrations inhibited lentil growth. Pigment and biochemical analyses revealed a complex interplay between chlorophyll, carotenoids, soluble sugars, and proteins with distinct responses to nanoparticle concentrations. Elevated levels of hydrogen peroxide and malondialdehyde of lentil seedlings at high concentrations of ZnO NPs suggest oxidative stress, countered by the upregulation of antioxidant enzymes and increased phenolic compounds. On the other hand. animal studies have showed that ZnO NP-biofortified lentil seedlings enhance serum zinc and magnesium levels in rats without affecting body weight. While serum triglyceride levels of rats decreased in both treatment groups, an elevation in creatinine and a marked increase in aspartate aminotransferase (AST) levels were observed at a higher ZnO NP concentration (160 ppm), indicative of potential kidney and liver stress. Paradoxically, serum iron levels were lower in all groups consuming lentil seedlings than in the control group, suggesting a potential interaction between lentil components and iron metabolism. These findings suggest that ZnO NP-biofortified lentils may be a promising approach to enhance Zn nutrition; however, further investigation is needed to optimize ZnO NPs concentration and assess long-term safety.
Collapse
Affiliation(s)
- Mona Sorahinobar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, P.Code: 199389397, Tehran, Iran.
| | - Fatemeh Saadati
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, P.Code: 199389397, Tehran, Iran
| | - Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, P.Code: 199389397, Tehran, Iran
| |
Collapse
|
9
|
Peng W, Lu Z, Liu E, Wu W, Yu S, Sun J. Preparation, Mechanical Properties, and Degradation Behavior of Zn-1Fe- xSr Alloys for Biomedical Applications. J Funct Biomater 2024; 15:289. [PMID: 39452588 PMCID: PMC11508743 DOI: 10.3390/jfb15100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
As biodegradable materials, zinc (Zn) and zinc-based alloys have attracted wide attention owing to their great potential in biomedical applications. However, the poor strength of pure Zn and binary Zn alloys limits their wide application. In this work, a stir casting method was used to prepare the Zn-1Fe-xSr (x = 0.5, 1, 1.5, 2 wt.%) ternary alloys, and the phase composition, microstructure, tensile properties, hardness, and degradation behavior were studied. The results indicated that the SrZn13 phase was generated in the Zn matrix when the Sr element was added, and the grain size of Zn-1Fe-xSr alloy decreased with the increase in Sr content. The ultimate tensile strength (UTS) and Brinell hardness increased with the increase in Sr content. The UTS and hardness of Zn-1Fe-2Sr alloy were 141.65 MPa and 87.69 HBW, which were 55.7% and 58.4% higher than those of Zn-1Fe alloy, respectively. As the Sr content increased, the corrosion current density of Zn-1Fe-xSr alloy increased, and the charge transfer resistance decreased significantly. Zn-1Fe-2Sr alloy had a degradation rate of 0.157 mg·cm-2·d-1, which was 118.1% higher than the degradation rate of Zn-1Fe alloy. Moreover, the degradation rate of Zn-1Fe-xSr alloy decreased significantly with the increase in immersion time.
Collapse
Affiliation(s)
- Wen Peng
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; (W.W.); (J.S.)
| | - Zehang Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Z.L.); (E.L.); (S.Y.)
| | - Enyang Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Z.L.); (E.L.); (S.Y.)
| | - Wenteng Wu
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; (W.W.); (J.S.)
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Z.L.); (E.L.); (S.Y.)
| | - Jie Sun
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; (W.W.); (J.S.)
| |
Collapse
|
10
|
Todd EA, Mirsky NA, Silva BLG, Shinde AR, Arakelians ARL, Nayak VV, Marcantonio RAC, Gupta N, Witek L, Coelho PG. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J Funct Biomater 2024; 15:280. [PMID: 39452579 PMCID: PMC11509029 DOI: 10.3390/jfb15100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing process, while simultaneously enabling or improving regeneration through amplified cellular cues between the scaffold and native tissues. Ample research on functionalization has been conducted to improve scaffold-host tissue interaction, including fabrication techniques, biomaterial selection, scaffold surface modifications, integration of bioactive molecular additives, and post-processing modifications. Each of these methods plays a crucial role in enabling scaffolds to not only support but actively participate in the healing and regeneration process in bone and joint surgery. This review provides a state-of-the-art, comprehensive overview of the functionalization of scaffold-based strategies used in tissue engineering, specifically for bone regeneration. Critical issues and obstacles are highlighted, applications and advances are described, and future directions are identified.
Collapse
Affiliation(s)
- Emily Ann Todd
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Bruno Luís Graciliano Silva
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara 01049-010, Brazil
| | - Ankita Raja Shinde
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aris R. L. Arakelians
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Nikhil Gupta
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
11
|
Zhao S, Wang L, Liang J, Jin F, Wang F. Preparation, characterization and microencapsulation of walnut (Juglans regia L.) peptides-zinc chelate. J Food Sci 2024; 89:5618-5632. [PMID: 39126687 DOI: 10.1111/1750-3841.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 08/12/2024]
Abstract
In this research, a novel kind of walnut (Juglans regia L.) peptides-zinc (Zn-WPs) chelate was obtained using the mass ratio of the walnut peptides (WPs) to ZnSO4.7H2O of 3.5:1 at pH 8.5 and 50°C for 84 min, with the chelation rate of 84.5%. In comparison to walnut peptides (WPs), the contents of aspartic acid and glutamic acid in Zn-WPs chelate are approximately 27%, indicating that hydrophilic amino acids predominantly bind with walnut peptides. Following chelation with zinc ions, the ultraviolet-visible (UV) characteristic absorption peak shifted from 213 nm to 210 nm, while the average particle size of the chelate increased to 8.0 ± 0.14 µm, presenting a loose spherical structure under scanning electron microscopy. These findings suggest the formation of new substances. Fourier-transform infrared spectroscopy (FTIR) revealed carboxyl, amino, and peptide bonds as the chelation sites of WPs and zinc. The IC50 of walnut peptides-zinc (Zn-WPs) chelate is 2.91 mg/mL, indicative of a favorable DPPH radical scavenging rate. Furthermore, Zn-WPs chelate microcapsules were produced via the spray drying method, achieving an encapsulation rate of 75.67 ± 0.83% under optimal conditions. These microcapsules demonstrate robust stability across diverse environmental conditions. This study underscores the potential of Zn-WPs and its chelate microcapsules to enhance stability and bioactivity under varying circumstances. PRACTICAL APPLICATION: In this study, a new walnut peptide-zinc (Zn-WPs) chelate was prepared. The presence of zinc ions changes the structure and properties of walnut peptides and improves its stability. The production of Zn-WPs chelate microcapsules enables Zn-WPs to have strong in vitro stability under different pH and simulated gastrointestinal digestion conditions. These results provide novel insights for developing the walnut peptides as bioactive ingredients in functional foods.
Collapse
Affiliation(s)
- Sibao Zhao
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lei Wang
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jingyi Liang
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Feng Jin
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Fengjun Wang
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Song C, Zhong R, Zeng S, Chen Z, Tan M, Zheng H, Gao J, Lin H, Zhu G, Cao W. Effect of baking on the structure and bioavailability of protein-binding zinc from oyster (Crassoetrea hongkongensis). Food Chem 2024; 451:139471. [PMID: 38692241 DOI: 10.1016/j.foodchem.2024.139471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
To compare the bioavailability of protein-binding zinc, we investigated the impact of baking on the structure of zinc-binding proteins. The results showed that zinc-binding proteins enriched in zinc with relative molecular weights distributed at 6 kDa and 3 kDa. Protein-binding zinc is predisposed to separate from proteins' interiors and converge on proteins' surface after being baked, and its structure tends to be crystalline. Especially -COO, -C-O, and -C-N played vital roles in the sites of zinc-binding proteins. However, baking did not affect protein-binding zinc's bioavailability which was superior to that of ZnSO4 and C12H22O14Zn. They were digested in the intestine, zinc-binding complexes that were easily transported and uptaken by Caco-2 cells, with transport and uptake rates as high as 62.15% and 15.85%. Consequently, baking can alter the conformation of zinc-binding proteins without any impact on protein-binding zinc's bioavailability which is superior to that of ZnSO4 and C12H22O14Zn.
Collapse
Affiliation(s)
- Chunyong Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Runfang Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shan Zeng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Mingtang Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Guoping Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China..
| |
Collapse
|
13
|
Ahmed N, Deng L, Narejo MUN, Baloch I, Deng L, Chachar S, Li Y, Li J, Bozdar B, Chachar Z, Hayat F, Chachar M, Gong L, Tu P. Bridging agro-science and human nutrition: zinc nanoparticles and biochar as catalysts for enhanced crop productivity and biofortification. FRONTIERS IN PLANT SCIENCE 2024; 15:1435086. [PMID: 39220014 PMCID: PMC11361987 DOI: 10.3389/fpls.2024.1435086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The integration of zinc nanoparticles (Zn NPs) with biochar offers a transformative approach to sustainable agriculture by enhancing plant productivity and human nutrition. This combination improves soil health, optimizes nutrient uptake, and increases resilience to environmental stressors, leading to superior crop performance. Our literature review shows that combining Zn NPs with biochar significantly boosts the crop nutrient composition, including proteins, vitamins, sugars, and secondary metabolites. This enhancement improves the plant tolerance to environmental challenges, crop quality, and shelf life. This technique addresses the global issue of Zn deficiency by biofortifying food crops with increased Zn levels, such as mung beans, lettuce, tomatoes, wheat, maize, rice, citrus, apples, and microgreens. Additionally, Zn NPs and biochar improve soil properties by enhancing water retention, cation exchange capacity (CEC), and microbial activity, making soils more fertile and productive. The porous structure of biochar facilitates the slow and sustained release of Zn, ensuring its bioavailability over extended periods and reducing the need for frequent fertilizer applications. This synergy promotes sustainable agricultural practices and reduces the environmental footprint of the traditional farming methods. However, potential ecological risks such as biomagnification, nanoparticle accumulation, and toxicity require careful consideration. Comprehensive risk assessments and management strategies are essential to ensure that agricultural benefits do not compromise the environmental or human health. Future research should focus on sustainable practices for deploying Zn NPs in agriculture, balancing food security and ecological integrity and positioning this approach as a viable solution for nutrient-efficient and sustainable agriculture.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, China
| | | | - Iqra Baloch
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Bilquees Bozdar
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Faisal Hayat
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | | | - Lin Gong
- Dongguan Yixiang Liquid Fertilizer Co. Ltd., Dongguan, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Cyriac J, Sreejit CM, Yuvaraj M, Joseph S, Priya RS, Saju F, Thomas B. Zinc-exchanged montmorillonite clay: A promising slow-release nanofertilizer for rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108790. [PMID: 38838571 DOI: 10.1016/j.plaphy.2024.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
This study is to examine zinc exchanged montmorillonite (Zn-MMT) as a potential slow release nanofertilizer for rice crop. The effective intercalation of zinc within the montmorillonite inter layers was firmly established via analytical techniques including Zeta potential, FE-SEM (Field Emission Scanning Electron Microscopy) with Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscope (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The efficacy of Zn-MMT was examined by evaluating its ability to facilitate controlled zinc release, as confirmed through an incubation study. Subsequently, the kinetics of zinc release was analyzed by different mathematical models such as Zero-order kinetics, First-order kinetics, the Higuchi model, and the Korsmeyer-Peppas model. From the pot culture study spanning 90 days the results indicated that Zn-MMT had significantly high plant height, Leaf Area Index (LAI), Dry Matter Production (DMP), number of tillers per hill, panicles length, increased grain and straw yield, in comparison with conventional zinc sulphate (ZnSO4). Total phenol, total protein and total chlorophyll content were significantly at higher levels with Zn-MMT treated rice crops as compared to conventional fertilizers and control. A similar trend was seen with phytochemicals such as Indole Acetic Acid (IAA), Superoxide Dismutase (SOD) and Carbonic Anhydrase (CA). Notably, rice grains harvested from Zn-MMTtreated crops exhibited significantly higher zinc content than those using other treatments. This Zn-MMT can be confirmed as a better alternative to conventional zinc sulphate fertilizers owing to its slow-release of nutrient into the soil and thus increased zinc use efficiency.
Collapse
Affiliation(s)
- Jaiby Cyriac
- Department of Botany, Newman College, Thodupuzha, Kerala, India; Mahatma Gandhi University Centre for Research in Botany, Research Department of Botany, SNM College, Maliankara, Kerala, India.
| | - C M Sreejit
- Mahatma Gandhi University Centre for Research in Botany, Research Department of Botany, SNM College, Maliankara, Kerala, India
| | - M Yuvaraj
- Agricultural College and Research Institute, Vazhavachanur, Tiruvannamalai, Tamil Nadu, India
| | - Sindhu Joseph
- Department of Chemistry, Bharata Mata College, Thrikkakara, Kerala, India
| | - R Sathya Priya
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Fels Saju
- Department of pharmaceutical science, Nirmala College of Pharmacy, Muvattupuzha, Kerala, India
| | - Bejoy Thomas
- Mahatma Gandhi University Centre for Research in Chemistry, Department of Chemistry, Newman College, Thodupuzha, Kerala, India.
| |
Collapse
|
15
|
Ahmed M, Marrez DA, Rizk R, Zedan M, Abdul-Hamid D, Decsi K, Kovács GP, Tóth Z. The Influence of Zinc Oxide Nanoparticles and Salt Stress on the Morphological and Some Biochemical Characteristics of Solanum lycopersicum L. Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1418. [PMID: 38794488 PMCID: PMC11125107 DOI: 10.3390/plants13101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Salinity reduces crop yields and quality, causing global economic losses. Zinc oxide nanoparticles (ZnO-NPs) improve plant physiological and metabolic processes and abiotic stress resistance. This study examined the effects of foliar ZnO-NPs at 75 and 150 mg/L on tomato Kecskeméti 549 plants to alleviate salt stress caused by 150 mM NaCl. The precipitation procedure produced ZnO-NPs that were characterized using UV-VIS, TEM, STEM, DLS, EDAX, Zeta potential, and FTIR. The study assessed TPCs, TFCs, total hydrolyzable sugars, total free amino acids, protein, proline, H2O2, and MDA along with plant height, stem width, leaf area, and SPAD values. The polyphenolic burden was also measured by HPLC. With salt stress, plant growth and chlorophyll content decreased significantly. The growth and development of tomato plants changed by applying the ZnO-NPs. Dosages of ZnO-NPs had a significant effect across treatments. ZnO-NPs also increased chlorophyll, reduced stress markers, and released phenolic chemicals and proteins in the leaves of tomatoes. ZnO-NPs reduce salt stress by promoting the uptake of minerals. ZnO-NPs had beneficial effects on tomato plants when subjected to salt stress, making them an alternate technique to boost resilience in saline soils or low-quality irrigation water. This study examined how foliar application of chemically synthesized ZnO-NPs to the leaves affected biochemistry, morphology, and phenolic compound synthesis with and without NaCl.
Collapse
Affiliation(s)
- Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Diaa Attia Marrez
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Roquia Rizk
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Mostafa Zedan
- National Institute of Laser Enhanced Science, Cairo University, Giza 12613, Egypt;
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Gergő Péter Kovács
- Institute of Agronomy, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| |
Collapse
|
16
|
Madaan K, Sharma S, Kalia A. Effect of selenium and zinc biofortification on the biochemical parameters of Pleurotus spp. under submerged and solid-state fermentation. J Trace Elem Med Biol 2024; 82:127365. [PMID: 38171269 DOI: 10.1016/j.jtemb.2023.127365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Pleurotus has a remarkable nutritional and nutraceutical profile due to mineral mobilization and accumulation abilities from the substrate. The present study aimed to observe the effect of single and dual supplementations Se and Zn on biochemical parameters of P. florida, P. sajor caju and P. djamor. Also, the bioaccumulation of the trace elements in fortified mushrooms was estimated. METHODS Biomass production and radial growth rate were observed on Se and Zn supplemented broth and agar based medium. Furthermore, the influence of Se and Zn supplementation was recorded on the fruit body yield. The colorimetric assays were employed to estimate total soluble protein, total phenol and total flavonoid contents. The antioxidant activity was assayed as DPPH radical scavenging test. While, ICP-AES was performed to estimate the variation in the Zn and Se content of the fruit bodies. RESULTS The Se supplementation at low rate resulted in improvement in the radial growth rate and biomass production for P. sajor caju. For solid-state fermentation, a better yield was obtained with inorganic salt supplementation in comparison to organically enriched Se straw. The maximum total soluble protein content and total flavonoid content were observed in fruit bodies of P. sajor caju at 4 mg L -1 of Se and Se-Zn respectively. Pleurotus djamor exhibited the highest total phenolic content on Zn supplementation (10 mg L-1). Improved antioxidant potential was recorded with dual supplementations. Salt supplementations caused shrinkage, distortion of the fungal hyphae, and decreased basidiospores with significant amelioration in elemental composition in fortified mushrooms. CONCLUSION The inorganic salt supplementation increased the biochemical potential of Pleurotus spp. in comparison to organically enriched substrate which could further be used for the development of dietary supplements.
Collapse
Affiliation(s)
- Kashish Madaan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Shivani Sharma
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Anu Kalia
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
17
|
Chen C, Li W, Gao J, Cao W, Qin X, Zheng H, Lin H, Chen Z. Purification, Characterization, cDNA Cloning, and Bioinformatic Analysis of Zinc-Binding Protein from Magallana hongkongensis. Molecules 2024; 29:900. [PMID: 38398650 PMCID: PMC10892192 DOI: 10.3390/molecules29040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Oysters contain significant amounts of the zinc element, which may also be found in their proteins. In this study, a novel zinc-binding protein was purified from the mantle of the oyster Magallana hongkongensis using two kinds of gel filtration chromatograms. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that its molecular weight was approximately 36 kDa. The protein identified by the Q-Exactive mass spectrometer shared the highest sequence identity with carbonic anhydrase derived from Crassostrea gigas concerning amino acid sequence similarity. Based on homologous cloning and RACE PCR, the full-length cDNA of carbonic anhydrase from Magallana hongkongensis (designated as MhCA) was cloned and sequenced. The cDNA of MhCA encodes a 315-amino-acid protein with 89.74% homology to carbonic anhydrase derived from Crassostrea gigas. Molecular docking revealed that the two zinc ions primarily form coordination bonds with histidine residues in the MhCA protein. These results strongly suggest that MhCA is a novel zinc-binding protein in Magallana hongkongensis.
Collapse
Affiliation(s)
- Citing Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
| | - Wan Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
18
|
Neufeld LM, Ho E, Obeid R, Tzoulis C, Green M, Huber LG, Stout M, Griffiths JC. Advancing nutrition science to meet evolving global health needs. Eur J Nutr 2023; 62:1-16. [PMID: 38015211 PMCID: PMC10684707 DOI: 10.1007/s00394-023-03276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 11/29/2023]
Abstract
Populations in crisis!A global overview of health challenges and policy efforts within the scope of current nutrition issues, from persistent forms of undernutrition, including micronutrient deficiency, to diet-related chronic diseases. Nutrition science has evolved from a therapeutic and prevention emphasis to include a focus on diets and food systems. Working and consensus definitions are needed, as well as guidance related to healthy diets and the emerging issues that require further research and consensus building. Between nutrient deficiency and chronic disease, nutrition has evolved from focusing exclusively on the extremes of overt nutrient deficiency and chronic disease prevention, to equipping bodies with the ability to cope with physiologic, metabolic, and psychological stress. Just what is 'optimal nutrition', is that a valid public health goal, and what terminology is being provided by the nutrition science community? Nutrition research on 'healthspan', resilience, and intrinsic capacity may provide evidence to support optimal nutrition. Finally, experts provide views on ongoing challenges of achieving consensus or acceptance of the various definitions and interventions for health promotion, and how these can inform government health policies.Nutrition topics that receive particular focus in these proceedings include choline, NAD-replenishment in neurodegenerative diseases, and xanthophyll carotenoids. Choline is a crucial nutrient essential for cellular metabolism, requiring consumption from foods or supplements due to inadequate endogenous synthesis. Maternal choline intake is vital for fetal and infant development to prevent neural tube defects. Neurodegenerative diseases pose a growing health challenge, lacking effective therapies. Nutrition, including NAD-replenishing nutrients, might aid prevention. Emerging research indicates xanthophyll carotenoids enhance vision and cognition, potentially impacting age-related diseases.
Collapse
Affiliation(s)
- Lynnette M Neufeld
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Emily Ho
- Linus Pauling Institute and College of Health, Oregon State University, Corvallis, OR, USA
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital of the Saarland, Homburg, Germany
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Marina Green
- Nutrition Research Centre Ireland, South East Technological University, Waterford, Ireland
| | - Luke G Huber
- Council for Responsible Nutrition, Washington, DC, USA
| | | | - James C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
19
|
Kumar A, Upadhyay Y, Bera RK, Sahoo SK. Fluorescent Turn-On Sensing of Zinc(II) and Alkaline Phosphatase Activity Using a Pyridoxal-5'-Phosphate Derived Schiff Base. J Fluoresc 2023; 33:2469-2478. [PMID: 37140739 DOI: 10.1007/s10895-023-03254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
A novel Zn2+ ion and alkaline phosphatase (ALP) selective fluorescence turn-on sensor L was developed by reacting pyridoxal 5'-phosphate (PLP) with hydrazine. Sensor L shows significant flurescence enhancement at 476 nm due to the formation of a L-Zn2+ complex in 1:1 binding stoichiometry with the association constant of 3.1⋅104 M- 1. Using L, the concentration of Zn2+ can be detected down to 2.34 µM, and the practical utility of L was validated by quantifying Zn2+ in real water samples. Additionally, the receptor L was applied to mimic the dephosphorylation reaction catalysed by the enzyme ALP and the resulted fluorescence change was monitored to detect the ALP activity.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, SV National Institute Technology, Surat, 395007, Gujarat, India
| | - Yachana Upadhyay
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India
| | - Rati Kanta Bera
- Department of Chemistry, ACC Wing, IMA Dehradun, Uttarakhand, 248007, India
| | - Suban K Sahoo
- Department of Chemistry, SV National Institute Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
20
|
Liang W, Zhou C, Zhang H, Bai J, Jiang B, Jiang C, Ming W, Zhang H, Long H, Huang X, Zhao J. Recent advances in 3D printing of biodegradable metals for orthopaedic applications. J Biol Eng 2023; 17:56. [PMID: 37644461 PMCID: PMC10466721 DOI: 10.1186/s13036-023-00371-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
The use of biodegradable polymers for treating bone-related diseases has become a focal point in the field of biomedicine. Recent advancements in material technology have expanded the range of materials suitable for orthopaedic implants. Three-dimensional (3D) printing technology has become prevalent in healthcare, and while organ printing is still in its early stages and faces ethical and technical hurdles, 3D printing is capable of creating 3D structures that are supportive and controllable. The technique has shown promise in fields such as tissue engineering and regenerative medicine, and new innovations in cell and bio-printing and printing materials have expanded its possibilities. In clinical settings, 3D printing of biodegradable metals is mainly used in orthopedics and stomatology. 3D-printed patient-specific osteotomy instruments, orthopedic implants, and dental implants have been approved by the US FDA for clinical use. Metals are often used to provide support for hard tissue and prevent complications. Currently, 70-80% of clinically used implants are made from niobium, tantalum, nitinol, titanium alloys, cobalt-chromium alloys, and stainless steels. However, there has been increasing interest in biodegradable metals such as magnesium, calcium, zinc, and iron, with numerous recent findings. The advantages of 3D printing, such as low manufacturing costs, complex geometry capabilities, and short fabrication periods, have led to widespread adoption in academia and industry. 3D printing of metals with controllable structures represents a cutting-edge technology for developing metallic implants for biomedical applications. This review explores existing biomaterials used in 3D printing-based orthopedics as well as biodegradable metals and their applications in developing metallic medical implants and devices. The challenges and future directions of this technology are also discussed.
Collapse
Grants
- (LGF22H060023 to WQL) Public Technology Applied Research Projects of Zhejiang Province
- (2022KY433 to WQL, 2023KY1303 to HGL) Medical and Health Research Project of Zhejiang Province
- (2022KY433 to WQL, 2023KY1303 to HGL) Medical and Health Research Project of Zhejiang Province
- (2021FSYYZY45 to WQL) Research Fund Projects of The Affiliated Hospital of Zhejiang Chinese Medicine University
- (2022C31034 to CZ, 2023C31019 to HJZ) Science and Technology Project of Zhoushan
- (2022C31034 to CZ, 2023C31019 to HJZ) Science and Technology Project of Zhoushan
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000 China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Zhoushan, 316000 China
| | - Chanyi Jiang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Zhoushan, 316000 Zhejiang Province P.R. China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Xiaogang Huang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| |
Collapse
|
21
|
Zhang L, Pan D, Shao L, Zheng Y, Hao W, Kan Y, Cao J, Yu H, Liu J. Oil palm kernel globulin antihypertensive peptides: isolation and characterization, ACE inhibition mechanisms, zinc-chelating activity, security and stability. Front Pharmacol 2023; 14:1225256. [PMID: 37601067 PMCID: PMC10433220 DOI: 10.3389/fphar.2023.1225256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction: The oil palm kernel (OPK) expeller is the main byproduct of palm oil, but its utilization is limited. Methods: To obtain angiotensin-I-converting enzyme (ACE) inhibition peptides with Zn-chelating capacity, defatted oil palm kernel globulin hydrolysates (DOPKGH) were subjected to Sephadex G-15 gel electrophoresis, reverse-phase high liquid performance chromatography, and UPLC-ESI-MS/MS analysis. Results and discussion: Five representative oligopeptides, including Gln-Arg-Leu-Asp-Arg-Cys-Lys (QRLERCK), Leu-Leu-Leu-Gly-Val-Ala-Asn-Tyr-Arg (LLLGVANYR), Arg-Ala-Asp-Val-Phe-Asn-Pro-Arg (RADVFNPR), Arg-Val-Ile-Lys-Tyr-Asn-Gly-Gly-Gly-Ser-Gly (RVIKYNGGGSG), and Glu-Val-Pro-Gln-Ala-Tyr-Ile-Pro (EVPQAYIP), without potential toxicity and allergenicity, were identified in DOPKGH. Of these, only EVPQAYIP showed both ACE-inhibitory activity (IC50: 102.75 μmol/L) and Zn-chelating capacity (11.69 mg/g). Molecular docking and inhibition kinetics showed that EVPQAYIP was a competitive inhibitor of ACE because it could bind to Glu384, Lys511, and Gln281 (belonging to the central S1 and S2 pockets, respectively) of ACE. Moreover, EVPQAYIP affects zinc tetrahedral coordination in ACE by binding to Glu411; the amino and carboxyl groups of EVPQAYIP chelate with zinc ions. During gastrointestinal digestion, the ACE inhibitory activity of EVPQAYIP was relatively stable. Additionally, EVPQAYIP enhanced zinc stability in the intestine and exerted antihypertensive effects in spontaneous hypertensive rats. These results suggest the potential application of OPK peptides as ingredients in antihypertensive agents or zinc fortification.
Collapse
Affiliation(s)
| | | | | | - Yajun Zheng
- Food Science College of Shanxi Normal University, Taiyuan, China
| | | | | | | | | | | |
Collapse
|
22
|
Sharma A, Kumar S, Singh R. Formulation of Zinc oxide/Gum acacia nanocomposite as a novel slow-release fertilizer for enhancing Zn uptake and growth performance of Spinacia oleracea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107884. [PMID: 37451005 DOI: 10.1016/j.plaphy.2023.107884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Zinc (Zn) deficiency has caused nutritional disorders in 17% of the world's population; thus, producing Zn-enriched plants as a dietary source is necessary. Recently, nanofertilizers have gained much attention as a substitute for conventional fertilizers; however, soil application of polymer-coated Zn-based nanofertilizer has not been explored much. The present study depicts the green synthesis of ZnO nanoparticles using Melia azedarach L. leaf extract, whose phytoconstituents have reducing abilities. The synthesized nanoparticles were combined with gum acacia (GA) to form a ZnOGA nanocomposite. The structural and morphological properties of ZnOGA were studied using XRD, FTIR, FESEM, and EDX. A pot experiment study was carried out with Spinacia oleracea L. at various doses (3, 5, and 10 mg/kg) of the synthesized ZnOGA to evaluate its effectiveness as a slow-release fertilizer and was compared with a commercial Zn fertilizer. The plant growth studies revealed a significant increase in the phyto-morphological traits of the plants fertilized with ZnOGA compared to commercial fertilizer. The plants also displayed significantly higher contents of protein (17-47%), phenols (25-60%), proline (82-94%), total soluble sugar (20-31%), DPPH activity (70-72%), and Zn uptake (91-106%). The doses of ZnOGA played an imperative role in determining the growth and productivity of the plant. Soil column studies showed that ZnOGA reduces Zn leaching by 52% compared to commercial Zn fertilizer. This study signifies the potential of ZnOGA to be applied as an eco-friendly and sustainable substitute for conventional Zn fertilizer minimizing Zn losses and Zn deficiency-related health problems in human populations.
Collapse
Affiliation(s)
- Avimanu Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Sanjeev Kumar
- Department of Geology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
23
|
Azhand M, Saeidi M, Beheshti Ale Agha A, Kahrizi D. Interaction of iron and zinc fortification and late-season water deficit on yield and fatty acid composition of Dragon's Head (Lallemantia iberica L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107882. [PMID: 37478727 DOI: 10.1016/j.plaphy.2023.107882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
Dragon's head (Lallemantia iberica) is a rich source of alpha-linolenic acid, linoleic acid, essential oil, protein, and mucilage. Therefore, the aim of this study was to evaluate the effects of foliar application of three different concentrations of Fe and Zn (control, 4, and 8 g lit-1) at two different developmental stages (vegetative stage (VS) and reproductive stage (RS)) on the quantity and quality of dragon's head seed yield and fatty acid composition in two crop seasons (2018 and 2019) under two environments (normal irrigation as control (NI) and post-anthesis water deficit (WD). In NI, average yields of seed, oil, and protein were 1155, 340, and 183 kg ha-1, respectively, and in the WD, they were 879, 283, and 148 kg ha-1, respectively. By applying Zn and Fe, the mean values of seed, oil, and protein yields in the NI were 1425, 478, and 264 kg ha-1, while in the WD, they were 1011, 354, and 200 kg ha-1, respectively. Furthermore, the application of WD resulted in a significant increase in zinc concentration, protein percentage, and saturated fatty acid percentage in seeds. Unlike WD, iron and zinc treatments decreased the percentage of saturated fatty acids and increased the percentage of unsaturated fatty acids. The number of capsules per plant had the most positive indirect effect on grain yield. The results showed that foliar spraying of Fe and Zn could effectively mitigate the adverse effects of WD on the quality and quantity of seed and oil yield dragon's head.
Collapse
Affiliation(s)
- Mandana Azhand
- Department of Plant Production and Genetic Engineering, Razi University, Postal Code: 6714414971, Kermanshah, Iran
| | - Mohsen Saeidi
- Department of Plant Production and Genetic Engineering, Razi University, Postal Code: 6714414971, Kermanshah, Iran.
| | - Ali Beheshti Ale Agha
- Department of Soil Science, Razi University, Postal Code: 6714414971, Kermanshah, Iran
| | - Danial Kahrizi
- Department of Plant Production and Genetic Engineering, Razi University, Postal Code: 6714414971, Kermanshah, Iran
| |
Collapse
|
24
|
Li Y, Li J, Cheng C, Zheng Y, Li H, Zhu Z, Yan Y, Hao W, Qin N. Study on the In Silico Screening and Characterization, Inhibition Mechanisms, Zinc-Chelate Activity, and Stability of ACE-Inhibitory Peptides Identified in Naked Oat Bran Albumin Hydrolysates. Foods 2023; 12:2268. [PMID: 37297512 PMCID: PMC10252509 DOI: 10.3390/foods12112268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, naked oat bran albumin hydrolysates (NOBAH) were subjected to gel chromatography with Sephadex G-15, reverse phase-high liquid performance separation, and UPLC-ESI-MS/MS identification. Six safe peptides including Gly-Thr-Thr-Gly-Gly-Met-Gly-Thr (GTTGGMGT), Gln-Tyr-Val-Pro-Phe (QYVPF), Gly-Ala-Ala-Ala-Ala-Leu-Val (GAAAALV), Gly-Tyr-His-Gly-His (GYHGH), Gly-Leu-Arg-Ala-Ala-Ala-Ala-Ala-Ala-Glu-Gly-Gly (GLRAAAAAAEGG), and Pro-Ser-Ser-Pro-Pro-Ser (PSSPPS) were identified. Next, in silico screening demonstrated that QYVPF and GYHGH had both angiotensin-I-converting enzyme (ACE) inhibition activity (IC50: 243.36 and 321.94 μmol/L, respectively) and Zinc-chelating ability (14.85 and 0.32 mg/g, respectively). The inhibition kinetics demonstrated that QYVPF and GYHGH were both uncompetitive inhibitors of ACE. Molecular docking showed that QYVPF and GYHGH could bind, respectively, three and five active residues of ACE with short hydrogen bonds (but not belonging to any central pocket). QYVPF and GYHGH could bind, respectively, twenty-two and eleven residues through hydrophobic interactions. Moreover, GYHGH was able to affect zinc tetrahedral coordination in ACE by interacting with His383. The inhibition activities of QYVPF and GYHGH toward ACE were relatively resistant to gastrointestinal digestion. GYHGH improved zinc solubility in the intestines (p > 0.05) because its amino and carboxyl groups were chelating sites for zinc ions. These results suggest the potential applications of naked oat peptides for potential antihypertension or zinc fortification.
Collapse
Affiliation(s)
- Yan Li
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Junru Li
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Chaoxia Cheng
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Yajun Zheng
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Hanxu Li
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Zilin Zhu
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Yuxiang Yan
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Wenhui Hao
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Nan Qin
- College of Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030619, China
| |
Collapse
|
25
|
Obayemi OE, Ayoade MA, Komolafe OO. Health risk assessment of heavy metals in Coptodon zillii and Parachanna obscura from a tropical reservoir. Heliyon 2023; 9:e16609. [PMID: 37303515 PMCID: PMC10250757 DOI: 10.1016/j.heliyon.2023.e16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/16/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
In this study, the concentrations of trace metals were examined in commercially important fish, Coptodon zillii and Parachanna obscura from Osu reservoir. These were with a view to providing baseline information on the levels of heavy metals and its associated risks to human health through fish consumption. Fish samples were collected fortnightly for five months using fish traps and gill nets with the assistance of local fisherman. They were brought into the laboratory in an ice chest for identification. The fish samples were dissected and the gills, fillet and liver kept in freezer and later analyzed for heavy metals based on Atomic Absorption Spectrophotometric (AAS) method. The data collected were subjected to appropriate statistical software packages. The results revealed that the concentration of the heavy metals in P. obscura and C. zillii across the tissues were not significantly different (p > 0.05) from each other. Also, the mean concentration of heavy metals in the fish were below the recommended limits of FAO and WHO. The target hazard quotient (THQ) for each heavy metals were below one (1) while the estimated hazard index (HI) for C. zillii and P. obscura showed no threat to human health risk through the consumption of the fish species. However, continuous consumption of the fish could probably cause health risk to the consumers of the fish. According to the study's findings, human consumption of fish species with low concentration of heavy metals at the current accumulating level is safe.
Collapse
|
26
|
Alikhani M, Mirbolook A, Sadeghi J, Lakzian A. Effect of a new slow-release zinc fertilizer based on carbon dots on the zinc concentration, growth indices, and yield in wheat (Triticum aestivum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107783. [PMID: 37269825 DOI: 10.1016/j.plaphy.2023.107783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/28/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
The present study aimed to introduce a new carbon dots nanocarrier (Zn-NCDs) as a slow-release Zn fertilizer. Zn-NCDs was synthesized using a hydrothermal method and characterized by instrumental methods. A greenhouse experiment was then conducted involving two Zn sources (Zn-NCDs and ZnSO4), three concentrations of Zn-NCDs (2, 4, and 8 mg/L), and under sand culture conditions. This study comprehensively evaluated the effects of Zn-NCDs on the zinc, nitrogen, and phytic acid content, biomass, growth indices, and yield in bread wheat (cv. Sirvan). Also, a fluorescence microscope was used to examine the in vivo transport route of Zn-NCDs in wheat organs. Finally, the availability of Zn in soil samples treated with Zn-NCDs was evaluated over 30 days in an incubation experiment. The findings indicated that Zn-NCDs as a slow-release fertilizer increased root-shoot biomass, fertile spikelet, and grain yield by 20, 44, 16, and 43%, respectively, compared to ZnSO4 treatment. The concentration of zinc and nitrogen in the grain was increased by 19% and 118%, respectively, while phytic acid was decreased by 18% than ZnSO4 treatment. Microscopic observations revealed that wheat plants could absorb and transfer Zn-NCDs from roots to stems and leaves through vascular bundles. This study demonstrated for the first time that Zn-NCDs could be used as a slow-release Zn fertilizer with high efficiency and low cost in wheat enrichment. In addition, Zn-NCDs could be applied as a new nano fertilizer and technology for in vivo plant imaging.
Collapse
Affiliation(s)
- Mina Alikhani
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| | - Atena Mirbolook
- Department of Soil Science, Faculty of Agriculture, Urmia University, P. O. Box 57159-44931, Urmia, Iran
| | - Jalal Sadeghi
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran
| | - Amir Lakzian
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran.
| |
Collapse
|
27
|
Chaudhary R, Kumar V, Gupta S, Naik B, Prasad R, Mishra S, Saris PEJ, Kumar V. Finger Millet ( Eleusine coracana) Plant-Endophyte Dynamics: Plant Growth, Nutrient Uptake, and Zinc Biofortification. Microorganisms 2023; 11:microorganisms11040973. [PMID: 37110396 PMCID: PMC10143119 DOI: 10.3390/microorganisms11040973] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Endophytic fungi and bacteria were isolated from finger millet and their effects on finger millet growth parameters and zinc and NPK contents in grains were studied. Out of 70 fungal and 112 bacterial endophytes, the two best fungal and bacterial isolates were selected on the basis of zinc solubilization and plant-growth-promoting attributes. The fungal isolates identified were Aspergillus terreus and Lecanicillium sp., and the bacterial isolates were Pseudomonas bijieensis and Priestia megaterium. The endophytic zinc, NPK mobilization, and plant-growth-promoting efficacy were determined in a pot experiment with zinc carbonate as the zinc source. Endophytic-primed plants showed enhanced shoot and root lengths compared to the unprimed control. Endophytes increased the zinc content in grains by between 12.12% and 18.80% compared to control plants. Endophytes also augmented the NPK concentrations in seeds compared to control plants and exhibited stability in a diverse range of pHs, temperatures, and NaCl concentrations, and exhibited growth on various carbohydrate and nitrogen sources. This is the first study reporting the interaction of Aspergillus terreus, Lecanicillium sp., Pseudomonas bijieensis, and Priestia megaterium with finger millet for grain Zn biofortification and NPK concentration enhancement. This study indicated that zinc-dissolving endophytes possess the potential for enhancing the zinc and NPK content in grains in addition to the plant-growth-promoting attributes.
Collapse
Affiliation(s)
- Renu Chaudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Bindu Naik
- Department of Life Sciences, Graphic Era (Deemed to be) University, Bell Road, Clement Town, Dehradun 248002, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00100 Helsinki, Finland
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| |
Collapse
|
28
|
Daccak D, Lidon FC, Coelho ARF, Luís IC, Marques AC, Pessoa CC, Brito MDG, Kullberg JC, Ramalho JC, Silva MJ, Rodrigues AP, Campos PS, Pais IP, Semedo JN, Silva MM, Legoinha P, Galhano C, Simões M, Pessoa MF, Reboredo FH. Assessment of Physicochemical Parameters in Two Winegrapes Varieties after Foliar Application of ZnSO 4 and ZnO. PLANTS (BASEL, SWITZERLAND) 2023; 12:1426. [PMID: 37050051 PMCID: PMC10097101 DOI: 10.3390/plants12071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
One-third of the world's population is suffering from "hidden hunger" due to micronutrient deficiency. Zinc is acquired through diet, leading its deficiency to the development of disorders such as retarded growth, anorexia, infections, and hypogeusia. Accordingly, this study aimed to develop an agronomic workflow for Zn biofortification on two red winegrapes varieties (cv. Castelão and Syrah) and determine the physicochemical implications for winemaking. Both varieties produced in Setúbal (Portugal) were submitted to four foliar applications of ZnSO4 or ZnO (900 and 1350 g ha-1, respectively), during the production cycle. At harvest, Zn biofortification reached a 4.3- and 2.3-fold increase with ZnO 1350 g ha-1 in Castelão and Syrah, respectively (although, with ZnSO4 1350 g ha-1 both varieties revealed an increase in Zn concentration). On a physiological basis, lower values of NDVI were found in the biofortified grapes, although not reflected in photosynthetic parameters with cv. Syrah shows even a potential benefit with the use of Zn fertilizers. Regarding physical and chemical parameters (density, total soluble solids, dry weight, and color), relative to the control no significant changes in both varieties were observed, being suitable for winemaking. It was concluded that ZnSO4 and ZnO foliar fertilization efficiently increased Zn concentration on both varieties without a negative impact on quality, but cv. Castelão showed a better index of Zn biofortification and pointed to a potentially higher quality for winemaking.
Collapse
Affiliation(s)
- Diana Daccak
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Fernando C. Lidon
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Ana Rita F. Coelho
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Inês Carmo Luís
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Ana Coelho Marques
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Cláudia Campos Pessoa
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Maria da Graça Brito
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - José Carlos Kullberg
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - José C. Ramalho
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Avenida da República, 2784-505 Oeiras, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria José Silva
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Avenida da República, 2784-505 Oeiras, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Paula Rodrigues
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Avenida da República, 2784-505 Oeiras, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Paula Scotti Campos
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Avenida da República, 2780-157 Oeiras, Portugal
| | - Isabel P. Pais
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Avenida da República, 2780-157 Oeiras, Portugal
| | - José N. Semedo
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Avenida da República, 2780-157 Oeiras, Portugal
| | - Maria Manuela Silva
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Paulo Legoinha
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Carlos Galhano
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Manuela Simões
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Maria Fernanda Pessoa
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Fernando H. Reboredo
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| |
Collapse
|
29
|
Li Y, Shi P, Zheng Y, Guo M, Zhuang Y, Huo X. Millet bran protein hydrolysates derived peptides-zinc chelate: Structural characterization, security prediction in silico, zinc transport capacity and stability against different food processing conditions. J Food Sci 2023; 88:477-490. [PMID: 36444531 DOI: 10.1111/1750-3841.16384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
A novel peptide Ser-Asp-Asp-Val-Leu (SDDVL) of excellent zinc-chelating capacity (13.77 mg/g) was identified in millet bran protein hydrolysates. In silico prediction demonstrated that SDDVL had no potential toxicity. The results of structural characterization demonstrated that both amino group and carboxyl group of SDDVL were the primary zinc-chelating sites. Moreover, SDDVL-zinc chelate showed higher stability (p < 0.05) than ZnSO4 and zinc gluconate under different processing conditions including most pasteurization conditions, heating at 100°C for 10-50 min, various pH values (8.0-10.0), treatment of glucose (4-8 g/100 g) or NaCl (1-4 g/100 g), and simulated gastrointestinal digestion. In addition, SDDVL-zinc chelate showed higher zinc transport capacity than ZnSO4 and zinc gluconate in Caco-2 cells (p < 0.05). These results suggested that millet bran peptide had a positive effect on the gastrointestinal stability and bioavailability of Zn, and SDDVL-zinc chelate could be used as ingredient of zinc supplements. PRACTICAL APPLICATION: The current study provided a practical method to identify peptides of excellent zinc-chelating capacity from millet bran protein hydrolysates. This study demonstrated that in silico prediction assisted with suitable database was a fast, practical, and economic way to evaluate the security and to analysis the physicochemical properties of novel peptides. Moreover, it provided an efficient method to assess the stability of peptide-zinc chelate under different food processing conditions, which was the theoretical basis for utilization of peptide as ingredient of zinc fortifications.
Collapse
Affiliation(s)
- Yan Li
- Food Science College, Shanxi Normal University, Taiyuan, China
| | - Panqi Shi
- Food Science College, Shanxi Normal University, Taiyuan, China
| | - Yajun Zheng
- Food Science College, Shanxi Normal University, Taiyuan, China
| | - Min Guo
- Food Science College, Shanxi Normal University, Taiyuan, China
| | - Yongliang Zhuang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, China
| | - Xinyu Huo
- Food Science College, Shanxi Normal University, Taiyuan, China
| |
Collapse
|
30
|
Sorahinobar M, Deldari T, Nazem Bokaeei Z, Mehdinia A. Effect of zinc nanoparticles on the growth and biofortification capability of mungbean ( Vigna radiata) seedlings. Biologia (Bratisl) 2023; 78:951-960. [PMID: 36533139 PMCID: PMC9748875 DOI: 10.1007/s11756-022-01269-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
Zinc insufficiency is a nutritional trouble worldwide, especially in developing countries. In the current study, an experiment was conducted to evaluate the effect of supplementation of MS media culture with different concentrations of ZnO nanoparticles (NPs) (0, 10, 20, 40, 80, and 160 ppm) on growth, nutrient uptake, and some physiological parameters of 7-days-old mung bean seedlings. ZnO NPs enhanced the Zn concentration of mung bean from 106.41 in control to more than 4600 µg/g dry weight in 80 and 160 ppm ZnO NPs treated seedlings. Our results showed that ZnO NPs in the concentration range from 10 to 20 ppm had a positive influence on growth parameters and photosynthetic pigments. Higher levels of ZnO NPs negatively affected seedling's growth by triggering oxidative stress which in turn caused enhancing antioxidative response in seedlings including polyphenol oxidase and peroxidase activity as well as phenolic compounds and anthocyanine contents. Considering the positive effects of ZnO NPs treatment on mungbean seedlings growth, micronutrents, protein and shoot phenolics content, 20 ppm is recommended as the optimal concentration for biofortification. Our findings confirm the capability of ZnO NPs in the remarkable increase of Zn content of mungbean seedlings which can be an efficient way for plant biofortification and dealing with environmental stress. Supplementary information The online version contains supplementary material available at 10.1007/s11756-022-01269-3.
Collapse
Affiliation(s)
- Mona Sorahinobar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Tooba Deldari
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Nazem Bokaeei
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ali Mehdinia
- Iranian National Institutes for Oceanography and Atmospheric Science, Tehran, Iran
| |
Collapse
|
31
|
Structural and physicochemical characteristics, stability, toxicity and antioxidant activity of peptide-zinc chelate from coconut cake globulin hydrolysates. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Zhang J, Ye Z. Pentapeptide-Zinc Chelate from Sweet Almond Expeller Amandin Hydrolysates: Structural and Physicochemical Characteristics, Stability and Zinc Transport Ability In Vitro. Molecules 2022; 27:molecules27227936. [PMID: 36432037 PMCID: PMC9692753 DOI: 10.3390/molecules27227936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
To promote the application of almond expellers, sweet almond expeller globulin (amandin) was extracted for the preparation of bioactive peptides. After dual enzymatic hydrolysis, Sephadex G-15 gel isolation, reverse-phase high-performance liquid chromatography purification and ESI-MS/MS analysis, two novel peptides Val-Asp-Leu-Val-Ala-Glu-Val-Pro-Arg-Gly-Leu (1164.45 Da) and Leu-Asp-Arg-Leu-Glu (644.77 Da) were identified in sweet almond expeller amandin hydrolysates. Leu-Asp-Arg-Leu-Glu (LDRLE) of excellent zinc-chelating capacity (24.73 mg/g) was selected for preparation of peptide-zinc chelate. Structural analysis revealed that zinc ions were mainly bonded to amino group and carboxyl group of LDRLE. Potential toxicity and some physicochemical properties of LDRLE and Val-Asp-Leu-Val-Ala-Glu-Val-Pro-Arg-Gly-Leu (VDLVAEVPRGL) were predicted in silico. The results demonstrated that both LDRLE and VDLVAEVPRGL were not toxic. Additionally, zinc solubility of LDRLE-zinc chelate was much higher than that of zinc sulphate and zinc gluconate at pH 6.0−10.0 and against gastrointestinal digestion at 37 °C (p < 0.05). However, incubation at 100 °C for 20−60 min significantly reduced zinc-solubility of LDRLE-zinc chelate. Moreover, the chelate showed higher zinc transport ability in vitro than zinc sulphate and zinc gluconate (p < 0.05). Therefore, peptides isolated from sweet almond expeller amandin have potential applications as ingredient of zinc supplements.
Collapse
|
33
|
Shoaib A, Khan KA, Awan ZA, Jan BL, Kaushik P. Integrated management of charcoal rot disease in susceptible genotypes of mungbean with soil application of micronutrient zinc and green manure (prickly sesban). Front Microbiol 2022; 13:899224. [PMID: 35958154 PMCID: PMC9358777 DOI: 10.3389/fmicb.2022.899224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Charcoal rot disease is incited by the soil-borne fungus Macrophomina phaseolina (Tassi). Goid is a challenging disease due to long-term persistence of fungus sclerotia in the soil. This study assessed the potential of zinc (Zn: 1.25, 2.44, and 5 mg/kg) and green manure (GM: 1 and 2%) in solitary and bilateral combinations to alleviate infection stress incited by M. phaseolina on disease, growth, physiology, and yield attributes in mungbean. A completely randomized design experiment was conducted in potted soil, artificially inoculated with the pathogen, and sown with surface-sterilized seeds of mungbean genotypes (susceptible: MNUYT-107 and highly susceptible: MNUYT-105). Concealment of plant resistance by M. phaseolina in both genotypes resulted in 53-55% disease incidence and 40-50% plant mortality, which contributed in causing a significant reduction of 30-90% in attributes of growth, biomass, yield, photosynthetic pigment, and total protein content with an imbalance of production of antioxidant enzymes (polyphenol oxidase, superoxide dismutase, catalase, and peroxidase). Soil application with Zn-based fertilizer (ZnSO4: 33%) in combination with GM significantly managed up to 80% of the charcoal rot disease, hence improving growth (50-100%) and physiochemical (30-100%) attributes and sustainably enhancing grain average yield (300-600%), biological yield (100-200%), and harvest index (100-200%) in mungbean plants. The heat map and principal component analyses based on 19 measured attributes with 16 treatments separated Zn (2.44 or 5 mg/kg) combined with 2% GM as the best treatments for alleviating charcoal rot disease stress by improving growth, yield, and biological attributes to an extent to profitable farming in terms of harvest index (HI) and benefit-cost ratio (BCR).
Collapse
Affiliation(s)
- Amna Shoaib
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Kashif Ali Khan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Zoia Arshad Awan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
34
|
Banerjee A, Roychoudhury A. Dissecting the phytohormonal, genomic and proteomic regulation of micronutrient deficiency during abiotic stresses in plants. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|