1
|
Ding T, Liu H, Yu G. Novel MSX1 Gene Variants in Chinese Children with Non-Syndromic Tooth Agenesis: A Clinical and Genetic Analysis. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1418. [PMID: 39767847 PMCID: PMC11674387 DOI: 10.3390/children11121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Tooth agenesis is the most frequently occurring genetic developmental anomaly in clinical dentistry. The MSX1 gene, essential for tooth development, has been associated with non-syndromic tooth agenesis. This study aims to identify novel MSX1 variants associated with this condition and to understand their impact on tooth development. METHODS This study involved the genetic analysis of two children presenting with non-syndromic tooth agenesis. Conservation analysis and 3D structural modeling were conducted to assess the pathogenicity of these variants. Additionally, a review of 108 patients with known MSX1 variants was performed to identify patterns of tooth agenesis. RESULTS We discovered two novel MSX1 variants, c.823 T>G and c.890 A>G, located in the second exon of the MSX1 gene. The identified MSX1 variants, c.823 T>G and c.890 A>G, were predicted to be pathogenic. Conservation analysis showed that the impacted amino acids are highly conserved across species, and 3D structural analysis indicated potential disruptions to protein function. Among the 108 patients reviewed, a consistent pattern of tooth agenesis was observed, with the most frequently missing teeth being the maxillary second premolars, the mandibular second premolars, and the maxillary first premolars. CONCLUSIONS This research broadens the known range of MSX1 gene variants and deepens our comprehension of the genetic foundations of non-syndromic tooth agenesis. The findings provide valuable insights for genetic counseling and future research into tooth development, emphasizing the importance of MSX1 in dental anomalies.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China;
| | - Guoxia Yu
- Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| |
Collapse
|
2
|
Sarkar T, Ranjan P, Kanathur S, Gupta A, Das P. An in vitro and computational validation of a novel loss-of-functional mutation in PAX9 associated with non-syndromic tooth agenesis. Mol Genet Genomics 2023; 298:183-199. [PMID: 36374296 DOI: 10.1007/s00438-022-01970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Congenital tooth agenesis (CTA) is one of the most common craniofacial anomalies. Its frequency varies among different population depending upon the genetic heterogeneity. CTA could be of familial or sporadic and syndromic or non-syndromic. Five major genes are found to be associated with non-syndromic CTA, namely PAX9, MSX1, EDA1, AXIN2, and WNT10A. Very few studies have been carried out so far on CTA on this Indian population making this study unique and important. This study was initiated to identify potential pathogenic variant associated with congenital tooth agenesis in an India family with molar tooth agenesis. CTA was investigated and a novel c.336C > G variation was identified in the exon 3 of PAX9, leading to substitution of evolutionary conserved Cys with Trp at 112th amino acid position located at the functionally significant DNA-binding paired domain region. Functional analysis revealed that p.Cys112Trp mutation did not prevent the nuclear localization although mutant protein had higher cytoplasmic retention. EMSA using e5 probe revealed that mutant protein was unable to bind with the paired-domain-binding site. Subsequently, GST pull-down assay revealed lower binding activity of the mutant protein with its known interactor MSX1. These in vitro results were consistent with the computational results. The in vitro and computational observations altogether suggest that c.336C > G (p.Cys112Trp) variation leads to loss of function of PAX9 leading to CTA in this family.
Collapse
Affiliation(s)
- Tanmoy Sarkar
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India.,Mouse Cancer Genetics Program, Center for Cancer Research, NCI-NIH, Fort Detrick, Frederick, MD, USA
| | - Prashant Ranjan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Smitha Kanathur
- Department of Periodontology, Government Dental College and Research Institute, Bangalore, India
| | - Ankush Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
3
|
Yu K, Dou J, Huang W, Wang F, Wu Y. Expanding the genetic spectrum of tooth agenesis using whole-exome sequencing. Clin Genet 2022; 102:503-516. [PMID: 36071541 DOI: 10.1111/cge.14225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tooth agenesis is a high genetic heterogeneous disorder with more than eighty genes identified as associated molecular causes. The present study aimed to detect the possible pathogenic variants in a cohort of well-characterized probands with a clinical diagnosis of tooth agenesis. METHODS We performed whole-exome sequencing (WES) in 131 tooth agenesis patients with no previously identified molecular diagnosis. All the potential pathogenic variants were verified by Sanger sequencing in patients and their family members. Results Seventy-three patients were genetically diagnosed in 131 unrelated Chinese patients with tooth agenesis, providing a positive molecular diagnostic rate of 55.7%, including 53.8% (49/91) in the non-syndromic tooth agenesis (NSTA) group, and 60.0% (24/40) in syndromic tooth agenesis (STA) group. A total of 75 variants from 13 different genes were identified, including 33 novel variants, and WNT10A and EDA are the most common causative genes associated with non-syndromic and syndromic tooth agenesis, respectively. CONCLUSIONS This study further extends the variant spectrum and clinical profiles of tooth agenesis, which has a positive significance for clinical practice, genetic diagnosis, prenatal counseling and future treatment.
Collapse
Affiliation(s)
- Kang Yu
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Jiaqi Dou
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wei Huang
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Feng Wang
- Department of Oral Implantology, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yiqun Wu
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Steele RE, Sanders R, Phillips HM, Bamforth SD. PAX Genes in Cardiovascular Development. Int J Mol Sci 2022; 23:7713. [PMID: 35887061 PMCID: PMC9324344 DOI: 10.3390/ijms23147713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023] Open
Abstract
The mammalian heart is a four-chambered organ with systemic and pulmonary circulations to deliver oxygenated blood to the body, and a tightly regulated genetic network exists to shape normal development of the heart and its associated major arteries. A key process during cardiovascular morphogenesis is the septation of the outflow tract which initially forms as a single vessel before separating into the aorta and pulmonary trunk. The outflow tract connects to the aortic arch arteries which are derived from the pharyngeal arch arteries. Congenital heart defects are a major cause of death and morbidity and are frequently associated with a failure to deliver oxygenated blood to the body. The Pax transcription factor family is characterised through their highly conserved paired box and DNA binding domains and are crucial in organogenesis, regulating the development of a wide range of cells, organs and tissues including the cardiovascular system. Studies altering the expression of these genes in murine models, notably Pax3 and Pax9, have found a range of cardiovascular patterning abnormalities such as interruption of the aortic arch and common arterial trunk. This suggests that these Pax genes play a crucial role in the regulatory networks governing cardiovascular development.
Collapse
Affiliation(s)
| | | | | | - Simon D. Bamforth
- Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle NE1 3BZ, UK; (R.E.S.); (R.S.); (H.M.P.)
| |
Collapse
|
5
|
Khasawneh RR, Kist R, Queen R, Hussain R, Coxhead J, Schneider JE, Mohun TJ, Zaffran S, Peters H, Phillips HM, Bamforth SD. Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype. BMC DEVELOPMENTAL BIOLOGY 2021; 21:14. [PMID: 34615475 PMCID: PMC8493722 DOI: 10.1186/s12861-021-00245-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Successful embryogenesis relies on the coordinated interaction between genes and tissues. The transcription factors Pax9 and Msx1 genetically interact during mouse craniofacial morphogenesis, and mice deficient for either gene display abnormal tooth and palate development. Pax9 is expressed specifically in the pharyngeal endoderm at mid-embryogenesis, and mice deficient for Pax9 on a C57Bl/6 genetic background also have cardiovascular defects affecting the outflow tract and aortic arch arteries giving double-outlet right ventricle, absent common carotid arteries and interruption of the aortic arch. RESULTS In this study we have investigated both the effect of a different genetic background and Msx1 haploinsufficiency on the presentation of the Pax9-deficient cardiovascular phenotype. Compared to mice on a C57Bl/6 background, congenic CD1-Pax9-/- mice displayed a significantly reduced incidence of outflow tract defects but aortic arch defects were unchanged. Pax9-/- mice with Msx1 haploinsufficiency, however, have a reduced incidence of interrupted aortic arch, but more cases with cervical origins of the right subclavian artery and aortic arch, than seen in Pax9-/- mice. This alteration in arch artery defects was accompanied by a rescue in third pharyngeal arch neural crest cell migration and smooth muscle cell coverage of the third pharyngeal arch arteries. Although this change in phenotype could theoretically be compatible with post-natal survival, using tissue-specific inactivation of Pax9 to maintain correct palate development whilst inducing the cardiovascular defects was unable to prevent postnatal death in the mutant mice. Hyoid bone and thyroid cartilage formation were abnormal in Pax9-/- mice. CONCLUSIONS Msx1 haploinsufficiency mitigates the arch artery defects in Pax9-/- mice, potentially by maintaining the survival of the 3rd arch artery through unimpaired migration of neural crest cells to the third pharyngeal arches. With the neural crest cell derived hyoid bone and thyroid cartilage also being defective in Pax9-/- mice, we speculate that the pharyngeal endoderm is a key signalling centre that impacts on neural crest cell behaviour highlighting the ability of cells in different tissues to act synergistically or antagonistically during embryo development.
Collapse
Affiliation(s)
- Ramada R. Khasawneh
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK ,grid.14440.350000 0004 0622 5497Present Address: Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ralf Kist
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK ,grid.1006.70000 0001 0462 7212School of Dental Sciences, Newcastle University, Newcastle, NE2 4BW UK
| | - Rachel Queen
- grid.1006.70000 0001 0462 7212Bioinformatics Support Unit, Newcastle University, Newcastle, NE1 3BZ UK
| | - Rafiqul Hussain
- grid.1006.70000 0001 0462 7212Genomics Core Facility, Newcastle University, Newcastle, NE1 3BZ UK
| | - Jonathan Coxhead
- grid.1006.70000 0001 0462 7212Genomics Core Facility, Newcastle University, Newcastle, NE1 3BZ UK
| | - Jürgen E. Schneider
- grid.9909.90000 0004 1936 8403Biomedical Imaging, University of Leeds, Leeds, LS2 9JT UK
| | - Timothy J. Mohun
- grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, NW1 1AT UK
| | - Stéphane Zaffran
- grid.5399.60000 0001 2176 4817INSERM, Marseille Medical Genetics, U1251, Aix Marseille University, Marseille, France
| | - Heiko Peters
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK
| | - Helen M. Phillips
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK
| | - Simon D. Bamforth
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK
| |
Collapse
|
6
|
Bhol CS, Patil S, Sahu BB, Patra SK, Bhutia SK. The clinical significance and correlative signaling pathways of paired box gene 9 in development and carcinogenesis. Biochim Biophys Acta Rev Cancer 2021; 1876:188561. [PMID: 33965511 DOI: 10.1016/j.bbcan.2021.188561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
Paired box 9 (PAX9) gene belongs to the PAX family, which encodes a family of metazoan transcription factors documented by a conserved DNA binding paired domain 128-amino-acids, critically essential for physiology and development. It is primarily expressed in embryonic tissues, such as the pharyngeal pouch endoderm, somites, neural crest-derived mesenchyme, and distal limb buds. PAX9 plays a vital role in craniofacial development by maintaining the odontogenic potential, mutations, and polymorphisms associated with the risk of tooth agenesis, hypodontia, and crown size in dentition. The loss-of-function of PAX9 in the murine model resulted in a short life span due to the arrest of cleft palate formation and skeletal abnormalities. According to recent studies, the PAX9 gene has a significant role in maintaining squamous cell differentiation, odontoblast differentiation of pluripotent stem cells, deregulation of which is associated with tumor initiation, and malignant transformation. Moreover, PAX9 contributes to promoter hypermethylation and alcohol- induced oro-esophageal squamous cell carcinoma mediated by downregulation of differentiation and apoptosis. Likewise, PAX9 activation is also reported to be associated with drug sensitivity. In summary, this current review aims to understand PAX9 function in the regulation of development, differentiation, and carcinogenesis, along with the underlying signaling pathways for possible cancer therapeutics.
Collapse
Affiliation(s)
- Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Binod Bihari Sahu
- Plant Immunity Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
7
|
Liu C, Huang M, Han C, Li H, Wang J, Huang Y, Chen Y, Zhu J, Fu G, Yu H, Lei Z, Chu X. A narrative review of the roles of muscle segment homeobox transcription factor family in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:810. [PMID: 34268423 PMCID: PMC8246185 DOI: 10.21037/atm-21-220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/05/2021] [Indexed: 11/23/2022]
Abstract
Deregulation of many homeobox genes has been observed in various cancers and has caused functional implications in the tumor progression. In this review, we will focus on the roles of the human muscle segment homeobox (MSX) transcription factor family in the process of tumorigenesis. The MSX transcription factors, through complex downstream regulation mechanisms, are promoters or inhibitors of diverse cancers by participating in cell proliferation, cell invasion, cell metastasis, cell apoptosis, cell differentiation, drug resistance of tumors, maintenance of tumor stemness, and tumor angiogenesis. Moreover, their upstream regulatory mechanisms in cancers may include: gene mutation and chromosome aberration; DNA methylation and chromatin modification; regulation by non-coding RNAs; regulation by other transcription factors and post-translational modification. These mechanisms may provide a better understanding of why MSX transcription factors are abnormally expressed in tumors. Notably, intermolecular interactions and post-translational modification can regulate the transcriptional activity of MSX transcription factors. It is also crucial to know what affects the transcriptional activity of MSX transcription factors in tumors for possible interventions in them in the future. This systematic summary of the regulatory patterns of the MSX transcription factor family may help to further understand the mechanisms involved in transcriptional regulation and also provide new therapeutic approaches for tumor progression.
Collapse
Affiliation(s)
- Chao Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Chao Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyu Li
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jing Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yadi Huang
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Yanyan Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jialong Zhu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Gongbo Fu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Hanqing Yu
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Association of Polymorphic and Haplotype Variants of the MSX1 Gene and the Impacted Teeth Phenomenon. Genes (Basel) 2021; 12:genes12040577. [PMID: 33923458 PMCID: PMC8073557 DOI: 10.3390/genes12040577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 01/14/2023] Open
Abstract
It is known that genetic factors determine odontogenesis; furthermore, studies have revealed that various genes in humans can regulate the development of different types and generations of teeth. In this study it has been assumed that tooth impaction—at least to some extent—also depends on the presence of specific genetic markers, especially allelic variants of the MSX1 gene. The primary objective of the study was to evaluate the suitability of selected molecular markers located within the MSX1 gene for the determination of the risk of tooth impaction in particular patients. The study participants were divided into two groups: (1) the study group—at least one secondary tooth was impacted in the jaws; (2) the control group—no impacted tooth in the jaws. Real-Time PCR and TaqMan probes were used to detect selected polymorphisms in the analyzed genes. Two single nucleotide polymorphisms of MSX1 were analyzed. After the two subgroups of patients were distinguished in the study group based on the number of impacted teeth, statistically significant differences in the frequency of genotypes described for rs12532 in the MSX1 gene were found.
Collapse
|
9
|
Bonczek O, Krejci P, Izakovicova-Holla L, Cernochova P, Kiss I, Vojtesek B. Tooth agenesis: What do we know and is there a connection to cancer? Clin Genet 2021; 99:493-502. [PMID: 33249565 DOI: 10.1111/cge.13892] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
Like all developmental processes, odontogenesis is highly complex and dynamically regulated, with hundreds of genes co-expressed in reciprocal networks. Tooth agenesis (missing one or more/all teeth) is a common human craniofacial anomaly and may be caused by genetic variations and/or environmental factors. Variants in PAX9, MSX1, AXIN2, EDA, EDAR, and WNT10A genes are associated with tooth agenesis. Currently, variants in ATF1, DUSP10, CASC8, IRF6, KDF1, GREM2, LTBP3, and components and regulators of WNT signaling WNT10B, LRP6, DKK, and KREMEN1 are at the forefront of interest. Due to the interconnectedness of the signaling pathways of carcinogenesis and odontogenesis, tooth agenesis could be a suitable marker for early detection of cancer predisposition. Variants in genes associated with tooth agenesis could serve as prognostic or therapeutic targets in cancer. This review aims to summarize existing knowledge of development and clinical genetics of teeth. Concurrently, the review proposes possible approaches for future research in this area, with particular attention to roles in monitoring, early diagnosis and therapy of tumors associated with defective tooth development.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Premysl Krejci
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lydie Izakovicova-Holla
- Department of Stomatology, Institution shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavlina Cernochova
- Department of Stomatology, Institution shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Kiss
- Clinic of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
10
|
Fan L, Kan S, Yang F, Xu H, Li H, Zhu G, Ma L, Zhang C, Lou S, Li D, Wang H, Zhang W, Pan Y. Non-syndromic cleft lip with or without palate susceptible loci is associated with tooth agenesis. Oral Dis 2019; 25:803-811. [PMID: 30578605 DOI: 10.1111/odi.13024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/02/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Non-syndromic tooth agenesis (NSTA) may share common genetic factors with non-syndromic cleft lip with or without cleft palate (NSCL/P). Single-nucleotide polymorphisms (SNPs) were associated with individual's susceptibility to these anomalies. We selected five NSCL/P-associated SNPs from our previous genome-wide association study (GWAS) to test for the associations with NSTA. MATERIALS AND METHODS A total of 677 NSTA cases and 1,144 healthy controls were recruited in this case-control study. Five genome-wide NSCL/P-associated SNPs (rs2235371, rs7078160, rs8049367, rs4791774, and rs13041247) were genotyped by TaqMan platform and evaluated for the associations with NSTA using plink software. RESULTS No significant associations between these SNPs and risk of NSTA were observed in the overall analysis and subgroup analysis with the number of missing teeth. However, in the subgroup analysis by tooth position, rs8049367 was nominally associated with mandibular premolar agenesis (Dominant model: ORdom = 0.66, 95% CIdom = 0.47-0.93, pdom = 0.016; Heterozygote model: ORhet = 0.60, 95% CIhet = 0.41-0.88, Phet = 0.008). Rs4791774 showed a nominal association with congenitally missing maxillary canine (Dominant model: ORdom = 0.53, 95% CIdom = 0.28-0.98, pdom = 0.041; Heterozygote model: ORhet = 0.50, 95% CIhet = 0.26-0.97, Phet = 0.041) and premolar (Additive model: OR = 0.59, 95% CI = 0.36-0.96, p = 0.035). CONCLUSION This study showed that NSCL/P susceptible loci rs8049367 and rs4791774 were probably associated with the risk of NSTA.
Collapse
Affiliation(s)
- Liwen Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Shiyi Kan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fan Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hai Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Guirong Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Chi Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Dandan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Weibing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Abstract
Jaw bones and teeth originate from the first pharyngeal arch and develop in closely related ways. Reciprocal epithelial-mesenchymal interactions are required for the early patterning and morphogenesis of both tissues. Here we review the cellular contribution during the development of the jaw bones and teeth. We also highlight signaling networks as well as transcription factors mediating tissue-tissue interactions that are essential for jaw bone and tooth development. Finally, we discuss the potential for stem cell mediated regenerative therapies to mitigate disorders and injuries that affect these organs.
Collapse
Affiliation(s)
- Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
12
|
Abu-Siniyeh A, Khabour OF, Owais AI. The role of PAX9 promoter gene polymorphisms in causing hypodontia: a study in the Jordanian population. APPLICATION OF CLINICAL GENETICS 2018; 11:145-149. [PMID: 30538524 PMCID: PMC6254497 DOI: 10.2147/tacg.s183212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The congenital absence of one or few teeth, hypodontia, is considered one of the utmost dental ageneses in human beings. Several genes have been shown to be involved in the development of hypodontia such as paired box gene 9 (PAX9). The expression of PAX9 is controlled by several polymorphic elements in the promoter region of the gene on 14q13.3 locus. The aim of this study was to find any association between PAX9 c.-912T>C (rs2073247) and c.-1031G>A (rs2073244) promoter polymorphisms and the development of hypodontia among the Jordanian population. Methods Genotyping of the polymorphisms in 72 unrelated subjects with hypodontia was performed using PCR-restriction fragment length polymorphism (RFLP) technique and compared with that of 72 normal healthy unrelated control individuals. Results The hypodontia group had a significantly higher -1031GG genotype (P<0.01) and a significantly lower -912TC genotype (P<0.01) compared with the control group. The results suggest that the transcriptional activity of PAX9 gene is affected by polymorphisms in the promoter region of this gene and is associated with hypodontia phenotype. Conclusion The rs2073247) and rs2073244 promoter polymorphisms of PAX9 might play a role in the development of hypodontia in the Jordanian population.
Collapse
Affiliation(s)
- Ahmed Abu-Siniyeh
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan,
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan,
| | - Arwa I Owais
- Department of Applied Dental Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
13
|
Next generation sequencing reveals a novel nonsense mutation in MSX1 gene related to oligodontia. PLoS One 2018; 13:e0202989. [PMID: 30192788 PMCID: PMC6128526 DOI: 10.1371/journal.pone.0202989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
Tooth agenesis is one of the most common craniofacial disorders in humans. More than 350 genes have been associated with teeth development. In this study, we enrolled 60 child patients (age 13 to 17) with various types of tooth agenesis. Whole gene sequences of PAX9, MSX1, AXIN2, EDA, EDAR and WNT10a genes were sequenced by next generation sequencing on the Illumina MiSeq platform. We found previously undescribed heterozygous nonsense mutation g.8177G>T (c.610G>T) in MSX1 gene in one child. Mutation was verified by Sanger sequencing. Sequencing analysis was performed in other family members of the affected child. All family members carrying g.8177G>T mutation suffered from oligodontia (missing more than 6 teeth excluding third molars). Mutation g.8177G>T leads to a stop codon (p.E204X) and premature termination of Msx1 protein translation. Based on previous in vitro experiments on mutation disrupting function of Msx1 homeodomain, we assume that the heterozygous g.8177G>T nonsense mutation affects the amount and function of Msx1 protein and leads to tooth agenesis.
Collapse
|
14
|
Haddaji Mastouri M, De Coster P, Zaghabani A, Jammali F, Raouahi N, Ben Salem A, Saad A, Coucke P, H'mida Ben Brahim D. Genetic study of non-syndromic tooth agenesis through the screening of paired box 9, msh homeobox 1, axin 2, and Wnt family member 10A genes: a case-series. Eur J Oral Sci 2017; 126:24-32. [PMID: 29114927 DOI: 10.1111/eos.12391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 02/04/2023]
Abstract
Non-syndromic tooth agenesis (NSTA) is the most common developmental anomaly in humans. Several studies have been conducted on dental agenesis and numerous genes have been identified. However, the pathogenic mechanisms responsible for NSTA are not clearly understood. We studied a group of 28 patients with sporadic NSTA and nine patients with a family history of tooth agenesis. We focused on four genes - paired box 9 (PAX9), Wnt family member 10A (WNT10A), msh homeobox 1 (MSX1), and axin 2 (AXIN2) - using direct Sanger sequencing of the exons and intron-exon boundaries. The most prevalent variants identified in PAX9 and AXIN2 genes were analyzed using the chi-square test. The sequencing results revealed a number of variants in the AXIN2 gene, including one novel missense mutation in one patient with agenesis of a single second premolar. We also identified one variant in the AXIN2 gene as being a putative risk factor for tooth agenesis. Only one missense mutation was identified in the WNT10A gene and this mutation was found in two patients. Interestingly, WNT10A is reported as the most prevalent gene mutated in the European population with NSTA.
Collapse
Affiliation(s)
- Marwa Haddaji Mastouri
- Department of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Peter De Coster
- Department of Restorative Dentistry, Endodontology and Oral Biology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Frej Jammali
- Department of Orthodontics, Farhat Hached University Hospital, Sousse, Tunisia
| | - Nabiha Raouahi
- Department of Orthodontics, Farhat Hached University Hospital, Sousse, Tunisia
| | | | - Ali Saad
- Department of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Dorra H'mida Ben Brahim
- Department of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| |
Collapse
|
15
|
Tooth agenesis and orofacial clefting: genetic brothers in arms? Hum Genet 2016; 135:1299-1327. [PMID: 27699475 PMCID: PMC5065589 DOI: 10.1007/s00439-016-1733-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
Tooth agenesis and orofacial clefts represent the most common developmental anomalies and their co-occurrence is often reported in patients as well in animal models. The aim of the present systematic review is to thoroughly investigate the current literature (PubMed, EMBASE) to identify the genes and genomic loci contributing to syndromic or non-syndromic co-occurrence of tooth agenesis and orofacial clefts, to gain insight into the molecular mechanisms underlying their dual involvement in the development of teeth and facial primordia. Altogether, 84 articles including phenotype and genotype description provided 9 genomic loci and 26 gene candidates underlying the co-occurrence of the two congenital defects: MSX1, PAX9, IRF6, TP63, KMT2D, KDM6A, SATB2, TBX22, TGFα, TGFβ3, TGFβR1, TGFβR2, FGF8, FGFR1, KISS1R, WNT3, WNT5A, CDH1, CHD7, AXIN2, TWIST1, BCOR, OFD1, PTCH1, PITX2, and PVRL1. The molecular pathways, cellular functions, tissue-specific expression and disease association were investigated using publicly accessible databases (EntrezGene, UniProt, OMIM). The Gene Ontology terms of the biological processes mediated by the candidate genes were used to cluster them using the GOTermMapper (Lewis-Sigler Institute, Princeton University), speculating on six super-clusters: (a) anatomical development, (b) cell division, growth and motility, (c) cell metabolism and catabolism, (d) cell transport, (e) cell structure organization and (f) organ/system-specific processes. This review aims to increase the knowledge on the mechanisms underlying the co-occurrence of tooth agenesis and orofacial clefts, to pave the way for improving targeted (prenatal) molecular diagnosis and finally to reflect on therapeutic or ultimately preventive strategies for these disabling conditions in the future.
Collapse
|
16
|
Abstract
Numerous genes including Irf6 have been revealed to contribute to cleft lip with or without cleft palate (CL/P). In this study, we performed a systematic bioinformatics analysis of Irf6-related gene regulatory network involved in palate and lip development by using GeneDecks, DAVID, STRING, and GeneMANIA database. Our results showed that many CL/P candidate genes have relation with Irf6, and 9 of these genes, including Msx1, Pvrl1, Pax9, Jag2, Irf6, Tgfb3, Rara, Gli2, and Tgfb2, were enriched into the CL/P gene group. Some of these 9 genes also were commonly involved in different signaling pathways and different biological processes, and they also have protein-protein interactions with Irf6. These findings make us analyze the intricate function of Irf6 in a CL/P gene regulatory network, followed by guiding us to perform further functional studies on these genes in the future. This method also offers us a simple, cheap, but useful method to analyze the relationship with a gene regulatory network of a certain disease such as CL/P.
Collapse
|
17
|
Tallón-Walton V, Manzanares-Céspedes MC, Carvalho-Lobato P, Valdivia-Gandur I, Arte S, Nieminen P. Exclusion of PAX9 and MSX1 mutation in six families affected by tooth agenesis. A genetic study and literature review. Med Oral Patol Oral Cir Bucal 2014; 19:e248-54. [PMID: 24316698 PMCID: PMC4048113 DOI: 10.4317/medoral.19173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/07/2013] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE In the present study, it is describe the phenotypical analysis and the mutational screening, for genes PAX9 and MSX1, of six families affected by severe forms of tooth agenesis associated with other dental anomalies and systemic entities. STUDY DESIGN Six families affected by severe tooth agenesis associated with other dental anomalies and systemic entities were included. Oral exploration, radiological examination, medical antecedents consideration and mutational screening for PAX9 and MSX1 were carried out. RESULTS No mutations were discovered despite the fact that numerous teeth were missing. An important phenotypical variability was observed within the probands, not being possible to establish a parallelism with the patterns associated to previously described PAX9 and MSX1 mutations. CONCLUSIONS; These results bring us to conclude that probably other genes can determine phenotypical patterns of dental agenesis in the families studied, different than the ones described in the mutations of PAX9 and MSX1. Moreover, epigenetic factors can be involved, as those that can reduce gene dosage and other post-transcriptional modulation agents, causing dental agenesis associated or not with systemic anomalies.
Collapse
Affiliation(s)
- Victoria Tallón-Walton
- Human Anatomy and Embryology Unit, Campus de Bellvitge, Barcelona University, 5305, Pavelló de Govern, 5a planta, Feixa Llarga, s/n, 08907 L'Hospitalet del Llobregat, Barcelona, Spain,
| | | | | | | | | | | |
Collapse
|
18
|
Jobbágy-Óvári G, Páska C, Stiedl P, Trimmel B, Hontvári D, Soós B, Hermann P, Tóth Z, Kerekes-Máthé B, Nagy D, Szántó I, Nagy Á, Martonosi M, Nagy K, Hadadi É, Szalai C, Hullám G, Temesi G, Antal P, Varga G, Tarján I. Complex analysis of multiple single nucleotide polymorphisms as putative risk factors of tooth agenesis in the Hungarian population. Acta Odontol Scand 2014; 72:216-27. [PMID: 23964635 DOI: 10.3109/00016357.2013.822547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The role was studied of multiple single nucleotide polymorphisms in tooth agenesis in the Hungarian population using a complex approach. METHODS Eight SNPs, PAX9 -912 C/T, PAX9 -1031 A/G, MSX1 3755 A/G, FGFR1 T/C rs881301, IRF6 T/C rs764093, AXIN2-8150 A/G, AXIN2-8434 A/G and AXIN2-30224 C/T, were studied in 192 hypodontia and 17 oligodontia cases and in 260 healthy volunteers. Case-control analysis was performed to test both allelic and genotypic associations as well as associations at the level of haplotypes. Multivariate exploratory Bayesian network-based multi-level analysis of relevance (BN-BMLA) as well as logistic regression analysis were performed. RESULTS Conventional statistics showed that PAX9 SNP -912 C/T and the MSX1 SNP changed the incidence of hypodontia, although after Bonferroni correction for multiple hypothesis testing, the effects were only borderline tendencies. Using a statistical analysis better suited for handling multiple hypotheses, the BN-BMLA, PAX9 SNPs clearly showed a synergistic effect. This was confirmed by other multivariate analyses and it remained significant after corrections for multiple hypothesis testing (p < 0.0025). The PAX9-1031-A-PAX9-912-T haplotype was the most relevant combination causing hypodontia. Interaction was weaker between PAX9 and MSX1, while other SNPs had no joint effect on hypodontia. CONCLUSION This complex analysis shows the important role of PAX9 and MSX1 SNPs and of their interactions in tooth agenesis, while IRF6, FGFR1 and AXIN2 SNPs had no detectable role in the Hungarian population. These results also reveal that risk factors in hypodontia need to be identified in various populations, since there is considerable variability among them.
Collapse
|
19
|
Chhabra N, Goswami M, Chhabra A. Genetic basis of dental agenesis--molecular genetics patterning clinical dentistry. Med Oral Patol Oral Cir Bucal 2014; 19:e112-9. [PMID: 24121910 PMCID: PMC4015040 DOI: 10.4317/medoral.19158] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/04/2013] [Indexed: 11/05/2022] Open
Abstract
Tooth agenesis is one of the most common congenital malformations in humans. Hypodontia can either occur as an isolated condition (non-syndromic hypodontia) or can be associated with a syndrome (syndromic hypodontia), highlighting the heterogeneity of the condition. Though much progress has been made to identify the developmental basis of tooth formation, knowledge of the etiological basis of inherited tooth loss is still lacking. To date, the mutation spectra of non-syndromic form of familial and sporadic tooth agenesis in humans have revealed defects in various such genes that encode transcription factors, MSX1 and PAX9 or genes that code for a protein involved in canonical Wnt signaling (AXIN2), and a transmembrane receptor of fibroblast growth factors (FGFR1). The aim of this paper is to review the current literature on the molecular mechanisms responsible for selective hypodontia in humans and to present a detailed overview of causative genes and syndromes associated with hypodontia.
Collapse
Affiliation(s)
- N Chhabra
- Maulana Azad Institute of Dental Sciences, Delhi, India-110002,
| | | | | |
Collapse
|
20
|
Wang J, Xu Y, Chen J, Wang F, Huang R, Wu S, Shu L, Qiu J, Yang Z, Xue J, Wang R, Zhao J, Lai W. PAX9 polymorphism and susceptibility to sporadic non-syndromic severe anodontia: a case-control study in southwest China. J Appl Oral Sci 2013; 21:256-64. [PMID: 23857653 PMCID: PMC3881902 DOI: 10.1590/1679-775720130079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/24/2013] [Indexed: 12/20/2022] Open
Abstract
Our research aimed to look into the clinical traits and genetic mutations in sporadic
non-syndromic anodontia and to gain insight into the role of mutations of
PAX9, MSX1, AXIN2 and EDA in anodontia
phenotypes, especially for the PAX9.
Collapse
Affiliation(s)
- Jing Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Feng XY, Zhao YM, Wang WJ, Ge LH. Msx1regulates proliferation and differentiation of mouse dental mesenchymal cells in culture. Eur J Oral Sci 2013; 121:412-20. [PMID: 24028588 DOI: 10.1111/eos.12078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Xiao-yu Feng
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| | - Yu-ming Zhao
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| | - Wen-jun Wang
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| | - Li-hong Ge
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| |
Collapse
|
22
|
Mostowska A, Zadurska M, Rakowska A, Lianeri M, Jagodziński PP. NovelPAX9mutation associated with syndromic tooth agenesis. Eur J Oral Sci 2013; 121:403-11. [DOI: 10.1111/eos.12071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Małgorzata Zadurska
- Department of Orthodontics, Institute of Dentistry; The Medical University of Warsaw; Warsaw; Poland
| | - Adriana Rakowska
- Department of Dermatology; Central Clinical Hospital of Ministry of Internal Affaires; Warsaw; Poland
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| |
Collapse
|
23
|
A network of transcription factors operates during early tooth morphogenesis. Mol Cell Biol 2013; 33:3099-112. [PMID: 23754753 DOI: 10.1128/mcb.00524-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improving the knowledge of disease-causing genes is a unique challenge in human health. Although it is known that genes causing similar diseases tend to lie close to one another in a network of protein-protein or functional interactions, the identification of these protein-protein networks is difficult to unravel. Here, we show that Msx1, Snail, Lhx6, Lhx8, Sp3, and Lef1 interact in vitro and in vivo, revealing the existence of a novel context-specific protein network. These proteins are all expressed in the neural crest-derived dental mesenchyme and cause tooth agenesis disorder when mutated in mouse and/or human. We also identified an in vivo direct target for Msx1 function, the cyclin D-dependent kinase (CDK) inhibitor p19(ink4d), whose transcription is differentially modulated by the protein network. Considering the important role of p19(ink4d) as a cell cycle regulator, these results provide evidence for the first time of the unique plasticity of the Msx1-dependent network of proteins in conferring differential transcriptional output and in controlling the cell cycle through the regulation of a cyclin D-dependent kinase inhibitor. Collectively, these data reveal a novel protein network operating in the neural crest-derived dental mesenchyme that is relevant for many other areas of developmental and evolutionary biology.
Collapse
|
24
|
Qin H, Xu HZ, Xuan K. Clinical and genetic evaluation of a Chinese family with isolated oligodontia. Arch Oral Biol 2013; 58:1180-6. [PMID: 23731659 DOI: 10.1016/j.archoralbio.2013.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/29/2013] [Accepted: 04/17/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Oligodontia is defined as the congenital absence of 6 or more permanent teeth excluding the third molar. Tooth agenesis may be classified as syndromic/non-syndromic and as familial/sporadic. To date, more than 300 genes have been found to be involved in tooth development, but only a few of these genes, such as MSX1, PAX9 and AXIN2, are related to the condition of non-syndromic oligodontia. The objective of the present work was to investigate the disease-causing gene of non-syndromic oligodontia in a Han Chinese family and analyse the pathogenesis of mutations that result in oligodontia. DESIGN We examined all individuals of the oligodontia family by clinical and radiographic examinations. Based on the clinical manifestations, the candidate genes MSX, PAX9 and AXIN2 were selected to analyse and screen for mutations. RESULTS The clinical evaluation suggested that the family might show non-syndromic oligodontia. DNA sequencing of the MSX1 gene revealed two mutations in the two patients with oligodontia: a heterozygotic silent mutation, c.348C>T (P.Gly116=), in exon 1 and a homozygotic deletion of 11 nucleotides (c.469+56delins GCCGGGTGGGG) in the intron. However, the silent mutation and the deletion mutation were thought to be known polymorphisms (rs34165410 and rs34341187) by bioinformatics analysis. We did not detect any mutations in the PAX9 and AXIN2 genes of oligodontia patients. CONCLUSION Our finding suggests that identified polymorphisms (c.348C>T and c.469+56delins GCCGGGTGGGG) may be responsible for the oligodontia phenotype in this Chinese family, but the association requires further study.
Collapse
Affiliation(s)
- Han Qin
- Department of Dentistry, The First People's Hospital of Lianyungang City, 182 Tongguan Road, Lianyungang, Jiangsu Province, China
| | | | | |
Collapse
|
25
|
Phillips CD, Butler B, Fondon JW, Mantilla-Meluk H, Baker RJ. Contrasting evolutionary dynamics of the developmental regulator PAX9, among bats, with evidence for a novel post-transcriptional regulatory mechanism. PLoS One 2013; 8:e57649. [PMID: 23469040 PMCID: PMC3585407 DOI: 10.1371/journal.pone.0057649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/23/2013] [Indexed: 11/18/2022] Open
Abstract
Morphological evolution can be the result of natural selection favoring modification of developmental signaling pathways. However, little is known about the genetic basis of such phenotypic diversity. Understanding these mechanisms is difficult for numerous reasons, yet studies in model organisms often provide clues about the major developmental pathways involved. The paired-domain gene, PAX9, is known to be a key regulator of development, particularly of the face and teeth. In this study, using a comparative genetics approach, we investigate PAX9 molecular evolution among mammals, focusing on craniofacially diversified (Phyllostomidae) and conserved (Vespertilionidae) bat families, and extend our comparison to other orders of mammal. Open-reading frame analysis disclosed signatures of selection, in which a small percentage of residues vary, and lineages acquire different combinations of variation through recurrent substitution and lineage specific changes. A few instances of convergence for specific residues were observed between morphologically convergent bat lineages. Bioinformatic analysis for unknown PAX9 regulatory motifs indicated a novel post-transcriptional regulatory mechanism involving a Musashi protein. This regulation was assessed through fluorescent reporter assays and gene knockdowns. Results are compatible with the hypothesis that the number of Musashi binding-elements in PAX9 mRNA proportionally regulates protein translation rate. Although a connection between morphology and binding element frequency was not apparent, results indicate this regulation would vary among craniofacially divergent bat species, but be static among conserved species. Under this model, Musashi's regulatory control of alternative human PAX9 isoforms would also vary. The presence of Musashi-binding elements within PAX9 of all mammals examined, chicken, zebrafish, and the fly homolog of PAX9, indicates this regulatory mechanism is ancient, originating basal to much of the animal phylogeny.
Collapse
Affiliation(s)
- Caleb D Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America.
| | | | | | | | | |
Collapse
|
26
|
Galluccio G, Castellano M, La Monaca C. Genetic basis of non-syndromic anomalies of human tooth number. Arch Oral Biol 2012; 57:918-30. [PMID: 22325622 DOI: 10.1016/j.archoralbio.2012.01.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/25/2022]
Abstract
Teeth organogenesis develops through a well-ordered series of inductive events involving genes and BMP, FGF, SHH and WNT represent the main signalling pathways that regulate epithelial-mesenchymal interactions. Moreover, progress in genetics and molecular biology indicates that more than 300 genes are involved in different phases of teeth development. Mutations in genes involved in odontogenesis are responsible for many dental anomalies, including a number of dental anomalies that can be associated with other systemic skeletal or organic manifestations (syndromic dental anomalies) or not (non-syndromic dental anomalies). The knowledge of the genetic development mechanisms of the latter is of major interest. Understanding the mechanisms of pathogenesis of non-syndromic teeth anomalies would also clarify the role of teeth in craniofacial development, and this would represent an important contribution to the diagnosis, treatment and prognosis of congenital malformations, and the eventual association to other severe diseases. Future research in this area is likely to lead to the development of tests for doctors to formulate an early diagnosis of these anomalies.
Collapse
Affiliation(s)
- Gabriella Galluccio
- Sapienza University of Rome, Department of Oral Medicine, Course of Dentistry Degree, Courses of Orthognatodontics 2 and Clinical Gnatology 2, Italy.
| | | | | |
Collapse
|
27
|
Mostowska A, Biedziak B, Jagodzinski PP. Novel MSX1 mutation in a family with autosomal-dominant hypodontia of second premolars and third molars. Arch Oral Biol 2012; 57:790-5. [PMID: 22297032 DOI: 10.1016/j.archoralbio.2012.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/31/2011] [Accepted: 01/07/2012] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Tooth agenesis is the most common developmental anomaly of the human dentition, with aetiology involving both genetic and environmental factors. The aim of the study was to search for casual mutations underlying hypodontia in a family with agenesis of the second premolars and third molars. DESIGN Direct sequencing of the coding regions including exon-intron boundaries of the MSX1 and PAX9 genes was performed in all affected family members. RESULTS Novel heterozygous mutation segregating in an autosomal dominant model was identified in the MSX1 gene. This c.T671C transition leads to a substitution of leucine by proline at position 224, which is the penultimate amino acid residue of the highly conserved homeodomain. None of the control subjects (600 chromosomes) were carriers of this novel, probably damaging to protein function, mutation. CONCLUSIONS Our results demonstrate for the first time that MSX1 might play a substantial role in familial cases of hypodontia involving only second premolars and third molars. The novel c.T671C mutation might be the etiological variant of the MSX1 gene responsible for the lack of permanent teeth in the tested family.
Collapse
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | |
Collapse
|
28
|
Developmental stalling and organ-autonomous regulation of morphogenesis. Proc Natl Acad Sci U S A 2011; 108:19270-5. [PMID: 22084104 DOI: 10.1073/pnas.1112801108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Timing of organ development during embryogenesis is coordinated such that at birth, organ and fetal size and maturity are appropriately proportioned. The extent to which local developmental timers are integrated with each other and with the signaling interactions that regulate morphogenesis to achieve this end is not understood. Using the absolute requirement for a signaling pathway activity (bone morphogenetic protein, BMP) during a critical stage of tooth development, we show that suboptimal levels of BMP signaling do not lead to abnormal morphogenesis, as suggested by mutants affecting BMP signaling, but to a 24-h stalling of the intrinsic developmental clock of the tooth. During this time, BMP levels accumulate to reach critical levels whereupon tooth development restarts, accelerates to catch up with development of the rest of the embryo and completes normal morphogenesis. This suggests that individual organs can autonomously control their developmental timing to adjust their stage of development to that of other organs. We also find that although BMP signaling is critical for the bud-to-cap transition in all teeth, levels of BMP signaling are regulated differently in multicusped teeth. We identify an interaction between two homeodomain transcription factors, Barx1 and Msx1, which is responsible for setting critical levels of BMP activity in multicusped teeth and provides evidence that correlates the levels of Barx1 transcriptional activity with cuspal complexity. This study highlights the importance of absolute levels of signaling activity for development and illustrates remarkable self-regulation in organogenesis that ensures coordination of developmental processes such that timing is subordinate to developmental structure.
Collapse
|
29
|
Bianch FJ, de Oliveira TF, Saito CBP, Peres RCR, Line SRP. Association between polymorphism in the promoter region (G/C-915) of PAX9 gene and third molar agenesis. J Appl Oral Sci 2009; 15:382-6. [PMID: 19089165 PMCID: PMC4327256 DOI: 10.1590/s1678-77572007000500002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 05/29/2007] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Hypodontia is the congenital absence of one or more (up to six) permanent and/or deciduous teeth, being one of the most common alterations of the human dentition. Genetic polymorphisms are variations of DNA sequences occurring in a population. This study investigated whether G-915C single nucleotide polymorphism (SNPs) in the PAX9 gene promoter is associated with hypodontia in humans. MATERIAL AND METHODS The polymorphism in region G/C-915 of PAX9 gene (NCBI ref SNP ID: rs 2073247) of 240 patients was analyzed, being 110 controls and 130 individuals with third molar agenesis. After DNA extraction, the region of interest was amplified by PCR technique using two different primers. The significance of the differences in observed frequencies of polymorphisms in both groups was assessed by odds-ratio and chi-squared test with 95% confidence interval. RESULTS Genotype CC was more frequent in patients with agenesis (11.5%) compared to the control (1.8%), while GG was more prevalent in the control group (39.1%) compared to the individuals with agenesis (26.2%). CONCLUSION These data showed that the allele C could be associated with the third molar agenesis.
Collapse
Affiliation(s)
- Fabio José Bianch
- Department of Morphology, Dental School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
30
|
Pawlowska E, Janik-Papis K, Wisniewska-Jarosinska M, Szczepanska J, Blasiak J. Mutations in the human homeobox MSX1 gene in the congenital lack of permanent teeth. TOHOKU J EXP MED 2009; 217:307-12. [PMID: 19346736 DOI: 10.1620/tjem.217.307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tooth agenesis is the congenital lack of permanent teeth, which is called oligodontia, when the number of missing teeth is 6 or more. Oligodontia affects more than 1 of 100 humans, but its pathogenesis is largely unknown. Tooth genesis depends on the complex interactions between environmental and genetic factors. The MSX1 gene, a member of homeobox gene family, encodes a DNA-binding protein, which is involved in many epithelial-mesenchymal interactions, leading to vertebrate organogenesis, and appears to be most critical during early tooth development. The MSH1 gene has 2 exons, separated by an intron, and its mutations, such as missense or frame-shift mutations, have been reported to be associated with tooth agenesis. In the present study, we sequenced the MSX1 gene of three unrelated patients with sporadic, non-syndromic oligodontia: 2 boys aged 8.5 and 15 years old and one girl aged 15.5 years old. We have thus identified a homozygotic deletion of 11 nucleotides in the intron, near the 5' splicing site, in two patients, who also carry a different exonic transition. The base changes we detected were not present in an open reading-frame of the MSX1 gene, but the newly identified deletion of 11 nucleotides might interfere with the splicing of the MSX1 gene. In contrast, the third patient, a 15-year boy, displayed no base change in the examined regions. Therefore, the identified 11-nucleotide deletion may decrease the expression level of the MSX1 protein, but the link with oligodontia needs further study.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Lodz, Poland
| | | | | | | | | |
Collapse
|
31
|
Wang Y, Groppe JC, Wu J, Ogawa T, Mues G, D'Souza RN, Kapadia H. Pathogenic mechanisms of tooth agenesis linked to paired domain mutations in human PAX9. Hum Mol Genet 2009; 18:2863-74. [PMID: 19429910 DOI: 10.1093/hmg/ddp221] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the paired-domain transcription factor PAX9 are associated with non-syndromic tooth agenesis that preferentially affects posterior dentition. Of the 18 mutations identified to date, eight are phenotypically well-characterized missense mutations within the DNA-binding paired domain. We determined the structural and functional consequences of these paired domain missense mutations and correlated our findings with the associated dental phenotype variations. In vitro testing included subcellular localization, protein-protein interactions between MSX1 and mutant PAX9 proteins, binding of PAX9 mutants to a DNA consensus site and transcriptional activation from the Pax9 effector promoters Bmp4 and Msx1 with and without MSX1 as co-activator. All mutant PAX9 proteins were localized in the nucleus of transfected cells and physically interacted with MSX1 protein. Three of the mutants retained the ability to bind the consensus paired domain recognition sequence; the others were unable or only partly able to interact with this DNA fragment and also showed a similarly impaired capability for activation of transcription from the Msx1 and Bmp4 promoters. For seven of the eight mutants, the degree of loss of DNA-binding and promoter activation correlated quite well with the severity of the tooth agenesis pattern seen in vivo. One of the mutants however showed neither reduction in DNA-binding nor decrease in transactivation; instead, a loss of responsiveness to synergism with MSX1 in target promoter activation and a dominant negative effect when expressed together with wild-type PAX9 could be observed. Our structure-based studies, which modeled DNA binding and subdomain stability, were able to predict functional consequences quite reliably.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biomedical Sciences, Texas A&M University Health Science Center, Baylor College of Dentistry, Dallas, TX 75246, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Ishikawa A, Kato T, Susa T, Sano A, Kato Y. Molecular cloning and characterization of porcine homeodomain transcription factor Msx1. J Reprod Dev 2009; 55:278-82. [PMID: 19262020 DOI: 10.1262/jrd.20179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned a porcine ortholog of homeodomain transcription factor Msx1 from the porcine pituitary cDNA library. The amino acid sequence of Msx1 shows high conservation among mammalian species. RT-PCR for porcine fetal and postnatal pituitaries showed that Msx1 is already expressed at early fetal day 40, decreases to a low level before birth and then remarkably decreases after birth. On the other hand, Msx1 expression was observed in all pituitary-derived cell line tested, with most in a gonadotrope lineage LbetaT4. Transfection assay demonstrated that Msx1 markedly repressed the basal Cga and Fshb gene expression, while Lhb expression was affected slightly. Taken together, Msx1 may play a role in repressing gene expression in the fetal and postnatal periods.
Collapse
Affiliation(s)
- Akio Ishikawa
- Division of Life Science, Graduate School of Agriculture, Meiji University
| | | | | | | | | |
Collapse
|
33
|
De Coster PJ, Marks LA, Martens LC, Huysseune A. Dental agenesis: genetic and clinical perspectives. J Oral Pathol Med 2008; 38:1-17. [PMID: 18771513 DOI: 10.1111/j.1600-0714.2008.00699.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dental agenesis is the most common developmental anomaly in humans and is frequently associated with several other oral abnormalities. Whereas the incidence of missing teeth may vary considerably depending on dentition, gender, and demographic or geographic profiles, distinct patterns of agenesis have been detected in the permanent dentition. These frequently involve the last teeth of a class to develop (I2, P2, M3) suggesting a possible link with evolutionary trends. Hypodontia can either occur as an isolated condition (non-syndromic hypodontia) involving one (80% of cases), a few (less than 10%) or many teeth (less than 1%), or can be associated with a systemic condition or syndrome (syndromic hypodontia), essentially reflecting the genetically and phenotypically heterogeneity of the condition. Based on our present knowledge of genes and transcription factors that are involved in tooth development, it is assumed that different phenotypic forms are caused by different genes involving different interacting molecular pathways, providing an explanation not only for the wide variety in agenesis patterns but also for associations of dental agenesis with other oral anomalies. At present, the list of genes involved in human non-syndromic hypodontia includes not only those encoding a signaling molecule (TGFA) and transcription factors (MSX1 and PAX9) that play critical roles during early craniofacial development, but also genes coding for a protein involved in canonical Wnt signaling (AXIN2), and a transmembrane receptor of fibroblast growth factors (FGFR1). Our objective was to review the current literature on the molecular mechanisms that are responsible for selective dental agenesis in humans and to present a detailed overview of syndromes with hypodontia and their causative genes. These new perspectives and future challenges in the field of identification of possible candidate genes involved in dental agenesis are discussed.
Collapse
Affiliation(s)
- P J De Coster
- Department of Paediatric Dentistry and Special Care, Paecamed Research, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
34
|
Matalova E, Fleischmannova J, Sharpe PT, Tucker AS. Tooth agenesis: from molecular genetics to molecular dentistry. J Dent Res 2008; 87:617-23. [PMID: 18573979 DOI: 10.1177/154405910808700715] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tooth agenesis may originate from either genetic or environmental factors. Genetically determined hypodontic disorders appear as isolated features or as part of a syndrome. Msx1, Pax9, and Axin2 are involved in non-syndromic hypodontia, while genes such as Shh, Pitx2, Irf6, and p63 are considered to participate in syndromic genetic disorders, which include tooth agenesis. In dentistry, artificial tooth implants represent a common solution to tooth loss problems; however, molecular dentistry offers promising solutions for the future. In this paper, the genetic and molecular bases of non-syndromic and syndromic hypodontia are reviewed, and the advantages and disadvantages of tissue engineering in the clinical treatment of tooth agenesis are discussed.
Collapse
Affiliation(s)
- E Matalova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic.
| | | | | | | |
Collapse
|
35
|
Fujita S, Seki S, Fujiwara M, Ikeda T. Midkine expression correlating with growth activity and tooth morphogenesis in odontogenic tumors. Hum Pathol 2008; 39:694-700. [DOI: 10.1016/j.humpath.2007.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/14/2007] [Accepted: 09/18/2007] [Indexed: 02/04/2023]
|
36
|
Zhao H, Oka K, Bringas P, Kaartinen V, Chai Y. TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner. Dev Biol 2008; 320:19-29. [PMID: 18572160 DOI: 10.1016/j.ydbio.2008.03.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 03/18/2008] [Accepted: 03/20/2008] [Indexed: 01/01/2023]
Abstract
TGF-beta superfamily members signal through a heteromeric receptor complex to regulate craniofacial development. TGF-beta type II receptor appears to bind only TGF-beta, whereas TGF-beta type I receptor (ALK5) also binds to ligands in addition to TGF-beta. Our previous work has shown that conditional inactivation of Tgfbr2 in the neural crest cells of mice leads to severe craniofacial bone defects. In this study, we examine and compare the defects of TGF-beta type II receptor (Wnt1-Cre;Tgfbr2(fl/fl)) and TGF-beta type I receptor/Alk5 (Wnt1-Cre;Alk5(fl)(/fl)) conditional knockout mice. Loss of Alk5 in the neural crest tissue resulted in phenotypes not seen in the Tgfbr2 mutant, including delayed tooth initiation and development, defects in early mandible patterning and altered expression of key patterning genes including Msx1, Bmp4, Bmp2, Pax9, Alx4, Lhx6/7 and Gsc. Alk5 controls the survival of CNC cells by regulating expression of Gsc and other genes in the proximal aboral region of the developing mandible. We conclude that ALK5 regulates tooth initiation and early mandible patterning through a pathway independent of Tgfbr2. There is an intrinsic requirement for Alk5 signal in regulating the fate of CNC cells during tooth and mandible development.
Collapse
Affiliation(s)
- Hu Zhao
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
The focus of this work is to highlight the most recent advances in the understanding of cleft lip and palate occurrence. Information regarding research on long-term outcomes, genes and their interactions with other genes, and gene-environment interactions is compiled to provide the reader with a critical and up-to-date overview on the current knowledge of the etiology of cleft lip and palate. Recent epidemiological evidence strongly suggests that individuals born with clefts have a shorter lifespan and may have a higher incidence of cancer and psychological disorders. IRF6 has been shown to be an important contributor to cleft lip and palate, but the functional variant leading to the defect has not yet been defined. Inactivation of MSX1 and genes in the FGF family has also been shown to lead to cleft lip and palate. In addition, missense mutations in several candidate genes may cause cleft lip and palate, but definitive evidence regarding the biological consequences of these mutations is yet to be unraveled. Maternal cigarette smoking increases the risk of a baby born with clefts, in particular when the mother carries the GSTT1-null variants. The latest approaches in cleft research include the analysis of several additional phenotypical features of the population, with the goal of increasing the statistical power of genetics studies.
Collapse
Affiliation(s)
- A R Vieira
- Departments of Oral Biology and Pediatric Dentistry, School of Dental Medicine, University of Pittsburgh, PA 15261, USA.
| |
Collapse
|
38
|
Xuan K, Jin F, Liu YL, Yuan LT, Wen LY, Yang FS, Wang XJ, Wang GH, Jin Y. Identification of a novel missense mutation of MSX1 gene in Chinese family with autosomal-dominant oligodontia. Arch Oral Biol 2008; 53:773-9. [PMID: 18374898 DOI: 10.1016/j.archoralbio.2008.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/07/2008] [Accepted: 02/16/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Oligodontia is defined as the congenital absence of 6 or more permanent teeth excluding the third molar. The occurrence of non-syndromic still remains poorly understood, but in recent years some cases have been reported where mutations or polymorphisms of PAX9 and MSX1 had been associated with non-syndromic oligodontia. The objective of the present work was to study the phenotype and genotype of three generations of a Han Chinese family affected by non-syndromic autosomal-dominant oligodontia. DESIGN We examined all individuals of the oligodontia family by clinical and radiographic examinations. Based on clinical manifestations, candidate genes MSX1 and PAX9 were picked up to analyse and screen mutations. RESULTS Dental evaluation showed that the most commonly missing teeth are the mandibular second premolars, followed by the maxillary second premolars and maxillary lateral incisors, and subsequently the maxillary first premolars. The probability of missing a particular type of tooth is not always bilaterally symmetrical, and differences exist between maxilla and mandible. PCR-SSCP analysis and DNA sequencing revealed a novel missense mutation c.662C>A in a highly conserved homeobox sequence of MSX1 and a known polymorphisms c.347C>G. CONCLUSION Our finding suggests the missense transversion (c.662C>A) and the polymorphisms (c.347C>G) may be responsible for oligodontia phenotype in this Chinese family.
Collapse
Affiliation(s)
- Kun Xuan
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The congenital absence of teeth is one of the commonest developmental abnormalities seen in human populations. Familial hypodontia or oligodontia represents an absence of varying numbers of primary and/or secondary teeth as an isolated trait. While much progress has been made in understanding the developmental basis of tooth formation, knowledge of the aetiological basis of inherited tooth loss remains poor. The study of mouse genetics has uncovered a large number of candidate genes for this condition, but mutations in only three have been identified in human pedigrees with familial hypodontia or oligodontia: MSX1, PAX9 and AXIN2. This suggests that these conditions may represent a more complex multifactorial trait, influenced by a combination of gene function, environmental interaction and developmental timing. Completion of the human genome project has made available the DNA sequence of the collected human chromosomes, allowing the localisation of all human genes and, ultimately, determination of their function. Therefore it is likely that our understanding of this complex developmental process will continue to improve, not only during normal development but also when things go wrong.
Collapse
Affiliation(s)
- M T Cobourne
- Department of Orthodontics and Craniofacial Development, King's Dental Institute, Guy's Hospital, London, UK.
| |
Collapse
|
40
|
Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 2007; 23:645-73. [PMID: 17506689 DOI: 10.1146/annurev.cellbio.23.090506.123438] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pax genes play key roles in the formation of tissues and organs during embryogenesis. Pax3 and Pax7 mark myogenic progenitor cells and regulate their behavior and their entry into the program of skeletal muscle differentiation. Recent results have underlined the importance of the Pax3/7 population of cells for skeletal muscle development and regeneration. We present our current understanding of different aspects of Pax3/7 function in myogenesis, focusing on the mouse model. This is compared with that of other Pax proteins in the emergence of tissue specific lineages and their differentiation as well as in cell survival, proliferation, and migration. Finally, we consider the molecular mechanisms that underlie the function of Pax transcription factors, including the cofactors and regulatory networks with which they interact.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental Biology, CNRS URA 2578, Pasteur Institute, 75015 Paris, France.
| | | |
Collapse
|
41
|
Lang D, Powell SK, Plummer RS, Young KP, Ruggeri BA. PAX genes: Roles in development, pathophysiology, and cancer. Biochem Pharmacol 2007; 73:1-14. [PMID: 16904651 DOI: 10.1016/j.bcp.2006.06.024] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 06/12/2006] [Accepted: 06/12/2006] [Indexed: 11/20/2022]
Abstract
PAX proteins function as transcription factors and play an essential role in organogenesis during embryonic development in regulating cell proliferation and self-renewal, resistance to apoptosis, migration of embryonic precursor cells, and the coordination of specific differentiation programs. Recent studies have also discovered a role for PAX proteins in specific stem cell or progenitor cell populations, including melanocytes, muscle, and B-cells. The normal functions of the PAX proteins, including apoptosis resistance and repression of terminal differentiation, may be subverted during the progression of a number of specific malignancies. This is supported by the fact that expression of PAX proteins is dysregulated in several different types of tumors, although the precise roles for PAX proteins in cancer are not clearly understood. An emerging hypothesis is that PAX proteins play an essential role in maintaining tissue specific stem cells by inhibiting terminal differentiation and apoptosis and that these functional characteristics may facilitate the development and progression of specific cancers. In this review, we provide a general background to the PAX protein family and focus on specific cells and tissues and the role PAX proteins play within these tissues in terms of development, mature tissue maintenance, and expression in tumors. Understanding the normal developmental pathways regulated by PAX proteins may shed light on potentially parallel pathways shared in tumors, and ultimately result in defining new molecular targets and signaling pathways for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Deborah Lang
- University of Chicago, Department of Medicine, Section of Dermatology, 5841 S. Maryland Avenue, Chicago, IL 60637, United States.
| | | | | | | | | |
Collapse
|
42
|
Gerits A, Nieminen P, De Muynck S, Carels C. Exclusion of coding region mutations in MSX1, PAX9 and AXIN2 in eight patients with severe oligodontia phenotype. Orthod Craniofac Res 2006; 9:129-36. [PMID: 16918677 DOI: 10.1111/j.1601-6343.2006.00367.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE This paper describes the screening of eight patients with severe oligodontia for PAX9 and AXIN2 mutations. SUBJECTS AND METHODS Anamnestic data and a panoramic radiograph were collected to study the phenotype of eight patients with oligodontia and their first-degree relatives. A blood sample was taken for a mutational screening for PAX9 and AXIN2 mutations. RESULTS No mutations were discovered, but a unique nucleotide change in a conserved 5' flanking region of PAX9 was revealed. Earlier screening of the same patients for MSX1 mutations also had a negative outcome. CONCLUSIONS Considering the discrepancy between the high incidence rate of agenesis and the relatively small number of reported causative mutations in PAX9, MSX1 and AXIN2 genes, the genetic contribution to oligodontia probably is much more heterogeneous than expected so far. Therefore negative results, like the present exclusion data, should be published more often in order to get a better appreciation of the relative contribution of these specific mutations causing oligodontia. In this context the exact number of tested probands also should be mentioned at all cases. Recent evidence of PAX9-MSX1 protein interactions in odontogenesis as well as other genes and developmental factors should receive more attention.
Collapse
Affiliation(s)
- A Gerits
- Department of Orthodontics, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
43
|
Abstract
Can kindreds with tooth agenesis caused by MSX1 or PAX9 mutations be distinguished by their phenotypes? We have identified an MSX1second bicuspids and mandibular central incisors. The dominant phenotype is apparently due to haploinsufficiency. We analyzed patterns of partial tooth agenesis in seven kindreds with defined MSX1 mutations and ten kindreds with defined PAX9 mutations. The probability of missing a particular type of tooth is always bilaterally symmetrical, but differences exist between the maxilla and mandible. MSX1-associated oligodontia typically includes missing maxillary and mandibular second bicuspids and maxillary first bicuspids. The most distinguishing feature of MSX1-associated oligodontia is the frequent (75%) absence of maxillary first bicuspids, while the most distinguishing feature of PAX9-associated oligodontia is the frequent (> 80%) absence of the maxillary and mandibular second molars.
Collapse
Affiliation(s)
- J.-W. Kim
- Department of Orthodontics and Pediatric Dentistry, University of Michigan Dental Research Lab, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
- Seoul National University, College of Dentistry, Department of Pediatric Dentistry & Dental Research Institute, 28-2 Yongon-Dong, Chongno-Gu, Seoul, Korea 110-768
| | - J.P. Simmer
- Department of Orthodontics and Pediatric Dentistry, University of Michigan Dental Research Lab, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | - B.P.-J. Lin
- University of California at San Francisco, School of Dentistry, Department of Growth and Development, Division of Pediatric Dentistry, 513 Parnassus Avenue, S-630, San Francisco, CA 94143-0430, USA
| | - J.C.-C. Hu
- Department of Orthodontics and Pediatric Dentistry, University of Michigan Dental Research Lab, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
- *corresponding author,
| |
Collapse
|
44
|
Mostowska A, Biedziak B, Trzeciak WH. A novel mutation in PAX9 causes familial form of molar oligodontia. Eur J Hum Genet 2006; 14:173-9. [PMID: 16333316 DOI: 10.1038/sj.ejhg.5201536] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PAX9 is a paired domain transcription factor that plays a critical role in odontogenesis. All mutations of PAX9 identified to date have been associated with nonsyndromic form of tooth agenesis. The present report describes an unusual novel mutation in PAX9 identified in a family with severe molar oligodontia. This heterozygous deletion combined with 24 bp insertion (including a 5' splice site) is localized in the second exon beyond the highly conserved paired box sequence, and might result either in a premature termination of translation at aa 210 or in an aberrant splicing, leading to a frameshift and premature termination of translation at aa 314. Real-time PCR analysis revealed no mutated transcript in cultured lymphocytes of one of the affected individuals indicating that the novel mutation might result in rapid degradation of the mutated transcript leading to haploinsufficiency of PAX9. Our results support the view that mutations in PAX9 constitute a causative factor in nonsyndromic oligodontia.
Collapse
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, University of Medical Sciences, Poznan, Poland.
| | | | | |
Collapse
|
45
|
Mostowska A, Biedziak B, Trzeciak WH. A novel c.581C>T transition localized in a highly conserved homeobox sequence of MSX1: is it responsible for oligodontia? J Appl Genet 2006; 47:159-64. [PMID: 16682758 DOI: 10.1007/bf03194616] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Even though selective tooth agenesis is the most common developmental anomaly of human dentition, its genetic background still remains poorly understood. To date, familial as well as sporadic forms of both hypodontia and oligodontia have been associated with mutations or polymorphisms of MSX1, PAX9, AXIN2 and TGFa, whose protein products play a crucial role in odontogenesis. In the present report we described a novel mutation of MSX1, which might be responsible for the lack of 14 permanent teeth in our proband. However, this c.581C>T transition, localized in a highly conserved homeobox sequence of MSX1, was identified also in 2 healthy individuals from the proband's family. Our finding suggests that this transition might be the first described mutation of MSX1 that might be responsible for oligodontia and showing incomplete penetrance. It may also support the view that this common anomaly of human dentition might be an oligogenic trait caused by simultaneous mutations of different genes.
Collapse
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, University of Medical Sciences, Swiecickiego 6, 60-781 Poznań, Poland.
| | | | | |
Collapse
|
46
|
Pereira TV, Salzano FM, Mostowska A, Trzeciak WH, Ruiz-Linares A, Chies JAB, Saavedra C, Nagamachi C, Hurtado AM, Hill K, Castro-de-Guerra D, Silva-Júnior WA, Bortolini MC. Natural selection and molecular evolution in primate PAX9 gene, a major determinant of tooth development. Proc Natl Acad Sci U S A 2006; 103:5676-81. [PMID: 16585527 PMCID: PMC1458632 DOI: 10.1073/pnas.0509562103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Large differences in relation to dental size, number, and morphology among and within modern human populations and between modern humans and other primate species have been observed. Molecular studies have demonstrated that tooth development is under strict genetic control, but, the genetic basis of primate tooth variation remains unknown. The PAX9 gene, which codes for a paired domain-containing transcription factor that plays an essential role in the development of mammal dentition, has been associated with selective tooth agenesis in humans and mice, which mainly involves the posterior teeth. To determine whether this gene is polymorphic in humans, we sequenced approximately 2.1 kb of the entire four-exon region (exons 1, 2, 3 and 4; 1,026 bp) and exon-intron (1.1 kb) boundaries of 86 individuals sampled from Asian, European, and Native American populations. We provided evidence that human PAX9 polymorphisms are limited to exon 3 only and furnished details about the distribution of a mutation there in 350 Polish subjects. To investigate the pattern of selective pressure on exon 3, we sequenced ortholog regions of this exon in four species of New World monkeys and one gorilla. In addition, orthologous sequences of PAX9 available in public databases were also analyzed. Although several differences were identified between humans and other species, our findings support the view that strong purifying selection is acting on PAX9. New World and Old World primate lineages may, however, have different degrees of restriction for changes in this DNA region.
Collapse
Affiliation(s)
- Tiago V. Pereira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, Brazil
| | - Francisco M. Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, Brazil
- To whom correspondence should be addressed. E-mail:
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, University of Medical Sciences, 6 Swiecickiego, 60-781, Poznan, Poland
| | - Wieslaw H. Trzeciak
- Department of Biochemistry and Molecular Biology, University of Medical Sciences, 6 Swiecickiego, 60-781, Poznan, Poland
| | - Andrés Ruiz-Linares
- The Galton Laboratory, University College London, 4 Stephenson Way, London NW1 2HE, United Kingdom
| | - José A. B. Chies
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, Brazil
| | - Carmen Saavedra
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, Brazil
| | - Cleusa Nagamachi
- Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal do Pará, Campus Universitário do Guamá, 66075-970 Belém, Brazil
| | - Ana M. Hurtado
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131
| | - Kim Hill
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131
| | - Dinorah Castro-de-Guerra
- Laboratório de Genética Humana, Instituto Venezolano de Investigaciones Científicas, Apartado 21827, Caracas 1020A, Venezuela; and
| | - Wilson A. Silva-Júnior
- Departamento de Genética, Faculdade de Medicina, Universidade de São Paulo, Campus Universitário, 14049-900 Ribeirão Preto, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, Brazil
| |
Collapse
|