1
|
Sharma S, Patil AS. Myostatin's marvels: From muscle regulator to diverse implications in health and disease. Cell Biochem Funct 2024; 42:e4106. [PMID: 39140697 DOI: 10.1002/cbf.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Myostatin, a member of the transforming growth factor-β superfamily, is a pivotal regulator of skeletal muscle growth in mammals. Its discovery has sparked significant interest due to its multifaceted roles in various physiological processes and its potential therapeutic implications. This review explores the diverse functions of myostatin in skeletal muscle development, maintenance and pathology. We delve into its regulatory mechanisms, including its interaction with other signalling pathways and its modulation by various factors such as microRNAs and mechanical loading. Furthermore, we discuss the therapeutic strategies aimed at targeting myostatin for the treatment of muscle-related disorders, including cachexia, muscular dystrophy and heart failure. Additionally, we examine the impact of myostatin deficiency on craniofacial morphology and bone development, shedding light on its broader implications beyond muscle biology. Through a comprehensive analysis of the literature, this review underscores the importance of further research into myostatin's intricate roles and therapeutic potential in human health and disease.
Collapse
Affiliation(s)
- Sonakshi Sharma
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| | - Amol S Patil
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
2
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Jeffery NS, Sarver DC, Mendias CL. Ontogenetic and in silico models of spatial-packing in the hypermuscular mouse skull. J Anat 2021; 238:1284-1295. [PMID: 33438210 PMCID: PMC8128773 DOI: 10.1111/joa.13393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Networks linking single genes to multiple phenotypic outcomes can be founded on local anatomical interactions as well as on systemic factors like biochemical products. Here we explore the effects of such interactions by investigating the competing spatial demands of brain and masticatory muscle growth within the hypermuscular myostatin-deficient mouse model and in computational simulations. Mice that lacked both copies of the myostatin gene (-/-) and display gross hypermuscularity, and control mice that had both copies of the myostatin gene (+/+) were sampled at 1, 7, 14 and 28 postnatal days. A total of 48 mice were imaged with standard as well as contrast-enhanced microCT. Size metrics and landmark configurations were collected from the image data and were analysed alongside in silico models of tissue expansion. Findings revealed that: masseter muscle volume was smaller in -/- mice at day 1 but became, and remained thereafter, larger by 7 days; -/- endocranial volumes begin and remained smaller; -/- enlargement of the masticatory muscles was associated with caudolateral displacement of the calvarium, lateral displacement of the zygomatic arches, and slight dorsal deflection of the face and basicranium. Simulations revealed basicranial retroflexion (flattening) and dorsal deflection of the face associated with muscle expansion and abrogative covariations of basicranial flexion and ventral facial deflection associated with endocranial expansion. Our findings support the spatial-packing theory and highlight the importance of understanding the harmony of competing spatial demands that can shape and maintain mammalian skull architecture during ontogeny.
Collapse
Affiliation(s)
- Nathan S. Jeffery
- Institute of Life Course & Medical SciencesUniversity of LiverpoolLiverpoolUK
| | - Dylan C. Sarver
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
- School of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Christopher L. Mendias
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
- HSS Research InstituteHospital for Special SurgeryNew YorkNYUSA
| |
Collapse
|
4
|
Xin C, Chu X, Wei W, Kuang B, Wang Y, Tang Y, Chen J, You H, Li C, Wang B. Combined gene therapy via VEGF and mini-dystrophin synergistically improves pathologies in temporalis muscle of dystrophin/utrophin double knockout mice. Hum Mol Genet 2021; 30:1349-1359. [PMID: 33987645 DOI: 10.1093/hmg/ddab120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked inherited muscular disorder characterized by the loss of dystrophin. We have previously shown that monogene therapy using the mini-dystrophin gene improves muscle function in DMD. However, chronic inflammation plays an important role in progressive muscle degeneration in DMD as well. Vascular endothelial growth factor (VEGF) has been used to enhance muscle vasculature, reduce local inflammation and improve DMD muscle function. Temporalis muscles are the key skeletal muscles for mastication and loss of their function negatively affects DMD patient quality of life by reducing nutritional intake, but little is known about the pathology and treatment of the temporalis muscle in DMD. In this work, we tested the hypothesis that the combined delivery of the human mini-dystrophin and human VEGF genes to the temporalis muscles using separate recombinant adeno-associated viral (rAAV) vectors will synergistically improve muscle function and pathology in adult male dystrophin/utrophin double-knockout (mdx/utrn+/-) mice. The experimental mice were divided into four groups including: dystrophin + VEGF combined, dystrophin only, VEGF only and PBS control. After 2 months, gene expression and histological analysis of the temporalis muscles showed a synergistic improvement in temporalis muscle pathology and function coincident with increased restoration of dystrophin-associated protein complexes and nNOS in the dystrophin + VEGF combined group. We also observed significantly reduced inflammatory cell infiltration, central nucleation, and fibrosis in the dystrophin + VEGF combined group. We have demonstrated the efficacy of combined rAAV-mediated dystrophin and VEGF treatment of temporalis muscles in a DMD mouse model.
Collapse
Affiliation(s)
- Can Xin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiangyu Chu
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenzhong Wei
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,Department of Immunology, University of Pittsburgh, PA, 15213, USA
| | - Biao Kuang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,Department of Orthopedics, Xiangya Hospital, Zhongnan University, Changsha, Hunan, 410008, China
| | - Yiqing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,Center for Pulmonary Vascular Biology and Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengwen Li
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| |
Collapse
|
5
|
Rodgers BD, Bishaw Y, Kagel D, Ramos JN, Maricelli JW. Micro-dystrophin Gene Therapy Partially Enhances Exercise Capacity in Older Adult mdx Mice. Mol Ther Methods Clin Dev 2020; 17:122-132. [PMID: 31909085 PMCID: PMC6939027 DOI: 10.1016/j.omtm.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
Abstract
Micro-dystrophin (μDys) gene therapeutics can improve striated muscle structure and function in different animal models of Duchenne muscular dystrophy. Most studies, however, used young mdx mice that lack a pronounced dystrophic phenotype, short treatment periods, and limited muscle function tests. We, therefore, determined the relative efficacy of two previously described μDys gene therapeutics (rAAV6:μDysH3 and rAAV6:μDys5) in 6-month-old mdx mice using a 6-month treatment regimen and forced exercise. Forelimb and hindlimb grip strength, metabolic rate (VO2 max), running efficiency (energy expenditure), and serum creatine kinase levels similarly improved in mdx mice treated with either vector. Both vectors produced nearly identical dose-responses in all assays. They also partially prevented the degenerative effects of repeated high-intensity exercise on muscle histology, although none of the metrics examined was restored to normal wild-type levels. Moreover, neither vector had any consistent effect on respiration while exercising. These data together suggest that, although μDys gene therapy can improve isolated and systemic muscle function, it may be only partially effective when dystrophinopathies are advanced or when muscle structure is significantly challenged, as with high-intensity exercise. This further suggests that restoring muscle function to near-normal levels will likely require ancillary or combinatorial treatments capable of enhancing muscle strength.
Collapse
Affiliation(s)
- Buel D. Rodgers
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Yemeserach Bishaw
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Denali Kagel
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Julian N. Ramos
- Department of Neurology, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph W. Maricelli
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Naidoo M, Anthony K. Dystrophin Dp71 and the Neuropathophysiology of Duchenne Muscular Dystrophy. Mol Neurobiol 2020; 57:1748-1767. [PMID: 31836945 PMCID: PMC7060961 DOI: 10.1007/s12035-019-01845-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by frameshift mutations in the DMD gene that prevent the body-wide translation of its protein product, dystrophin. Besides a severe muscle phenotype, cognitive impairment and neuropsychiatric symptoms are prevalent. Dystrophin protein 71 (Dp71) is the major DMD gene product expressed in the brain and mutations affecting its expression are associated with the DMD neuropsychiatric syndrome. As with dystrophin in muscle, Dp71 localises to dystrophin-associated protein complexes in the brain. However, unlike in skeletal muscle; in the brain, Dp71 is alternatively spliced to produce many isoforms with differential subcellular localisations and diverse cellular functions. These include neuronal differentiation, adhesion, cell division and excitatory synapse organisation as well as nuclear functions such as nuclear scaffolding and DNA repair. In this review, we first describe brain involvement in DMD and the abnormalities observed in the DMD brain. We then review the gene expression, RNA processing and functions of Dp71. We review genotype-phenotype correlations and discuss emerging cellular/tissue evidence for the involvement of Dp71 in the neuropathophysiology of DMD. The literature suggests changes observed in the DMD brain are neurodevelopmental in origin and that their risk and severity is associated with a cumulative loss of distal DMD gene products such as Dp71. The high risk of neuropsychiatric syndromes in Duchenne patients warrants early intervention to achieve the best possible quality of life. Unravelling the function and pathophysiological significance of dystrophin in the brain has become a high research priority to inform the development of brain-targeting treatments for Duchenne.
Collapse
Affiliation(s)
- Michael Naidoo
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK
| | - Karen Anthony
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK.
| |
Collapse
|
7
|
Tavoian D, Arnold WD, Mort SC, de Lacalle S. Sex differences in body composition but not neuromuscular function following long-term, doxycycline-induced reduction in circulating levels of myostatin in mice. PLoS One 2019; 14:e0225283. [PMID: 31751423 PMCID: PMC6872155 DOI: 10.1371/journal.pone.0225283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023] Open
Abstract
Age-related declines in muscle function result from changes in muscle structure and contractile properties, as well as from neural adaptations. Blocking myostatin to drive muscle growth is one potential therapeutic approach. While the effects of myostatin depletion on muscle characteristics are well established, we have very little understanding of its effects on the neural system. Here we assess the effects of long-term, post-developmental myostatin reduction on electrophysiological motor unit characteristics and body composition in aging mice. We used male (N = 21) and female (N = 26) mice containing a tetracycline-inducible system to delete the myostatin gene in skeletal muscle. Starting at 12 months of age, half of the mice were administered doxycycline (tetracycline) through their chow for one year. During that time we measured food intake, body composition, and hindlimb electromyographic responses. Doxycycline-induced myostatin reduction had no effect on motor unit properties for either sex, though significant age-dependent declines in motor unit number occurred in all mice. However, treatment with doxycycline induced different changes in body composition between sexes. All female mice increased in total, lean and fat mass, but doxycycline-treated female mice experienced a significantly larger increase in lean mass than controls. All male mice also increased total and lean mass, but administration of doxycycline had no effect. Additionally, doxycycline-treated male mice maintained their fat mass at baseline levels, while the control group experienced a significant increase from baseline and compared to the doxycycline treated group. Our results show that long-term administration of doxycycline results in body composition adaptations that are distinctive between male and female mice, and that the effects of myostatin reduction are most pronounced during the first three months of treatment. We also report that age-related changes in motor unit number are not offset by reduced myostatin levels, despite increased lean mass exhibited by female mice.
Collapse
Affiliation(s)
- Dallin Tavoian
- Program in Translational Biomedical Sciences, 1 Ohio University, Athens, OH, United States of America
| | - W. David Arnold
- Departments of Neurology, PM&R, and Neuroscience, and Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States of America
| | - Sophia C. Mort
- Program in Translational Biomedical Sciences, 1 Ohio University, Athens, OH, United States of America
| | - Sonsoles de Lacalle
- Sonsoles de Lacalle, Department of Biomedical Sciences,1 Ohio University, Athens, OH, United States of America
- * E-mail:
| |
Collapse
|
8
|
'Double-muscling' and pelvic tilt phenomena in rabbits with the cystine-knot motif deficiency of myostatin on exon 3. Biosci Rep 2019; 39:BSR20190207. [PMID: 31072915 PMCID: PMC6527932 DOI: 10.1042/bsr20190207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/18/2019] [Accepted: 05/06/2019] [Indexed: 11/30/2022] Open
Abstract
Gene mutations at different gene sites will produce totally different phenotypes or biological functions in gene-edited animals. An allelic series of mutations in the myostatin (MSTN) gene can cause the ‘double-muscling’ phenotype. Although there have been many studies performed on MSTN-mutant animals, there have been few studies that have investigated the cystine-knot motif in exon 3 of MSTN in rabbits. In the current study, CRISPR/Cas9 sgRNA anchored exon 3 of a rabbit’s MSTN was used to disrupt the cystine-knot motif to change the MSTN construction and cause a loss of its function. Eleven MSTN-KO founder rabbits were generated, and all of them contained biallelic modifications. Various mutational MSTN amino acid sequences of the 11 founder rabbits were modeled to the tertiary structure using the SWISS-MODEL, and the results showed that the structure of the cystine-knot motif of each protein in the founder rabbits differed from the wild-type (WT). The MSTN-KO rabbits displayed an obvious ‘double-muscling’ phenomena, with a 20−30% increase in body weight compared with WT rabbits. In the MSTN-KO rabbits, all of the MSTN−/− rabbits showed teeth dislocation and tongue enlargement, and the percentage of rabbits having pelvic tilt was 0% in MSTN+/+, 0% in MSTN+/−, 77.78% in female MSTN−/− rabbits, and 37.50% in male MSTN−/− rabbits. The biomechanical mechanism of pelvic tilt and teeth dislocation in the MSTN-KO rabbits requires further investigation. These newly generated MSTN-KO rabbits will serve as an important animal model, not only for studying skeletal muscle development, but also for biomedical studies in pelvic tilt correction and craniofacial research.
Collapse
|
9
|
Kogelman B, Khmelinskii A, Verhaart I, van Vliet L, Bink DI, Aartsma-Rus A, van Putten M, van der Weerd L. Influence of full-length dystrophin on brain volumes in mouse models of Duchenne muscular dystrophy. PLoS One 2018; 13:e0194636. [PMID: 29601589 PMCID: PMC5877835 DOI: 10.1371/journal.pone.0194636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/07/2018] [Indexed: 11/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects besides muscle also the brain, resulting in memory and behavioral problems. The consequences of dystrophinopathy on gross macroscopic alterations are unclear. To elucidate the effect of full-length dystrophin expression on brain morphology, we used high-resolution post-mortem MRI in mouse models that either express 0% (mdx), 100% (BL10) or a low amount of full-length dystrophin (mdx-XistΔhs). While absence or low amounts of full-length dystrophin did not significantly affect whole brain volume and skull morphology, we found differences in volume of individual brain structures. The results are in line with observations in humans, where whole brain volume was found to be reduced only in patients lacking both full-length dystrophin and the shorter isoform Dp140.
Collapse
Affiliation(s)
- Bauke Kogelman
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Artem Khmelinskii
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Percuros B.V., Enschede, the Netherlands
| | - Ingrid Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura van Vliet
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Diewertje I. Bink
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Spassov A, Toro-Ibacache V, Krautwald M, Brinkmeier H, Kupczik K. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently. J Anat 2017; 231:736-748. [PMID: 28762259 DOI: 10.1111/joa.12664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation.
Collapse
Affiliation(s)
- Alexander Spassov
- Department of Orthodontics, University Medicine Greifswald, Greifswald, Germany.,Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - Viviana Toro-Ibacache
- Facultad de Odontología, Universidad de Chile, Santiago de Chile, Chile.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mirjam Krautwald
- Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
11
|
Vecchione L, Byron C, Cooper G, Barbano T, Hamrick M, Sciote J, Mooney M. Craniofacial Morphology in Myostatin-deficient Mice. J Dent Res 2016; 86:1068-72. [DOI: 10.1177/154405910708601109] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
GDF-8 (myostatin) is a negative growth regulator of skeletal muscle, and myostatin-deficient mice are hypermuscular. Muscle size and force production are thought to influence growth of the craniofacial skeleton. To test this relationship, we compared masticatory muscle size and craniofacial dimensions in myostatin-deficient and wild-type CD-1 control mice. Myostatin-deficient mice had significantly (p < 0.01) greater body (by 18%) and masseter muscle weight (by 83%), compared with wild-type controls. Significant differences (p < 0.05) were noted for cranial vault length, maxillary length, mandibular body length, and mandibular shape index. Significant correlations were noted between masseter muscle weight and mandibular body length (r = 0.68; p < 0.01), cranial vault length (r = −0.57; p < 0.05), and the mandibular shape index (r = −0.56; p < 0.05). Masticatory hypermuscularity resulted in significantly altered craniofacial morphology, probably through altered biomechanical stress. These findings emphasize the important role that masticatory muscle function plays in the ontogeny of the cranial vault, the maxilla, and, most notably, the mandible.
Collapse
Affiliation(s)
- L. Vecchione
- Department of Plastic Surgery,
- Department of Anthropology,
- Department of Orthodontics & Dentofacial Orthopedics, and
- Department of Oral Biology, University of Pittsburgh, PA, USA
- Department of Biology, Mercer University, Macon, GA, USA; and
| | - C. Byron
- Department of Plastic Surgery,
- Department of Anthropology,
- Department of Orthodontics & Dentofacial Orthopedics, and
- Department of Oral Biology, University of Pittsburgh, PA, USA
- Department of Biology, Mercer University, Macon, GA, USA; and
| | - G.M. Cooper
- Department of Plastic Surgery,
- Department of Anthropology,
- Department of Orthodontics & Dentofacial Orthopedics, and
- Department of Oral Biology, University of Pittsburgh, PA, USA
- Department of Biology, Mercer University, Macon, GA, USA; and
| | - T. Barbano
- Department of Plastic Surgery,
- Department of Anthropology,
- Department of Orthodontics & Dentofacial Orthopedics, and
- Department of Oral Biology, University of Pittsburgh, PA, USA
- Department of Biology, Mercer University, Macon, GA, USA; and
| | - M.W. Hamrick
- Department of Plastic Surgery,
- Department of Anthropology,
- Department of Orthodontics & Dentofacial Orthopedics, and
- Department of Oral Biology, University of Pittsburgh, PA, USA
- Department of Biology, Mercer University, Macon, GA, USA; and
| | - J.J. Sciote
- Department of Plastic Surgery,
- Department of Anthropology,
- Department of Orthodontics & Dentofacial Orthopedics, and
- Department of Oral Biology, University of Pittsburgh, PA, USA
- Department of Biology, Mercer University, Macon, GA, USA; and
| | - M.P. Mooney
- Department of Plastic Surgery,
- Department of Anthropology,
- Department of Orthodontics & Dentofacial Orthopedics, and
- Department of Oral Biology, University of Pittsburgh, PA, USA
- Department of Biology, Mercer University, Macon, GA, USA; and
| |
Collapse
|
12
|
Williams SH, Lozier NR, Montuelle SJ, de Lacalle S. Effect of Postnatal Myostatin Inhibition on Bite Mechanics in Mice. PLoS One 2015; 10:e0134854. [PMID: 26252892 PMCID: PMC4529299 DOI: 10.1371/journal.pone.0134854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/14/2015] [Indexed: 11/25/2022] Open
Abstract
As a negative regulator of muscle size, myostatin (Mstn) impacts the force-production capabilities of skeletal muscles. In the masticatory system, measures of temporalis-stimulated bite forces in constitutive myostatin KOs suggest an absolute, but not relative, increase in jaw-muscle force. Here, we assess the phenotypic and physiologic impact of postnatal myostatin inhibition on bite mechanics using an inducible conditional KO mouse in which myostatin is inhibited with doxycycline (DOX). Given the increased control over the timing of gene inactivation in this model, it may be more clinically-relevant for developing interventions for age-associated changes in the musculoskeletal system. DOX was administered for 12 weeks starting at age 4 months, during which time food intake was monitored. Sex, age and strain-matched controls were given the same food without DOX. Bite forces were recorded just prior to euthanasia after which muscle and skeletal data were collected. Food intake did not differ between control or DOX animals within each sex. DOX males were significantly larger and had significantly larger masseters than controls, but DOX and control females did not differ. Although there was a tendency towards higher absolute bite forces in DOX animals, this was not significant, and bite forces normalized to masseter mass did not differ. Mechanical advantage for incisor biting increased in the DOX group due to longer masseter moment arms, likely due to a more anteriorly-placed masseter insertion. Despite only a moderate increase in bite force in DOX males and none in DOX females, the increase in masseter mass in males indicates a potentially positive impact on jaw muscles. Our data suggest a sexual dimorphism in the role of mstn, and as such investigations into the sex-specific outcomes is warranted.
Collapse
Affiliation(s)
- Susan H. Williams
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, United States of America
- * E-mail:
| | - Nicholas R. Lozier
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, United States of America
| | - Stéphane J. Montuelle
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, United States of America
| | - Sonsoles de Lacalle
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, United States of America
| |
Collapse
|
13
|
Jeffery N, Mendias C. Endocranial and masticatory muscle volumes in myostatin-deficient mice. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140187. [PMID: 26064569 PMCID: PMC4448778 DOI: 10.1098/rsos.140187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/15/2014] [Indexed: 06/04/2023]
Abstract
Structural and functional trade-offs are integral to the evolution of the mammalian skull and its development. This paper examines the potential for enlargement of the masticatory musculature to limit the size of the endocranial cavity by studying a myostatin-deficient mouse model of hypermuscularity (MSTN-/-). The study tests the null prediction that the larger MSTN-/- mice have larger brains compared with wild-type (WT) mice in order to service the larger muscles. Eleven post-mortem MSTN-/- mice and 12 WT mice were imaged at high resolution using contrast enhanced micro-CT. Masticatory muscle volumes (temporalis, masseter, internal and external pterygoids) and endocranial volumes were measured on the basis of two-dimensional manual tracings and the Cavalieri principle. Volumes were compared using Kruskal-Wallis and Student's t-tests. Results showed that the masticatory muscles of the MSTN-/- mice were significantly larger than in the WT mice. Increases were in the region of 17-36% depending on the muscle. Muscles increased in proportion to each other, maintaining percentages in the region of 5, 10, 21 and 62% of total muscle volume for the external ptyergoid, internal pterygoid, temporalis and masseter, respectively. Kruskal-Wallis and t-tests demonstrated that the endocranial volume was significantly larger in the WT mice, approximately 16% larger on average than that seen in the MSTN-/- mice. This comparative reduction of MSTN-/- endocranial size could not be explained in terms of observer bias, ageing, sexual dimorphism or body size scaling. That the results showed a reduction of brain size associated with an increase of muscle size falsifies the null prediction and lends tentative support to the view that the musculature influences brain growth. It remains to be determined whether the observed effect is primarily physical, nutritional, metabolic or molecular in nature.
Collapse
Affiliation(s)
- Nathan Jeffery
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Christopher Mendias
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Kulkarni R, Voglewede P, Liu D. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells. Bone 2013; 57:493-8. [PMID: 23994170 PMCID: PMC4589847 DOI: 10.1016/j.bone.2013.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 01/02/2023]
Abstract
It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation.
Collapse
Affiliation(s)
- R.N. Kulkarni
- Department of Developmental Sciences/Orthodontics, School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - P.A. Voglewede
- Department of Mechanical Engineering, College of Engineering, Marquette University, Milwaukee, WI, USA
| | - D. Liu
- Department of Developmental Sciences/Orthodontics, School of Dentistry, Marquette University, Milwaukee, WI, USA
- Corresponding author. Dawei Liu, DDS MS PhD, Department of Developmental Sciences/Orthodontics, Marquette University School of Dentistry, 1801 W. Wisconsin Ave., Milwaukee, WI 53233, Tel: (414)288-2142, Fax: (414)288-1468,
| |
Collapse
|
15
|
Wolff K, Hadadi E, Vas Z. A novel multidisciplinary approach toward a better understanding of cranial suture closure: The first evidence of genetic effects in adulthood. Am J Hum Biol 2013; 25:835-43. [DOI: 10.1002/ajhb.22459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022] Open
Affiliation(s)
- Katalin Wolff
- Department of Forensic and Insurance Medicine; Semmelweis University; Budapest H-1091 Hungary
| | - E. Hadadi
- Department of Genetics, Cell- and Immunobiology; Semmelweis University; Budapest H-1089 Hungary
| | - Z. Vas
- Department of Biomathematics and Informatics; Faculty of Veterinary Sciences; Szent István University; Budapest H-1078 Hungary
- Department of Zoology; Hungarian Natural History Museum; Budapest H-1083 Hungary
| |
Collapse
|
16
|
Cray J, Kneib J, Vecchione L, Byron C, Cooper GM, Losee JE, Siegel MI, Hamrick MW, Sciote JJ, Mooney MP. Masticatory hypermuscularity is not related to reduced cranial volume in myostatin-knockout mice. Anat Rec (Hoboken) 2011; 294:1170-7. [PMID: 21618442 DOI: 10.1002/ar.21412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 03/03/2011] [Accepted: 04/18/2011] [Indexed: 12/19/2022]
Abstract
It has been suggested recently that masticatory muscle size reduction in humans resulted in greater encephalization through decreased compressive forces on the cranial vault. Following this logic, if masticatory muscle size were increased, then a reduction in brain growth should also occur. This study was designed to test this hypothesis using a myostatin (GDF-8) knockout mouse model. Myostatin is a negative regulator of skeletal muscle growth, and individuals lacking this gene show significant hypermuscularity. Sixty-two [32 wild-type (WT) and 30 GDF-8 -/- knockout], 1, 28, 56, and 180-day-old CD-1 mice were used. Body and masseter muscle weights were collected following dissection and standardized lateral and dorsoventral cephalographs were obtained. Cephalometric landmarks were identified on the radiographs and cranial volume was calculated. Mean differences were assessed using a two-way ANOVA. KO mice had significantly greater body and masseter weights beginning at 28 days compared with WT controls. No significant differences in cranial volumes were noted between KO and WT. Muscle weight was not significantly correlated with cranial volume in 1, 28, or 180-day-old mice. Muscle weights exhibited a positive correlation with cranial volume at 56 days. Results demonstrate that masticatory hypermuscularity is not associated with reduced cranial volume. In contrast, there is abundant data demonstrating the opposite, brain growth determines cranial vault growth and masticatory apparatus only affects ectocranial morphology. The results presented here do not support the hypothesis that a reduction in masticatory musculature relaxed compressive forces on the cranial vault allowing for greater encephalization.
Collapse
Affiliation(s)
- James Cray
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Pittsburgh, Pennsylvania 15201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Green DJ, Hamrick MW, Richmond BG. The effects of hypermuscularity on shoulder morphology in myostatin-deficient mice. J Anat 2011; 218:544-57. [PMID: 21332716 PMCID: PMC3076996 DOI: 10.1111/j.1469-7580.2011.01351.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2011] [Indexed: 11/29/2022] Open
Abstract
Mechanical loads, particularly those generated by skeletal muscle, play a significant role in determining long-bone shape and strength, but it is less clear how these loads influence the morphology of flat bones like the scapula. While scapular morphology has been shown to vary with locomotor mode in mammals, this study seeks to better understand whether genetically modified muscle size can influence scapular shape in the absence of significant locomotor differences. The soft- and hard-tissue morphological characteristics were examined in 11 hypermuscular, mutant (myostatin-deficient), 20 heterozygote, and 15 wild-type mouse shoulders. Body mass did not significantly differ among the genotype groups, but homozygous mutant and heterozygote mice had significantly larger shoulder muscles than wild-type mice. Mutant mice also differed significantly from the wild-type controls in several aspects of scapular size and shape, including glenohumeral joint orientation, total scapular length, superior border length, and supraspinous and infraspinous fossa length. Conversely, several traits describing superoinferior scapular breadth measures (e.g. total breadth and dorsal scapular fossa breadth) did not significantly differ between mutant and wild-type mice. Since the intrinsic musculature of the scapula is oriented in a mediolateral fashion, it follows that mediolaterally configured hard-tissue features like scapular length were most distinct among genotype groups. As had been noted previously with long bones, this study demonstrates that genetically enhanced muscle size has marked effects on the morphological characteristics of the shoulder.
Collapse
Affiliation(s)
- David J Green
- Department of Anthropology, The George Washington University, 2110 G St., NW, Washington, DC 20052, USA.
| | | | | |
Collapse
|
18
|
Cray J, Cooper GM, Mooney MP, Siegel MI. Timing of ectocranial suture activity in Gorilla gorilla as related to cranial volume and dental eruption. J Anat 2011; 218:471-9. [PMID: 21385182 DOI: 10.1111/j.1469-7580.2011.01358.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Research has shown that Pan and Homo have similar ectocranial suture synostosis patterns and a similar suture ontogeny (relative timing of suture fusion during the species ontogeny). This ontogeny includes patency during and after neurocranial expansion with a delayed bony response associated with adaptation to biomechanical forces generated by mastication. Here we investigate these relationships for Gorilla by examining the association among ectocranial suture morphology, cranial volume (as a proxy for neurocranial expansion) and dental development (as a proxy for the length of time that it has been masticating hard foods and exerting such strains on the cranial vault) in a large sample of Gorilla gorilla skulls. Two-hundred and fifty-five Gorilla gorilla skulls were examined for ectocranial suture closure status, cranial volume and dental eruption. Regression models were calculated for cranial volumes by suture activity, and Kendall's tau (a non-parametric measure of association) was calculated for dental eruption status by suture activity. Results suggest that, as reported for Pan and Homo, neurocranial expansion precedes suture synostosis activity. Here, Gorilla was shown to have a strong relationship between dental development and suture activity (synostosis). These data are suggestive of suture fusion extending further into ontogeny than brain expansion, similar to Homo and Pan. This finding allows for the possibility that masticatory forces influence ectocranial suture morphology.
Collapse
Affiliation(s)
- James Cray
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
19
|
Cray J, Mooney MP, Siegel MI. Cranial Suture Biology of the Aleutian Island Inhabitants. Anat Rec (Hoboken) 2011; 294:676-82. [DOI: 10.1002/ar.21345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/15/2010] [Accepted: 12/22/2010] [Indexed: 11/08/2022]
|
20
|
Abstract
Absence of functional myostatin (MSTN) during fetal development results in adult skeletal muscle hypertrophy and hyperplasia. To more fully characterize MSTN loss in hindlimb muscles, the morphology and contractile function of the soleus, plantaris, gastrocnemius, tibialis anterior, and quadriceps muscles in male and female null (Mstn(-/-)), heterozygous (Mstn(+/-)), and wild-type (Mstn(+/+)) mice were investigated. Muscle weights of Mstn(-/-) mice were greater than those of Mstn(+/+) and Mstn(+/-) mice. Fiber cross-sectional area (CSA) was increased in female Mstn(-/-) soleus and gastrocnemius muscles and in the quadriceps of male Mstn(-/-) mice; peak tetanic force in Mstn(-/-) mice did not parallel the increased muscle weight or CSA. Male Mstn(-/-) muscle exhibited moderate degeneration. Visible pathology in male mice and decreased contractile strength relative to increased muscle weight suggest MSTN loss results in muscle impairment, which is dose-, sex-, and muscle-dependent.
Collapse
Affiliation(s)
- Bettina A. Gentry
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - J. Andries Ferreira
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | - Marybeth Brown
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
21
|
Cray J, Cooper GM, Mooney MP, Siegel MI. Brief communication: Ectocranial suture closure in Pongo: Pattern and phylogeny. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 143:473-7. [DOI: 10.1002/ajpa.21367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Barton ER, Crowder C. Growth Factor Targets for Orthodontic Treatments. Semin Orthod 2010. [DOI: 10.1053/j.sodo.2010.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Cray J, Mooney MP, Siegel MI. Timing of Ectocranial Suture Activity in Pan troglodytes as Related to Cranial Volume and Dental Eruption. Anat Rec (Hoboken) 2010; 293:1289-96. [DOI: 10.1002/ar.21167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Vecchione L, Miller J, Byron C, Cooper GM, Barbano T, Cray J, Losee JE, Hamrick MW, Sciote JJ, Mooney MP. Age-related changes in craniofacial morphology in GDF-8 (myostatin)-deficient mice. Anat Rec (Hoboken) 2010; 293:32-41. [PMID: 19899116 DOI: 10.1002/ar.21024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well recognized that masticatory muscle function helps determine morphology, although the extent of function on final form is still debated. GDF-8 (myostatin), a transcription factor is a negative regulator of skeletal muscle growth. A recent study has shown that mice homozygous for the myostatin mutation had increased muscle mass and craniofacial dysmorphology in adulthood. However, it is unclear whether such dysmorphology is present at birth. This study examines the onset and relationship between hypermuscularity and craniofacial morphology in neonatal and adult mice with GDF-8 deficiency. Fifteen (8 wild-type and 7 GDF-8 -/-), 1-day-old and 16 (9 wt and 7 GDF-8 -/-), 180-day-old male CD-1 mice were used. Standardized radiographs were taken of each head, scanned, traced, and cephalometric landmarks identified. Significant mean differences were assessed using a group x age, two-way ANOVA. Myostatin-deficient mice had significantly (P < 0.01) smaller body and masseter muscle weights and craniofacial skeletons at 1 day of age and significantly greater body and masseter muscle weights at 180 days of age compared to controls. Myostatin-deficient mice showed significantly (P < 0.001) longer and "rocker-shaped" mandibles and shorter and wider crania compared to controls at 180 days. Significant correlations were noted between masseter muscle weight and all cephalometric measurements in 180-day-old Myostatin-deficient mice. Results suggest that in this mouse model, there may be both early systemic skeletal growth deficiencies and later compensatory changes from hypermuscularity. These findings reiterate the role that masticatory muscle function plays on the ontogeny of the cranial vault, base, and most notably the mandible.
Collapse
Affiliation(s)
- Lisa Vecchione
- Pittsburgh Cleft-Craniofacial Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Baligand C, Gilson H, Ménard JC, Schakman O, Wary C, Thissen JP, Carlier PG. Functional assessment of skeletal muscle in intact mice lacking myostatin by concurrent NMR imaging and spectroscopy. Gene Ther 2009; 17:328-37. [DOI: 10.1038/gt.2009.141] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Ravosa MJ, Lopez EK, Menegaz RA, Stock SR, Stack MS, Hamrick MW. Using "Mighty Mouse" to understand masticatory plasticity: myostatin-deficient mice and musculoskeletal function. Integr Comp Biol 2008; 48:345-59. [DOI: 10.1093/icb/icn050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Jones DC, Zelditch ML, Peake PL, German RZ. The effects of muscular dystrophy on the craniofacial shape of Mus musculus. J Anat 2007; 210:723-30. [PMID: 17459142 PMCID: PMC2375755 DOI: 10.1111/j.1469-7580.2007.00730.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Skeletal anomalies are common in patients with muscular dystrophy, despite an absence of mutations to genes that specifically direct skeletogenesis. In order to understand these anomalies further, we examined two strains of muscular dystrophy (laminin- and merosin-deficient) relative to controls, to determine how the weakened muscle forces affected skull shape in a mouse model. Shape was characterized with geometric morphometric techniques, improving upon the limited analytical power of the standard linear measurements. Through these techniques, we document the specific types of cranial skeletal deformation produced by the two strains, each with individual shape abnormalities. The mice with merosin deficiency (with an earlier age of onset) developed skulls with more deformation, probably related to the earlier ontogenetic timing of disease onset. Future examinations of these mouse models may provide insight regarding the impact of muscular forces and the production and maintenance of craniofacial integration and modularity.
Collapse
Affiliation(s)
- Donna Carlson Jones
- Department of Physical Medicine and Rehabilitation, The Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | |
Collapse
|
28
|
Ravosa MJ, Klopp EB, Pinchoff J, Stock SR, Hamrick MW. Plasticity of mandibular biomineralization in myostatin-deficient mice. J Morphol 2007; 268:275-82. [PMID: 17299778 DOI: 10.1002/jmor.10517] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Compared with the normal or wild-type condition, knockout mice lacking myostatin (Mstn), a negative regulator of skeletal muscle growth, develop significant increases in relative masticatory muscle mass as well as the ability to generate higher maximal muscle forces. Wild-type and myostatin-deficient mice were compared to assess the postweaning influence of elevated masticatory loads because of increased jaw-adductor muscle and bite forces on the biomineralization of mandibular cortical bone and dental tissues. Microcomputed tomography (microCT) was used to quantify bone density at a series of equidistant external and internal sites in coronal sections for two symphysis and two corpus locations. Discriminant function analyses and nonparametric ANOVAs were used to characterize variation in biomineralization within and between loading cohorts. Multivariate analyses indicated that 95% of the myostatin-deficient mice and 95% of the normal mice could be distinguished based on biomineralization values at both symphysis and corpus sections. At the corpus, ANOVAs suggest that between-group differences are due to the tendency for cortical bone mineralization to be higher in myostatin-deficient mice, coupled with higher levels of dental biomineralization in normal mice. At the symphysis, ANOVAs indicate that between-group differences are related to significantly elevated bone-density levels along the articular surface and external cortical bone in the knockout mice. Both patterns, especially those for the symphysis, appear because of the postweaning effects of increased masticatory stresses in the knockout mice versus normal mice. The greater number of symphyseal differences suggest that bone along this jaw joint may be characterized by elevated plasticity. Significant differences in bone-density levels between normal and myostatin-deficient mice, coupled with the multivariate differences in patterns of plasticity between the corpus and symphysis, underscore the need for a comprehensive analysis of the plasticity of masticatory tissues vis-à-vis altered mechanical loads.
Collapse
Affiliation(s)
- Matthew J Ravosa
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, USA.
| | | | | | | | | |
Collapse
|
29
|
Mendias CL, Marcin JE, Calerdon DR, Faulkner JA. Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J Appl Physiol (1985) 2006; 101:898-905. [PMID: 16709649 PMCID: PMC4088255 DOI: 10.1152/japplphysiol.00126.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myostatin is a negative regulator of muscle mass. The impact of myostatin deficiency on the contractile properties of healthy muscles has not been determined. We hypothesized that myostatin deficiency would increase the maximum tetanic force (P(o)), but decrease the specific P(o) (sP(o)) of muscles and increase the susceptibility to contraction-induced injury. The in vitro contractile properties of extensor digitorum longus (EDL) and soleus muscles from wild-type (MSTN(+/+)), heterozygous-null (MSTN(+/-)), and homozygous-null (MSTN(-/-)) adult male mice were determined. For EDL muscles, the P(o) of both MSTN(+/-) and MSTN(-/-) mice were greater than the P(o) of MSTN(+/+) mice. For soleus muscles, the P(o) of MSTN(-/-) mice was greater than that of MSTN(+/+) mice. The sP(o) of EDL muscles of MSTN(-/-) mice was less than that of MSTN(+/+) mice. For soleus muscles, however, no difference in sP(o) was observed. Following two lengthening contractions, EDL muscles from MSTN(-/-) mice had a greater force deficit than that of MSTN(+/+) or MSTN(+/-) mice, whereas no differences were observed for the force deficits of soleus muscles. Myostatin-deficient EDL muscles had less hydroxyproline, and myostatin directly increased type I collagen mRNA expression and protein content. The difference in the response of EDL and soleus muscles to myostatin may arise from differences in the levels of a myostatin receptor, activin type IIB. Compared with the soleus, the amount of activin type IIB receptor was approximately twofold greater in EDL muscles. The results support a significant role for myostatin not only in the mass of muscles but also in the contractility and the composition of the extracellular matrix of muscles.
Collapse
Affiliation(s)
- Christopher L Mendias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor
| | - James E Marcin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Daniel R Calerdon
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor
| | - John A Faulkner
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| |
Collapse
|