1
|
Zymovets V, Rakhimova O, Wadelius P, Schmidt A, Brundin M, Kelk P, Landström M, Vestman NR. Exploring the impact of oral bacteria remnants on stem cells from the Apical papilla: mineralization potential and inflammatory response. Front Cell Infect Microbiol 2023; 13:1257433. [PMID: 38089810 PMCID: PMC10711090 DOI: 10.3389/fcimb.2023.1257433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Bacterial persistence is considered one of the main causal factors for regenerative endodontic treatment (RET) failure in immature permanent teeth. This interference is claimed to be caused by the interaction of bacteria that reside in the root canal with the stem cells that are one of the essentials for RET. The aim of the study was to investigate whether prolonged exposure of stem cells from the apical papilla (SCAP) to bacterial remnants of Fusobacterium nucleatum, Actinomyces gerensceriae, Slackia exigua, Enterococcus faecalis, Peptostreptococcaceae yurii, commonly found in infected traumatized root canals, and the probiotic bacteria Lactobacillus gasseri and Limosilactobacillus reuteri, can alter SCAP's inflammatory response and mineralization potential. Methods To assess the effect of bacterial remnants on SCAP, we used UV-C-inactivated bacteria (as cell wall-associated virulence factors) and bacterial DNA. Histochemical staining using Osteoimage Mineralization Assay and Alizarin Red analysis was performed to study SCAP mineralization, while inflammatory and osteo/odontogenic-related responses of SCAPs were assessed with Multiplex ELISA. Results We showed that mineralization promotion was greater with UV C-inactivated bacteria compared to bacterial DNA. Immunofluorescence analysis detected that the early mineralization marker alkaline phosphatase (ALP) was increased by the level of E. coli lipopolysaccharide (LPS) positive control in the case of UV-C-inactivated bacteria; meanwhile, DNA treatment decreased the level of ALP compared to the positive control. SCAP's secretome assessed with Multiplex ELISA showed the upregulation of pro-inflammatory factors IL-6, IL-8, GM-CSF, IL-1b, neurotrophic factor BDNF, and angiogenic factor VEGF, induced by UV-C-killed bacteria. Discussion The results suggest that long term stimulation (for 21 days) of SCAP with UV-C-inactivated bacteria stimulate their mineralization and inflammatory response, while DNA influence has no such effect, which opens up new ideas about the nature of RET failure.
Collapse
Affiliation(s)
| | | | - Philip Wadelius
- Department of Endodontics, Region of Västerbotten, Umeå, Sweden
| | - Alexej Schmidt
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Malin Brundin
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Peyman Kelk
- Section for Anatomy, Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Nelly Romani Vestman
- Department of Odontology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Lu J, Hu Y, Tang Z, Zhang C, Jin L, Gu M, Yang Y. Porphyromonas gingivalis lipopolysaccharide enhances the proliferation of human periodontal ligament cells via upregulation of cyclin D1, cyclin A and cyclin B1. Exp Ther Med 2021; 23:2. [PMID: 34815754 PMCID: PMC8593868 DOI: 10.3892/etm.2021.10925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/23/2021] [Indexed: 11/06/2022] Open
Abstract
Human periodontal ligament cells (hPDLCs) play a notable role in periodontal tissue homeostasis and regeneration. However, the effect of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) on the proliferation of hPDLCs remains unclear. The present study investigated the effects of Pg-LPS on the proliferation profile of hPDLCs, and the involvement of cyclins and cyclin-dependent kinases in the process. hPDLCs were treated with Pg-LPS, and cell proliferation and cycle were detected using Cell Counting Kit-8 assays and flow cytometry. The mRNA expression levels of the cyclins and cyclin-dependent kinases (CDKs), including cyclins A, B1, D1 and D2 and CDK1, 2 and 4, were detected using reverse transcription-quantitative PCR. The protein expression levels of cyclins A, B1 and D1 were analysed using western blotting. The proliferation of hPDLCs was significantly increased after treatment with Pg-LPS at the concentrations of 0.001, 0.01, 0.1, 1 and 10 µg/ml for 24, 36 and 48 h compared with the cells cultured without LPS (P<0.01). The proliferation index of hPDLCs was significantly enhanced after treatment with Pg-LPS (0.0001, 0.001, 0.01, 0.1, 1 and 10 µg/ml) for 24 h (P<0.01). However, the S-phase fraction (SPF) only significantly increased after treatment with Pg-LPS at 0.01 µg/ml for 24 h (P<0.05), while the G2/M-phase fraction increased (P<0.01) and the G0/G1-phase fraction decreased (P<0.01) compared with the controls. The proliferation index and SPF increased, peaked at 24 h and then decreased at 48 h in both Pg-LPS-stimulated and control groups. Notably, Pg-LPS significantly upregulated the expression levels of cyclins D1, A and B1 after 24 h compared with those in the controls. Overall, the present study indicated that Pg-LPS may enhance the proliferation of hPDLCs, potentially through upregulation of cyclins D1, A and B1.
Collapse
Affiliation(s)
- Jiajing Lu
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China.,Department of Orthodontics, School of Medical Technology, Taizhou Polytechnic College, Taizhou, Jiangsu 225300, P.R. China
| | - Yajing Hu
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China.,Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing 100081, P.R. China
| | - Zhongyuan Tang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China
| | - Chengfei Zhang
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China
| | - Min Gu
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China
| |
Collapse
|
3
|
Andrukhov O. Toll-Like Receptors and Dental Mesenchymal Stromal Cells. FRONTIERS IN ORAL HEALTH 2021; 2:648901. [PMID: 35048000 PMCID: PMC8757738 DOI: 10.3389/froh.2021.648901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Dental mesenchymal stromal cells (MSCs) are a promising tool for clinical application in and beyond dentistry. These cells possess multilineage differentiation potential and immunomodulatory properties. Due to their localization in the oral cavity, these cells could sometimes be exposed to different bacteria and viruses. Dental MSCs express various Toll-like receptors (TLRs), and therefore, they can recognize different microorganisms. The engagement of TLRs in dental MSCs by various ligands might change their properties and function. The differentiation capacity of dental MSCs might be either inhibited or enhanced by TLRs ligands depending on their nature and concentrations. Activation of TLR signaling in dental MSCs induces the production of proinflammatory mediators. Additionally, TLR ligands alter the immunomodulatory ability of dental MSCs, but this aspect is still poorly explored. Understanding the role of TLR signaling in dental MSCs physiology is essential to assess their role in oral homeostasis, inflammatory diseases, and tissue regeneration.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Nilsson BO. Mechanisms involved in regulation of periodontal ligament cell production of pro-inflammatory cytokines: Implications in periodontitis. J Periodontal Res 2020; 56:249-255. [PMID: 33305420 PMCID: PMC7984126 DOI: 10.1111/jre.12823] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
It is well recognized that human periodontal ligament cells (PDL cells) may represent local immune cells of the periodontal tissues. However, it is unclear whether they represent “true” immune cells, since they can produce pro‐inflammatory cytokines not only after stimulation with bacterial lipopolysaccharides but also in response to other stimuli such as mechanical stress. Stimulation with bacterial lipopolysaccharides strongly enhances PDL cell production of pro‐inflammatory cytokines through activation of toll‐like receptors and NF‐κB signaling. Less information is available regarding putative modulators of cytokine production and their mechanisms of action in PDL cells. The anti‐inflammatory glucocorticoid dexamethasone reduces lipopolysaccharide‐induced PDL cell production of cytokines. Recent observations show that vitamin D and the antimicrobial peptide LL‐37 antagonize lipopolysaccharide‐stimulated PDL cell production of pro‐inflammatory cytokines. Secretory leukocyte protease inhibitor is endogenously expressed by PDL cells, and this protein negatively regulates PDL cell‐evoked cytokine production. More information and knowledge about the regulation of PDL cell production of cytokines may clarify the role of PDL cells in oral innate immunity and their importance in periodontitis.
Collapse
Affiliation(s)
- Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Expression profile of macrophage migration inhibitory factor in periodontitis. Arch Oral Biol 2020; 122:105003. [PMID: 33279833 DOI: 10.1016/j.archoralbio.2020.105003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 10/29/2020] [Accepted: 11/22/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) is a pivotal mediator of host innate immunity and influences the development of several inflammatory diseases. The role of MIF in periodontitis is unclear. METHODS Eighteen periodontally healthy volunteers and 18 patients with stage III or IV periodontitis were enrolled. Blood samples and gingival tissues were collected from all individuals. The serum concentrations of MIF and MCP-1 were measured by ELISA. The protein and mRNA levels of MIF and MCP-1 in gingival tissue were evaluated by immunohistochemical staining and quantitative PCR. The levels of secreted MIF and MCP-1, as well as their mRNA levels, were determined by ELISA and quantitative PCR in oral epithelial cells infected with Porphyromonas gingivalis. RESULTS After adjusting for age, the level of MCP-1 was significantly higher in the serum and gingival tissue of periodontitis patients, as well as in infected epithelial cells. The serum concentration of MIF was increased in periodontitis patients (15.25 ± 2.16 ng/mL, P < 0.05) compared to healthy controls (10.43 ± 1.02 ng/mL). Increased MIF immunoreactivity was found in gingival epithelial tissue but not in the gingival connective tissue of periodontitis patients. The secretion of MIF was 3.82-fold higher in the supernatant of infected cells than in the supernatant of control (P < 0.01). No increase in the MIF mRNA level was found in either gingival tissue or epithelial cells. CONCLUSIONS Based on our limited evidence, we showed the level of MIF was related to periodontal conditions. P. gingivalis may contribute to the development and progression of periodontitis through MIF.
Collapse
|
6
|
Medara N, Lenzo JC, Walsh KA, Reynolds EC, Darby IB, O'Brien-Simpson NM. A review of T helper 17 cell-related cytokines in serum and saliva in periodontitis. Cytokine 2020; 138:155340. [PMID: 33144024 DOI: 10.1016/j.cyto.2020.155340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Periodontitis is a chronic inflammatory disease with a complex underlying immunopathology. Cytokines, as molecular mediators of inflammation, play a role in all stages of disease progression. T helper 17 (Th17) cells are thought to play a role in periodontitis. Th17 cell development and maintenance requires a pro-inflammatory cytokine milieu, with many of the cytokines implicated in the pathogenesis of periodontitis. Serum and saliva are easily accessible biofluids which can represent the systemic and local environment to promote the development of Th17 cells. Here we review human clinical studies that investigate IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α in serum and saliva in periodontitis. We highlight their putative role in the pathogenesis of periodontitis and place them within a wider context of animal and other clinical studies.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia.
| | - Eric C Reynolds
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|
7
|
Human β-defensin 3 gene modification promotes the osteogenic differentiation of human periodontal ligament cells and bone repair in periodontitis. Int J Oral Sci 2020; 12:13. [PMID: 32350241 PMCID: PMC7190824 DOI: 10.1038/s41368-020-0078-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Efforts to control inflammation and achieve better tissue repair in the treatment of periodontitis have been ongoing for years. Human β-defensin 3, a broad-spectrum antimicrobial peptide has been proven to have a variety of biological functions in periodontitis; however, relatively few reports have addressed the effects of human periodontal ligament cells (hPDLCs) on osteogenic differentiation. In this study, we evaluated the osteogenic effects of hPDLCs with an adenoviral vector encoding human β-defensin 3 in an inflammatory microenvironment. Then human β-defensin 3 gene-modified rat periodontal ligament cells were transplanted into rats with experimental periodontitis to observe their effects on periodontal bone repair. We found that the human β-defensin 3 gene-modified hPDLCs presented with high levels of osteogenesis-related gene expression and calcium deposition. Furthermore, the p38 MAPK pathway was activated in this process. In vivo, human β-defensin 3 gene-transfected rat PDLCs promoted bone repair in SD rats with periodontitis, and the p38 mitogen-activated protein kinase (MAPK) pathway might also have been involved. These findings demonstrate that human β-defensin 3 accelerates osteogenesis and that human β-defensin 3 gene modification may offer a potential approach to promote bone repair in patients with periodontitis.
Collapse
|
8
|
Odlén K, Fält F, Dahl S, Aidoukovitch A, Ericson D, Nilsson BO, Hedenbjörk-Lager A. Odontoblast-like MDPC-23 cells produce pro-inflammatory IL-6 in response to lipoteichoic acid and express the antimicrobial peptide CRAMP. Acta Odontol Scand 2020; 78:210-216. [PMID: 31726911 DOI: 10.1080/00016357.2019.1685679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Objective: Odontoblasts are thought to be involved in innate immunity but their precise role in this process is not fully understood. Here, we assess effects of lipopolysaccharide (LPS) and lipoteichoic acid (LTA), produced by Gram-negative and Gram-positive bacteria, respectively, on matrix metalloproteinase-8 (MMP-8), interleukin-6 (IL-6) and cathelin-related antimicrobial peptide (CRAMP) expression in odontoblast-like MDPC-23 cells.Material and methods: Gene activity and protein production was determined by quantitative real-time RT-PCR and ELISA, respectively. Cellular expression of CRAMP was determined by immunocytochemistry.Results: Stimulation with LTA (5 and 25 µg/ml) but not LPS (1 and 5 µg/ml) for 24 h enhanced IL-6 mRNA expression. The LTA-induced up-regulation of IL-6 mRNA levels was associated with increased IL-6 protein levels. Stimulation with either LPS or LTA for 24 h lacked effect on both MMP-8 transcript and protein expression. Immunocytochemistry disclosed that MDPC-23 cells expressed immunoreactivity for CRAMP. MDPC-23 cells showed mRNA expression for CRAMP, but stimulation with either LPS or LTA did not modulate CRAMP transcript expression.Conclusions: We show that MDPC-23 cells possess immune-like cell properties such as LTA-induced IL-6 production and expression of the antimicrobial peptide CRAMP, suggesting that odontoblasts may modulate innate immunity via these mechanisms.
Collapse
Affiliation(s)
- Karin Odlén
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Felicia Fält
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Dahl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexandra Aidoukovitch
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Folktandvården Skåne, Lund, Sweden
| | - Dan Ericson
- Department of Cariology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
9
|
Jia R, Yi Y, Liu J, Pei D, Hu B, Hao H, Wu L, Wang Z, Luo X, Lu Y. Cyclic compression emerged dual effects on the osteogenic and osteoclastic status of LPS-induced inflammatory human periodontal ligament cells according to loading force. BMC Oral Health 2020; 20:7. [PMID: 31907038 PMCID: PMC6945767 DOI: 10.1186/s12903-019-0987-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Appropriate mechanical stimulation is essential for bone homeostasis in healthy periodontal tissues. While the osteogenesis and osteoclast differentiation of inflammatory periodontal ligament cells under different dynamic loading has not been yet clear. The aim of this study is to clarify the inflammatory, osteogenic and pro-osteoclastic effects of different cyclic stress loading on the inflammatory human periodontal ligament cells (hPDLCs). METHODS hPDLCs were isolated from healthy premolars and cultured in alpha minimum Eagle's medium (α-MEM). Lipopolysaccharides (LPS) were used to induce the inflammation state of hPDLCs in vitro. Determination of LPS concentration for the model of inflammatory periodontium was based on MTT and genes expression analysis. Then the cyclic stress of 0, 0-50, 0-90 and 0-150 kPa was applied to the inflammatory hPDLCs for 5 days respectively. mRNA and protein levels of osteogenic, osteoclastic and inflammation-related markers were examined after the treatment. RESULTS MTT and RT-PCR results showed that 10 μg/ml LPS up-regulated TNF-α, IL-1β, IL-6, IL-8 and MCP-1 mRNA levels (P < 0.05) and did not affect the cell viability (P > 0.05). The excessive loading of stress (150 kPa) with or without LPS strongly increased the expression of inflammatory-related markers TNF-α, IL-1β, IL-6, IL-8, MCP-1 (P < 0.05) and osteoclastic markers RANKL, M-CSF, PTHLH and CTSK compared with other groups (P < 0.05), but had no significant effect on osteogenic genes. While 0-90 kPa cyclic pressure could up-regulate the expression of osteogenic genes ALP, COL-1, RUNX2, OCN, OPN and OSX in the healthy hPDLSCs. CONCLUSIONS Collectively, it could be concluded that 0-150 kPa was an excessive stress loading which accelerated both inflammatory and osteoclastic effects, while 0-90 kPa may be a positive factor for the osteogenic differentiation of hPDLCs in vitro.
Collapse
Affiliation(s)
- Ru Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Yingjie Yi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Jie Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Dandan Pei
- Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Bo Hu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Huanmeng Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Linyue Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Zhenzhen Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| | - Yi Lu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China. .,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China.
| |
Collapse
|
10
|
Aidoukovitch A, Anders E, Dahl S, Nebel D, Svensson D, Nilsson BO. The host defense peptide LL-37 is internalized by human periodontal ligament cells and prevents LPS-induced MCP-1 production. J Periodontal Res 2019; 54:662-670. [PMID: 31095741 DOI: 10.1111/jre.12667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/15/2019] [Accepted: 04/20/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The human host defense peptide LL-37 both shows antimicrobial effects and modulates host cell properties. Here, we assess the effects of synthesized LL-37 on lipopolysaccharide (LPS)-induced inflammation in human periodontal ligament (PDL) cells and investigates underlying mechanisms. BACKGROUND LL-37 has been detected in the periodontal tissues, but its functional importance for PDL cell innate immune responses is not known. METHODS Human PDL cells were obtained from premolars extracted on orthodontic indications. Cellular pro-inflammatory monocyte chemoattractant protein-1 (MCP-1) mRNA expression was determined using quantitative real-time RT-PCR. MCP-1 protein production was assessed by western blot and ELISA. Internalization of LL-37 by PDL cells was visualized by immunocytochemistry. Nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activity was assessed by western blot of phosphorylated p65, phosphorylated p105, and IκBα proteins. Binding of LL-37 to PDL cell DNA was determined by isolation and purification of DNA and dot blot for LL-37 immunoreactivity. RESULTS Treatment with LL-37 (1 µmol/L) for 24 hours prevented LPS-induced stimulation of MCP-1 expression analyzed both on transcript and on protein levels. Stimulation with LL-37 (1 µmol/L) for 24 hours had no effect on toll-like receptor (TLR)2 and TLR4 transcript expression, suggesting that LL-37 acts downstream of the TLRs. Preincubation with LL-37 for 60 minutes followed by stimulation with LPS for 24 hours in the absence of LL-37 completely prevented LPS-evoked MCP-1 transcript expression, implying that LL-37 acts intracellularly and not via binding and neutralization of LPS. In PDL cells stimulated with LL-37 for 60 minutes, the peptide was internalized as demonstrated by immunocytochemistry, suggesting an intracellular mechanism of action. LL-37 immunoreactivity was observed both in the cytosol and in the nucleus. Downregulation of LPS-induced MCP-1 by LL-37 was not mediated by reduction in NF-κB activity as shown by unaltered expression of phosphorylated p65, phosphorylated p105, and IκBα NF-κB proteins in the presence of LL-37. Immunoreactivity for LL-37 was observed in PDL cell DNA treated with but not without 0.1 and 1 µmol/L LL-37 for 60 minutes in vitro. CONCLUSION LL-37 abolishes LPS-induced MCP-1 production in human PDL cells through an intracellular, NF-κB-independent mechanism which probably involves direct interaction between LL-37 and DNA.
Collapse
Affiliation(s)
- Alexandra Aidoukovitch
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Folktandvården Skåne, Lund, Sweden
| | - Emma Anders
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Dahl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Daniel Nebel
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Daniel Svensson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
| | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Wei L, Jiang Y, Zhou W, Liu S, Liu Y, Rausch-Fan X, Liu Z. Strontium ion attenuates lipopolysaccharide-stimulated proinflammatory cytokine expression and lipopolysaccharide-inhibited early osteogenic differentiation of human periodontal ligament cells. J Periodontal Res 2018; 53:999-1008. [PMID: 30221352 DOI: 10.1111/jre.12599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/16/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a chronic inflammatory disease characterized by the destruction of the periodontium. The strontium ion (Sr2+ ) can prevent the bone loss associated with periodontitis and promote the regeneration of the bone. The mechanisms by which the Sr2+ works remain poorly understood. We aim to investigate the effects of the Sr2+ ion on cell proliferation, inflammatory regulation and osteogenic differentiation of human periodontal ligament cells (hPDLCs) in pathological conditions. MATERIAL AND METHODS hPDLCs were obtained from premolars that came from the orthodontic extraction. The hPDLCs were treated with Sr2+ and/or lipopolysaccharide (LPS), which was applied as the pathological condition of periodontitis. The effect of the dose of Sr2+ on cell proliferation was analyzed using a Cell Counting Kit-8 assay. The gene and protein expression of proinflammatory cytokines were detected by the real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The osteogenic differentiation and mineralization were assessed by the real-time polymerase chain reaction, alkaline phosphatase activity assay and alizarin red staining. RESULTS Results demonstrated that Sr2+ in a range of concentrations from 0.02 to 2.5 mmol/L significantly improved the proliferation of hPDLCs. Sr2+ reversed LPS-stimulated proinflammatory cytokine expressions such as tumor necrosis factor alpha, interleukin (IL)-1β, IL-6 and IL-8. Moreover, Sr2+ rescued the LPS-inhibited gene expression of osteogenic differentiation. Although it appeared to suppress the late mineralization, Sr2+ can reverse the LPS-inhibited early osteogenic differentiation of hPDLCs. CONCLUSION These results indicated that Sr2+ could attenuate the LPS-stimulated proinflammatory molecule expression and inhibit early osteogenic differentiation of hPDLCs.
Collapse
Affiliation(s)
- Lingfei Wei
- Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Yuxi Jiang
- Department of Periodontology, Yantai Stomatological Hospital, Yantai, China
| | - Wenjuan Zhou
- Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Shutai Liu
- Department of Periodontology, Yantai Stomatological Hospital, Yantai, China
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Xiaohui Rausch-Fan
- Division of conservative Dentistry and Periodontology and Competence Center of Periodontal Research, Vienna Dental School, Medical University of Vienna, Vienna, Austria
| | - Zhonghao Liu
- Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| |
Collapse
|
12
|
Wang P, Yue J, Xu W, Chen X, Yi X, Ye L, Zhang L, Huang D. Jumonji domain-containing protein 3 regulates the early inflammatory response epigenetically in human periodontal ligament cells. Arch Oral Biol 2018; 93:87-94. [PMID: 29859500 DOI: 10.1016/j.archoralbio.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/11/2018] [Accepted: 05/09/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the role of the histone 3 lysine 27 trimethylation (H3K27me3) demethylase Jumonji domain-containing protein 3 (Jmjd3) in the epigenetic regulation of the inflammatory response in human periodontal ligament cells (HPDLs). DESIGN HPDLs were stimulated with lipopolysaccharide from E. coli. The expression of Jmjd3 in HPDLs was examined by quantitative real-time polymerase chain reaction (Q-PCR), Western Blot and immunofluorescent staining. Potential target genes were selected by silencing Jmjd3 and were confirmed by Chromatin Immunoprecipitation (ChIP). RESULTS Q-PCR, Western Blot and immunofluorescent staining revealed that the expression of Jmjd3 was increased in inflamed HPDLs. Knockdown of Jmjd3 led to the suppression of inflammation-induced up-regulation of interleukin-6 and interleukin-12. Moreover, ChIP assays demonstrated that Jmjd3 was recruited to the promoters of interleukin-6 and interleukin-12b and this recruitment was associated with decreased levels of trimethylated histone 3 lysine 27 (H3K27). CONCLUSIONS It was concluded that Jmjd3 regulated the activation of interleukin-6 and interleukin-12b in the early inflammatory response of HPDLs via demethylation of H3K27me3 at promoters. This molecular event may play an important role in the regulation of the inflammatory response in HPDLs.
Collapse
Affiliation(s)
- Puyu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Junli Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China; Hospital of Stomatology Wuhan University, Wuhan, China
| | - Weizhe Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Xiaowei Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China.
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
13
|
Globular C1q receptor (p33) binds and stabilizes pro-inflammatory MCP-1: a novel mechanism for regulation of MCP-1 production and function. Biochem J 2018; 475:775-786. [PMID: 29358188 DOI: 10.1042/bcj20170857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/17/2022]
Abstract
The protein gC1qR (globular C1q receptor), also named p33, was originally identified as a binding partner of the globular heads of C1q in the complement system. gC1qR/p33 is abundantly expressed in many cell types, but the functional importance of this protein is not completely understood. Here, we investigate the impact of gC1qR/p33 on the production and function of the pathophysiologically important chemokine monocyte chemoattractant protein-1 (MCP-1) and the underlying molecular mechanisms. Knockdown of gC1qR/p33 negatively regulated the production of MCP-1, but had no effect on the expression of transcript for MCP-1 in human periodontal ligament cells, suggesting a translational/post-translational mechanism of action. Laser scanning confocal microscopy showed considerable cytosolic co-localization of gC1qR/p33 and MCP-1, and co-immunoprecipitation disclosed direct physical interaction between gC1qR/p33 and MCP-1. Surface plasmon resonance analysis revealed a high-affinity binding (KD = 10.9 nM) between gC1qR/p33 and MCP-1. Using a transwell migration assay, we found that recombinant gC1qR/p33 enhances MCP-1-induced migration of human THP-1 monocytes, pointing to a functional importance of the interaction between gC1qR/p33 and MCP-1. An in vitro assay revealed a rapid turnover of the MCP-1 protein and that gC1qR/p33 stabilizes MCP-1, hence preventing its degradation. We propose that endogenous gC1qR/p33 physically interacts with MCP-1 causing stabilization of the MCP-1 protein and stimulation of its activity in human periodontal ligament cells, suggesting a novel gC1qR/p33-mediated pro-inflammatory mechanism of action.
Collapse
|
14
|
Luo SW, Kang H, Kong JR, Xie RC, Liu Y, Wang WN, Xie FX, Wang C, Sun ZM. Molecular cloning, characterization and expression analysis of (B-cell lymphoma-2) Bcl-2 in the orange-spotted grouper (Epinephelus coioides). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:150-162. [PMID: 28606801 DOI: 10.1016/j.dci.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Bcl-2 is a pro-survival member of Bcl-2 like superfamily, playing an important role in regulating the apoptotic process. In this study, the full-length Bcl-2 (EcBcl-2) was obtained, consisting of a 5'UTR of 290 bp, an ORF of 699 bp and a 3'UTR of 920 bp. EcBcl-2 gene encoded a polypeptide of 232 amino acids with an estimated molecular mass of 26.12 KDa and a predicted isoelectric point (pI) of 6.93. The deduced amino acid sequence analysis showed that EcBcl-2 consisted of the conserved residues and characteristic domains known to the critical functionality for Bcl-2. qRT-PCR analysis revealed that EcBcl-2 transcript was expressed in all the examined tissues, while the strongest expression level was observed in liver, followed by the expression in blood, gill, kidney, spleen, heart, intestine and muscle. The groupers challenged with V. alginolyticus showed a significant increase of EcBcl-2 mRNA in immune tissues. In addition, western blotting analysis confirmed that the up-regulation of EcBcl-2 protein expression was detected in liver. Subcellular localization analysis revealed that EcBcl-2 was localized in both nucleus and cytoplasm. Overexpression of EcBcl-2 can inhibit the LPS-induced apoptosis and activate the transcription activity of NF-κB and AP-1, while the deletion of BH1, BH2, BH3 or BH4 domain from EcBcl-2 can impede the signaling transduction. These results indicate that EcBcl-2 may play a regulatory role in the apoptotic process.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China; Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Huan Kang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jing-Rong Kong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Ren-Chong Xie
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Fu-Xing Xie
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Cong Wang
- Hebei Wisdom Technology Development Co., Ltd., PR China
| | - Zuo-Ming Sun
- Hebei Wisdom Technology Development Co., Ltd., PR China; Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
15
|
Secretory leukocyte protease inhibitor regulates human periodontal ligament cell production of pro-inflammatory cytokines. Inflamm Res 2017; 66:823-831. [PMID: 28597116 PMCID: PMC5529494 DOI: 10.1007/s00011-017-1062-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/05/2017] [Accepted: 06/02/2017] [Indexed: 01/09/2023] Open
Abstract
Objective Regulation of immune-like cell properties of periodontal ligament (PDL) cells is not understood. We investigate the importance of secretory leukocyte protease inhibitor (SLPI) for production of pro-inflammatory cytokines in human PDL cells. Materials and methods PDL cells were isolated from teeth extracted for orthodontic reasons. Cellular location of SLPI was investigated by immunocytochemistry. Cytokine transcript and protein expression were assessed by quantitative real-time RT-PCR and Western blotting. SLPI gene activity was knocked-down by siRNA. NF-κB signaling was assessed by measuring IκBα, and phosphorylated p65 and p105 protein expression. Results PDL cells showed cytoplasmic expression of SLPI. Cellular expression level of SLPI negatively correlated to LPS-induced stimulation of IL-6 and MCP-1. Both SLPI gene activity and protein were reduced by about 70% in PDL cells treated with SLPI siRNA compared to cells treated with non-coding construct. Treatment with SLPI siRNA was associated with up-regulation of both basal and LPS-stimulated IL-6, MCP-1 and TLRs mRNA expression. The up-regulation of MCP-1 transcript in SLPI siRNA-treated cells was confirmed on protein level. SLPI siRNA-treatment enhanced the phosphorylated NF-κB p105 protein expression. Conclusions SLPI regulates PDL cell pro-inflammatory cytokine expression and modulates NF-κB signaling, suggesting that SLPI governs the immune cell-like properties of PDL cells.
Collapse
|
16
|
Cai Z, Falkensammer F, Andrukhov O, Chen J, Mittermayr R, Rausch-Fan X. Effects of Shock Waves on Expression of IL-6, IL-8, MCP-1, and TNF-α Expression by Human Periodontal Ligament Fibroblasts: An In Vitro Study. Med Sci Monit 2016; 22:914-921. [PMID: 26994898 PMCID: PMC4805137 DOI: 10.12659/msm.897507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/12/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Extracorporeal shock wave therapy (ESWT) can modulate cell behavior through mechanical information transduction. Human periodontal ligament fibroblasts (hPDLF) are sensible to mechanical stimulus and can express pro-inflammatory molecules in response. The aim of this study was to evaluate the impacts of shock waves on interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor-alpha (TNF-α) expression by hPDLF. MATERIAL/METHODS After being treated by shock waves with different parameters (100-500 times, 0.05-0.19 mJ/mm(2)), cell viability was tested using CCK-8. IL-6, IL-8, MCP-1, and TNF-α gene expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and IL-6 and IL-8 protein was measured by enzyme-linked immunosorbent assay (ELISA) at different time points. RESULTS Shock waves with the parameters used in this study had no significant effects on the viability of hPDLF. A statistical inhibition of IL-6, IL-8, MCP-1, and TNF-α expression during the first few hours was observed (P<0.05). Expression of IL-8 was significantly elevated in the group receiving the most pulses of shock wave (500 times) after 4 h (P<0.05). At 8 h and 24 h, all treated groups demonstrated significantly enhanced IL-6 expression (P<0.05). TNF-α expression in the groups receiving more shock pulses (300, 500 times) or the highest energy shock treatment (0.19 mJ/mm(2)) was statistically decreased (P<0.05) at 24 h. CONCLUSIONS Under the condition of this study, a shock wave with energy density no higher than 0.19 mJ/mm(2) and pulses no more than 500 times elicited no negative effects on cell viability of hPDLF. After a uniform initial inhibition impact on expression of inflammatory mediators, a shock wave could cause dose-related up-regulation of IL-6 and IL-8 and down-regulation of TNF-α.
Collapse
Affiliation(s)
- Zhiyu Cai
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Frank Falkensammer
- Department of Orthodontics, Bernhard Gottlieb University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Competence Centre of Periodontal Research, Bernhard Gottlieb School of Dentistry, Medical University of Vienna, Vienna, Austria
- Division of Conservative Dentistry, Periodontology and Prophylaxis, Bernhard Gottlieb School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Rainer Mittermayr
- The Austrian Cluster for Tissue Regeneration, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/Austrian Workers’ Compensation Board (AUVA) Research Center, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Competence Centre of Periodontal Research, Bernhard Gottlieb School of Dentistry, Medical University of Vienna, Vienna, Austria
- Division of Conservative Dentistry, Periodontology and Prophylaxis, Bernhard Gottlieb School of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Albiero ML, Amorim BR, Martins L, Casati MZ, Sallum EA, Nociti FH, Silvério KG. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern. J Appl Oral Sci 2015; 23:145-52. [PMID: 26018305 PMCID: PMC4428458 DOI: 10.1590/1678-775720140334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023] Open
Abstract
Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix.
Collapse
Affiliation(s)
- Mayra Laino Albiero
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Bruna Rabelo Amorim
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Luciane Martins
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Márcio Zaffalon Casati
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Enilson Antonio Sallum
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Francisco Humberto Nociti
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Karina Gonzales Silvério
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
18
|
Jian C, Li C, Ren Y, He Y, Li Y, Feng X, Zhang G, Tan Y. Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells. Inflammation 2015; 37:1413-23. [PMID: 24609838 DOI: 10.1007/s10753-014-9865-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth supporting tissues. Hypoxia, the mainly changes of the plateau environment, can induce severe periodontitis by animal experiments. There is, however, very little information on hypoxia and lipopolysaccharide (LPS) induced cytokine expression in periodontal ligament (PDL) cells. In this article, we characterized hypoxia or P. gingivalis lipopolysaccharide (Pg LPS) induced tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 expression by human periodontal ligament (hPDL) cells. We found that hypoxia augmented Pg LPS induced TNF-α, IL-1β, and IL-6 expression in hPDL cells. We also demonstrated that nuclear factor kappa B pathway was involved in hypoxia augmenting Pg LPS induced cytokine expression in hPDL cells. Thus, our results suggest that the hypoxic environment may enhance the immune function of hPDL cells that is induced by Pg LPS.
Collapse
Affiliation(s)
- Congxiang Jian
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital, Third Military Medical University, Xinqiaozheng Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Relationship between gingival inflammation and pregnancy. Mediators Inflamm 2015; 2015:623427. [PMID: 25873767 PMCID: PMC4385665 DOI: 10.1155/2015/623427] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/28/2014] [Indexed: 01/09/2023] Open
Abstract
An increase in the prevalence and severity of gingival inflammation during pregnancy has been reported since the 1960s. Though the etiology is not fully known, it is believed that increasing plasma sex steroid hormone levels during pregnancy have a dramatic effect on the periodontium. Current works of research have shown that estrogen and progesterone increasing during pregnancy are supposed to be responsible for gingivitis progression. This review is focused not only on epidemiological studies, but also on the effects of progesterone and estrogen on the change of subgingival microbiota and immunologic physiological mediators in periodontal tissue (gingiva and periodontal ligament), which provides current information about the effects of pregnancy on gingival inflammation.
Collapse
|
20
|
Nebel D, Svensson D, Arosenius K, Larsson E, Jönsson D, Nilsson BO. 1α,25-dihydroxyvitamin D3 promotes osteogenic activity and downregulates proinflammatory cytokine expression in human periodontal ligament cells. J Periodontal Res 2014; 50:666-73. [PMID: 25495336 DOI: 10.1111/jre.12249] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to assess the impact of 1α,25-dihydroxyvitamin D3 (vitamin D3) on osteogenic and inflammatory properties of human periodontal ligament (PDL) cells and investigate underlying mechanisms. MATERIAL AND METHODS Human PDL cells, obtained from four subjects, were stimulated with vitamin D3 for 4-48 h. The bone markers osteopontin and osteocalcin and proinflammatory cytokine/chemokine expression was determined by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Cytokine and chemokine expression was determined after stimulation with the inflammation promoter lipopolysaccharide (LPS) in the presence or absence of vitamin D3. Alkaline phosphatase activity was assessed using p-nitrophenylphosphate substrate. RESULTS Treatment with 30 ng/mL of vitamin D3, corresponding to an optimal plasma concentration of vitamin D, for 24 h had no effect on PDL cell number and morphology but increased PDL cell osteopontin and osteocalcin mRNA expression by about 70 and 40%, respectively, and, moreover, treatment with vitamin D3 for 48 h enhanced PDL cell alkaline phosphatase activity by about two times showing that vitamin D3 exerts pro-osteogenic effects in human PDL cells. Stimulation with LPS (1 μg/mL) for 4 h increased PDL cell interleukin (IL)-6 cytokine and chemokine ligand 1 (CXCL1) chemokine mRNA expression several fold. The LPS-induced increase in IL-6 and CXCL1 transcripts was attenuated by vitamin D3 (30 ng/mL). Treatment with vitamin D3 (3-300 ng/mL) for 24 h reduced the LPS-evoked increase in PDL cell IL-6 protein by about 50%. Vitamin D3 (30 ng/mL) had no effect on LPS-induced IL-1β and MCP-1 mRNA expression. CONCLUSIONS Vitamin D3 promotes osteogenic differentiation but also downregulates inflammation promoter-induced IL-6 cytokine and CXCL1 chemokine expression in human PDL cells, suggesting that vitamin D3 both stimulates bone regeneration and antagonizes inflammation in human periodontal tissue.
Collapse
Affiliation(s)
- D Nebel
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - D Svensson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - K Arosenius
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - E Larsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - D Jönsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - B O Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Özdemir B, Shi B, Bantleon HP, Moritz A, Rausch-Fan X, Andrukhov O. Endocannabinoids and inflammatory response in periodontal ligament cells. PLoS One 2014; 9:e107407. [PMID: 25226300 PMCID: PMC4165771 DOI: 10.1371/journal.pone.0107407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/09/2014] [Indexed: 01/08/2023] Open
Abstract
Endocannabinoids are associated with multiple regulatory functions in several tissues. The main endocannabinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG), have been detected in the gingival crevicular fluid of periodontitis patients, but the association between periodontal disease or human periodontal ligament cells (hPdLCs) and endocannabinoids still remain unclear. The aim of the present study was to examine the effects of AEA and 2-AG on the proliferation/viability and cytokine/chemokine production of hPdLCs in the presence/absence of Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS). The proliferation/viability of hPdLCs was measured using 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT)-assay. Interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) levels were examined at gene expression and protein level by real-time PCR and ELISA, respectively. AEA and 2-AG did not reveal any significant effects on proliferation/viability of hPdLCs in the absence of P. gingivalis LPS. However, hPdLCs viability was significantly increased by 10-20 µM AEA in the presence of P. gingivalis LPS (1 µg/ml). In the absence of P. gingivalis LPS, AEA and 2-AG did not exhibit any significant effect on the expression of IL-8 and MCP-1 expression in hPdLCs, whereas IL-6 expression was slightly enhanced by 10 µM 2-AG and not affected by AEA. In P.gingivalis LPS stimulated hPdLCs, 10 µM AEA down-regulated gene-expression and protein production of IL-6, IL-8, and MCP-1. In contrast, 10 µM 2-AG had an opposite effect and induced a significant up-regulation of gene and protein expression of IL-6 and IL-8 (P<0.05) as well as gene-expression of MCP-1 in P. gingivalis LPS stimulated hPdLCs. Our data suggest that AEA appears to have an anti-inflammatory and immune suppressive effect on hPdLCs' host response to P.gingivalis LPS, whereas 2-AG appears to promote detrimental inflammatory processes. In conclusion, AEA and 2-AG might play an important role in the modulation of periodontal inflammation.
Collapse
Affiliation(s)
- Burcu Özdemir
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
- Division of Oral Biology, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
| | - Bin Shi
- Division of Oral Biology, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
- Department of Oral Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hans Peter Bantleon
- Division of Orthodontics, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry, Periodontology and Prophylaxis, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Division of Oral Biology, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
- Division of Orthodontics, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
| | - Oleh Andrukhov
- Division of Oral Biology, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
| |
Collapse
|
22
|
Sokos D, Everts V, de Vries TJ. Role of periodontal ligament fibroblasts in osteoclastogenesis: a review. J Periodontal Res 2014; 50:152-9. [PMID: 24862732 DOI: 10.1111/jre.12197] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 01/11/2023]
Abstract
During the last decade it has become clear that periodontal ligament fibroblasts may contribute to the in vitro differentiation of osteoclasts. We surveyed the current findings regarding their osteoclastogenesis potential. Periodontal ligament fibroblasts have the capacity to select and attract osteoclast precursors and subsequently to retract and enable migration of osteoclast precursors to the bone surface. There, fusion of precursors takes place, giving rise to osteoclasts. The RANKL-RANK-osteoprotegerin (OPG) axis is considered crucial in this process. Periodontal ligament fibroblasts produce primarily OPG, an osteoclastogenesis-inhibitory molecule. However, they may be influenced in vivo by direct or indirect interactions with bacteria or by mechanical loading. Incubation of periodontal ligament fibroblasts with bacteria or bacterial components causes an increased expression of RANKL and other osteoclastogenesis-stimulating molecules, such as tumor necrosis factor-α and macrophage-colony stimulating factor. Similar results are observed after the application of mechanical loading to these fibroblasts. Periodontal ligament fibroblasts may be considered to play an important role in the remodelling of alveolar bone. In vitro experiments have demonstrated that periodontal ligament fibroblasts adapt to bacterial and mechanical stimuli by synthesizing higher levels of osteoclastogenesis-stimulating molecules. Therefore, they probably contribute to the enhanced osteoclast formation observed during periodontitis and to orthodontic tooth movement.
Collapse
Affiliation(s)
- D Sokos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
23
|
Nebel D, Arvidsson J, Lillqvist J, Holm A, Nilsson BO. Differential effects of LPS from Escherichia coli and Porphyromonas gingivalis on IL-6 production in human periodontal ligament cells. Acta Odontol Scand 2013; 71:892-8. [PMID: 23116357 DOI: 10.3109/00016357.2012.734415] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Periodontal ligament (PDL) cells produce IL-6 upon stimulation with inflammation promoters, but the signaling pathways involved have not been characterized. This study investigates underlying mechanisms behind regulation of PDL cell IL-6 production by E. coli and P. gingivalis LPS. MATERIALS AND METHODS Human PDL cells, endothelial cells and monocytes were stimulated with E. coli or P. gingivalis LPS in the presence or absence of pharmacological agents in order to disclose pathways involved in LPS signaling. Gene expression and cellular protein levels were assessed by quantitative real-time PCR and ELISA, respectively. RESULTS Stimulation with LPS from E. coli (1 µg/ml) for 24 h enhanced PDL cell IL-6 expression several fold, demonstrated both on transcript and protein levels, but P. gingivalis LPS (1-5 µg/ml) had no effect. TLR2 mRNA was more highly expressed than TLR4 transcript in PDL cells. Treatment with the non-selective nitric oxide synthase inhibitor L-NAME (100 µM) reduced E. coli LPS-induced PDL cell IL-6 by 30%, while neither aminoguanidine (10 µM), an inhibitor of inducible nitric oxide synthase, nor estrogen (17β-estradiol, 100 nM) influenced IL-6. Treatment with the glucocorticoid dexamethasone (1 µM) totally prevented the E. coli LPS-induced PDL cell IL-6. In endothelial cells, neither E. coli LPS nor P. gingivalis LPS promoted IL-6 production. In monocytes, serving as positive control, both E. coli and P. gingivalis LPS stimulated IL-6. CONCLUSIONS E. coli LPS but not P. gingivalis LPS stimulates PDL cell IL-6 production through a glucocorticoid-sensitive mechanism involving nitric oxide formation, probably via endothelial nitric oxide synthase.
Collapse
Affiliation(s)
- Daniel Nebel
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Qian H, Yi J, Zhou J, Zhao Y, Li Y, Jin Z, Ding Y. Activation of cannabinoid receptor CB2 regulates LPS-induced pro-inflammatory cytokine production and osteoclastogenic gene expression in human periodontal ligament cells. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojst.2013.31009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Morsczeck CO, Drees J, Gosau M. Lipopolysaccharide from Escherichia coli but not from Porphyromonas gingivalis induce pro-inflammatory cytokines and alkaline phosphatase in dental follicle cells. Arch Oral Biol 2012; 57:1595-1601. [PMID: 22959004 DOI: 10.1016/j.archoralbio.2012.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Dental follicle cells (DFCs) as periodontal precursor cells are the natural source for cellular therapies of periodontitis. Periodontitis is initiated after the infection of the periodontium with oral pathogens such as the Gram-negative bacteria Porphyromonas gingivalis. Lipopolysaccharide (LPS) is the major component of the outer membrane of gram-negative bacteria. Previous studies have shown that especially P. gingivalis LPS induces the expression of pro-inflammatory cytokines in PDL cells and disturbs the differentiation of dental stem cells. Our study investigated the administration of LPS to DFCs for the first time. MATERIALS AND METHODS We evaluated cell proliferation (WST1 assay), expression of cytokines IL1β, IL8 and IL6 (real-time RT-PCR) and the osteogenic differentiation of DFCs (ALP-activity and Alizarin red staining) in the presence of P. gingivalis LPS and Escherichia coli LPS. RESULTS All tested pro-inflammatory cytokines were highly increased after E. coli LPS treatment. P. gingivalis LPS induces only the expression of IL8, but this expression was significantly lower than that after E. coli LPS administration. The ALP activity was significantly higher in DFCs after the administration of E. coli LPS than after administration of P. gingivalis LPS or under normal cell differentiation conditions. However, the mineralization was inhibited with LPS from both bacterial species. CONCLUSION LPS disturbs osteogenic differentiation in DFCs. Moreover, the failure of pro-inflammatory cytokines induction in DFCs after the administration of P. gingivalis LPS differs greatly from that of PDL fibroblasts. These immunological properties of DFCs have to be considered for cellular therapies of periodontitis with DFCs.
Collapse
Affiliation(s)
- Christian O Morsczeck
- Department of Cranio- and Maxillofacial Surgery, University Hospital Regensburg, Germany.
| | | | | |
Collapse
|
26
|
Jönsson D, Nilsson BO. The antimicrobial peptide LL-37 is anti-inflammatory and proapoptotic in human periodontal ligament cells. J Periodontal Res 2011; 47:330-5. [PMID: 22066867 DOI: 10.1111/j.1600-0765.2011.01436.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The antimicrobial peptide LL-37 is expressed in periodontal tissue, and variations in LL-37 levels have been associated with periodontal disease. The effects of LL-37 on periodontal ligament cell function have not been described before. Here, we assess anti-inflammatory properties of LL-37 and investigate the effects of LL-37 on cell differentiation, cell proliferation and apoptosis in human periodontal ligament cells. MATERIAL AND METHODS Periodontal ligament cells were obtained from teeth extracted for orthodontic reasons. Cytokine (interleukin-6) and chemokine (monocyte chemoattractant protein-1) expression was determined by quantitative PCR, cell differentiation by alkaline phosphatase activity, cell proliferation by counting cells in a Bürker chamber, DNA synthesis by incorporation of radiolabeled thymidine and apoptosis by cell morphology and activated caspase 3 quantities. RESULTS Treatment with 0.1 and 1 μm of LL-37 totally reversed lipopolysaccharide-induced monocyte chemoattractant protein-1 expression and suppressed lipopolysaccharide-induced interleukin-6 expression by 50-70%. LL-37 had no effect on alkaline phosphatase activity. Incubation with 8 μm LL-37 strongly reduced cell number. DNA synthesis was attenuated by about 90% in response to 8 μm LL-37, confirming its antiproliferative effect. Cell morphology was altered in an apoptosis-like fashion in cells treated with 8 μm LL-37. Furthermore, the quantity of activated caspase 3 was increased in cells treated with 1 and 8 μm of LL-37, suggesting apoptosis. CONCLUSION LL-37 strongly attenuates lipopolysaccharide-induced cytokine and chemokine expression and, in high concentrations, reduces cell proliferation through inhibition of DNA synthesis and by promoting apoptosis in human periodontal ligament cells.
Collapse
Affiliation(s)
- D Jönsson
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.
| | | |
Collapse
|
27
|
Mamalis A, Markopoulou C, Lagou A, Vrotsos I. Oestrogen regulates proliferation, osteoblastic differentiation, collagen synthesis and periostin gene expression in human periodontal ligament cells through oestrogen receptor beta. Arch Oral Biol 2010; 56:446-55. [PMID: 21130420 DOI: 10.1016/j.archoralbio.2010.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 10/25/2010] [Accepted: 11/08/2010] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The present study was designed to examine how oestrogen regulates proliferation, osteoblastic differentiation, collagen synthesis and periostin gene expression in primary human periodontal ligament (hPDL) cells. DESIGN The short interfering RNA (siRNA) technique was used to inhibit oestrogen receptor beta (ERβ) expression hPDL cells. hPDL cell were isolated and fully characterized. A colorimetric assay was applied for the determination of alkaline phosphatase (ALP). An ELISA kit was used to detect osteocalcin (OCN) levels. Collagen synthesis was determined by measuring the incorporation of L-[3H] praline. RT-PCR was performed to detection of periostin mRNA relative gene expression. RESULTS ERβ mRNA was expressed in hPDL cells and significant inhibition of mRNA expression and ERβ mature protein of the ERβ was evident in the siRNA group. At 72h, there was a significant increase in non-transfected hPDL cell proliferation after estradiol stimulation. Addition of 17β-estradiol significantly enhanced ALP activity and production of OCN in non-transfected cells but had no effect on collagen synthesis. A clear increase in periostin mRNA expression levels was observed after incubating hPDL cells with estradiol. In hPDL-siERβ cells, the application of estradiol did not produce any evident differences in periostin mRNA expression CONCLUSIONS ERβ may play important roles in oestrogen-induced effects on hPDL cell proliferation, osteoblastic differentiation and expression of key molecules for the functional and structural integrity of the periodontium (i.e. periostin).
Collapse
Affiliation(s)
- Anastasios Mamalis
- Department of Periodontics, Dental School, University of Texas, Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|
28
|
Jönsson D, Nebel D, Bratthall G, Nilsson BO. The human periodontal ligament cell: a fibroblast-like cell acting as an immune cell. J Periodontal Res 2010; 46:153-7. [PMID: 21118418 DOI: 10.1111/j.1600-0765.2010.01331.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Periodontal ligament cells are fibroblast-like cells characterized by collagen production but also possessing some osteoblastic features. In the light of numerous studies presented during recent times, which show that human periodontal ligament cells also produce cytokines and chemokines in response to inflammation promoters, it is reasonable to suggest that periodontal ligament cells play a role as promoters of periodontal inflammation through these mechanisms. MATERIAL AND METHODS The periodontal ligament, which harbours the periodontal ligament cells, is a part of the attachment apparatus comprised of periodontal ligament cells, extracellular matrix and fibres, attaching the root cement to the alveolar bone. Periodontal ligament cells are in close proximity to bacteria within the plaque and the pocket, and thus these cells are readily accessible to bacterial endotoxins and other promoters of inflammation. RESULTS Cytokines and chemokines, released by periodontal ligament cells upon stimulation with inflammation promoters, reach the blood vessels easily thanks to rich vascularization of the periodontium stimulating recruitment of white blood cells to the site of inflammation. In addition to classical inflammatory cells, such as leucocytes, macrophages and mast cells, the periodontal ligament cells also contribute to periodontal inflammation via their production and release of cytokines and chemokines. CONCLUSION Therefore, pharmacological treatment of periodontitis should aim to reduce the release of proinflammatory agents not only from classical inflammatory cells but also from periodontal ligament cells.
Collapse
Affiliation(s)
- D Jönsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
29
|
Nebel D, Jönsson D, Norderyd O, Bratthall G, Nilsson BO. Differential regulation of chemokine expression by estrogen in human periodontal ligament cells. J Periodontal Res 2010; 45:796-802. [DOI: 10.1111/j.1600-0765.2010.01308.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Liu YCG, Lerner UH, Teng YTA. Cytokine responses against periodontal infection: protective and destructive roles. Periodontol 2000 2010; 52:163-206. [PMID: 20017801 DOI: 10.1111/j.1600-0757.2009.00321.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Kim YS, Pi SH, Lee YM, Lee SI, Kim EC. The anti-inflammatory role of heme oxygenase-1 in lipopolysaccharide and cytokine-stimulated inducible nitric oxide synthase and nitric oxide production in human periodontal ligament cells. J Periodontol 2010; 80:2045-55. [PMID: 19961388 DOI: 10.1902/jop.2009.090145] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although heme oxygenase-1 (HO-1) is involved in anti-inflammation, the mechanisms of its activity in regulating periodontal inflammation are largely unclear. Therefore, the aim of this study is to investigate the anti-inflammatory properties of HO-1 in lipopolysaccharide (LPS)- and proinflammatory cytokine-stimulated inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in human periodontal ligament (PDL) cells. METHODS PDL cells were treated with LPS plus a combination of tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta in serum-free media for 1 day. The production of NO was evaluated using a Griess reagent kit. The expression of iNOS and HO-1 proteins and mRNAs was evaluated using Western blotting and reverse transcriptase-polymerase chain reaction, respectively. RESULTS Proinflammatory cytokines and LPS triggered iNOS and HO-1 expression and NO production in PDL cells. HO-1 inhibitor and HO-1 small interfering RNA (siRNA) attenuated the LPS- and cytokine-stimulated NO release and iNOS and HO-1 expression. Specific inhibitors of p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases phosphatidylinositol 3-kinase (PI3K), nuclear factor-kappa B (NF-kappaB), and protein kinase C delta (PKC-delta) greatly reduced the levels of iNOS and HO-1 expression induced by LPS plus cytokines. CONCLUSIONS Collectively, these data suggested that HO-1 inhibition blocked LPS- and proinflammatory cytokine-stimulated iNOS expression and NO production in PDL cells via a mechanism that involves p38, ERK, PI3K, NF-kappaB, and PKC-delta. Thus, the regulation of HO-1 activity may be a therapeutic strategy for periodontal disease.
Collapse
Affiliation(s)
- Young-Suk Kim
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, South Korea
| | | | | | | | | |
Collapse
|
32
|
Gallina S, Barranco-Piedra S, Torres-Lagares D, Baroukh B, Llorens A, Gutiérrez-Pérez JL, Saffar JL, Cherruau M, Lesclous P. Estrogen Withdrawal Transiently Increased Bone Turnover Without Affecting the Bone Balance Along the Tooth Socket in Rats. J Periodontol 2009; 80:2035-44. [DOI: 10.1902/jop.2009.090297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Jönsson D, Amisten S, Bratthall G, Holm A, Nilsson BO. LPS induces GROalpha chemokine production via NF-kappaB in oral fibroblasts. Inflamm Res 2009; 58:791-6. [PMID: 19430878 DOI: 10.1007/s00011-009-0049-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/15/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE AND DESIGN Chemotaxis of neutrophils from blood to the inflammation process plays an important role in development of periodontal inflammation. The novel chemokine GROalpha, also named CXCL1, is a strong chemoattractant for neutrophils. Data on production and regulation of GROalpha by oral fibroblasts have not previously been presented. MATERIALS AND METHODS GROalpha mRNA and protein levels were determined in human periodontal ligament cells and mouse gingival fibroblasts by quantitative real-time PCR and ELISA. RESULTS We disclose that both human periodontal ligament cells and mouse gingival fibroblasts produce GROalpha in response to LPS stimulation. Stimulation with LPS for 24 h increased both mRNA for GROalpha and GROalpha protein. The steroid hormone estrogen had no effect on LPS-induced GROalpha mRNA expression. Treatment with the glucocorticoid dexamethasone attenuated LPS-induced GROalpha production, and the NF-kappaB blocker MG 132 fully prevented LPS-induced GROalpha. CONCLUSIONS Oral fibroblasts respond to LPS stimulation by increasing GROalpha production via the transcription factor NF-kappaB, suggesting that this mechanism may be involved in development of periodontal inflammation.
Collapse
Affiliation(s)
- D Jönsson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|