1
|
Ersöz B, Aydin N, Oktay EA, Çal İK, Karaoğlanoğlu S. Effects of universal adhesives on dentin matrix proteins, matrix metalloproteinases and cytokine release of human pulp cells. Odontology 2025:10.1007/s10266-025-01107-3. [PMID: 40249477 DOI: 10.1007/s10266-025-01107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
The potential toxicity of universal adhesives, which contain various monomers, solvents and fillers is a significant research topic. This study aims to investigate the toxicity and effects of universal adhesives on dentin matrix proteins (DMP-1), matrix metalloproteinases (MMP-2, MMP-8), tissue inhibitors of metalloproteinase-1 (TIMP-1), and cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1)] in pulp cell lines. Six universal adhesives [Gluma Bond Universal (GBU), Prime&Bond Universal (PBU), Clearfil S3 Universal Bond (CS3UB), OptiBond Universal (OBU), G-2 Bond Universal (G2BU) and Bond Force II (BFII)] were assessed using MTT and ELISA cytotoxicity tests. The data obtained from MTT and ELISA tests were analyzed using two-way analysis of variance (ANOVA). The 1:1 extracts of BFII and GBU showed higher cell viability at 24 and 48 h compared to PBU, CS3B, OBU, and G2B adhesives (p < 0.001), and furthermore, the 1:1 extracts of GBU showed statistically the highest cell viability at 72 h (p < 0.001). The universal adhesives tested showed a significant decrease in TIMP-1 in pulp cells (p < 0.05), while TNF-α, IL-1, DMP-1, MMP-2 and MMP-8 levels did not change significantly. The tested adhesives exhibited varying degrees of cytotoxic effects depending on time and dose. The results indicate that the composition of these adhesives plays a crucial role in their cytotoxicity and impact on pulp cell viability. The amount and duration of adhesive application should be carefully regulated to maintain biocompatibility and ensure safe usage.
Collapse
Affiliation(s)
- Bilge Ersöz
- Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, University of Health Sciences, 06018, Ankara, Turkey
| | - Numan Aydin
- Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, University of Health Sciences, 06018, Ankara, Turkey
| | - Elif Aybala Oktay
- Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, University of Health Sciences, 06018, Ankara, Turkey
| | - İrem Kübra Çal
- Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, University of Health Sciences, 06018, Ankara, Turkey
| | - Serpil Karaoğlanoğlu
- Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, University of Health Sciences, 06018, Ankara, Turkey.
| |
Collapse
|
2
|
Chen Y, Wang Q, Li M, Fang Y, Bi X, Wu J, Han Q, Zhu H, Shen Z, Wang X. Nell-1 inhibits lipopolysaccharide-activated macrophages into M1 phenotype through the modulation of NF-κB pathway. J Mol Histol 2025; 56:108. [PMID: 40095095 DOI: 10.1007/s10735-025-10385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Nel-like molecule-1 (Nell-1), as a novel osteo-inductive molecule with great potential for clinical applications, has various functions including promoting chondrogenesis, suppressing osteoclastic activity, promoting osteogenesis, suppressing inflammation and promoting vascularization. Its anti-inflammatory potential has been widely studied. However, its anti-inflammatory potential in macrophage and possible underlying molecular mechanisms are poorly understood. Therefore, the present study aims to evaluate the anti-inflammatory potential and the regulation to macrophage polarization of Nell-1 in human myeloid cell line (THP-1) derived macrophages. M1-related markers and M2-related markers were studied in THP-1 derived macrophages. The suppressive potential of Nell-1 on lipopolysaccharide (LPS)-induced translocation of nuclear factor-kappa B (NF-κB) in THP-1 macrophage was studied. Results showed that Nell-1 significantly reduced M1 macrophage-related surface marker cluster of differentiation 86 (CD86) and inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) and reversed the LPS-induced M1 polarization of macrophages by upregulating the M2-specific markers of vascular endothelial growth factor (VEGF), arginase-1(Arg-1), and cluster of differentiation 206 (CD206) in vitro. In addition, the possible mechanism of the anti-inflammatory effects of Nell-1 is via regulating NF-κB pathway. Hence, Nell-1 is a potential suppressor of inflammation and is involved in the regulation of macrophage polarization. Nell-1 may be a potential candidate for treating inflammatory diseases and promoting tissue regeneration.
Collapse
Affiliation(s)
- Yue Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Qiang Wang
- Jinan Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Stomatological Hospital, Jinan, 250001, Shandong Province, China
| | - Mengyue Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yixuan Fang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiuting Bi
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jiameng Wu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Qi Han
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Hongfan Zhu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Zhien Shen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiaoying Wang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Sales LS, Silva-Sousa AC, Nascimento GC, Bel ED, Paula-Silva FWG. Effects of cannabidiol on biomineralization and inflammatory mediators expression in immortalized murine dental pulp cells and macrophages under pro-inflammatory conditions. J Dent 2025; 153:105535. [PMID: 39706322 DOI: 10.1016/j.jdent.2024.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVES This study investigated the in vitro effects of cannabidiol (CBD) on dental pulp cells and macrophages under pro-inflammatory conditions. MATERIALS AND METHODS Mouse dental pulp cells (OD-21) were pre-stimulated with tumor necrosis factor alpha (10 ng/mL) or left untreated, then exposed to CBD at concentrations of 0.01 µM, 0.1 µM, 1 µM, and 10 µM for 24 h and 7 days. Cell viability was assessed using the MTT assay, while gene expression related to mineralization-Dentin Sialophosphoprotein (Dspp), Dentin Matrix Protein 1 (Dmp1), Runt-related transcription factor 2 (Runx2), TNF-α (Tnf), and prostaglandin-endoperoxide synthase 2 (Ptgs2) were analyzed via quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Mineralization nodule formation was evaluated using alizarin red staining. Macrophages (RAW 264.7) were stimulated with lipopolysaccharide (LPS) for 2 h before exposure to the same CBD concentrations. Data analysis included the Shapiro-Wilk normality test and comparisons using ANOVA and Tukey's post-hoc test (α = 0.05). RESULTS The findings indicated that CBD did not significantly affect OD-21 cell viability, except for the 10 µM concentration after 7 days (p < 0.05). CBD treatment promoted mineralization, with significant differences observed among groups (p < 0.05). Notably, Ptgs2 expression varied between time points, while Runx2 expression was significantly reduced at 24 h (p < 0.05). In macrophages, Ptgs2 and Tnf levels were downregulated by all tested CBD concentrations (p < 0.05). CONCLUSION These results indicate that cannabidiol positively influence the biomineralization process and modulate inflammatory mediator expression. CLINICAL RELEVANCE Our research indicates that cannabidiol presents biomineralization potential within inflammatory contexts, implying its potential as a promisor bioactive substance for regenerating oral tissues by interacting with cells and tissues to induce specific responses.
Collapse
Affiliation(s)
- Larissa Sthefani Sales
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alice Correa Silva-Sousa
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Elaine Del Bel
- Department of Basic and Oral Biology, University of São Paulo, Ribeirão Preto, SP, São Paulo, Brazil
| | | |
Collapse
|
4
|
Huang Y, Su T. Dysregulation of LINC01094 is involved in the pathogenesis of pulpitis by regulating the miR-340-5p expression. Odontology 2025:10.1007/s10266-024-01046-5. [PMID: 39786709 DOI: 10.1007/s10266-024-01046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Pulpitis seriously affects people's living standards and dental health, so identifying effective therapeutic targets is crucial for pulpitis. The research aimed to explore the underlying regulatory mechanism of LINC01094 and miR-340-5p in pulpitis. The study involved a total of 173 subjects (97 pulpitis and 76 healthy individuals). The expression of LINC01094 and miR-340-5p were evaluated through the polymerase chain reaction (PCR). The association linking LINC01094 and miR-340-5p expression was assessed by Pearson correlation analysis. The Human dental pulp cells (HDPCs) injury model was conducted by lipopolysaccharide (LPS). Cell proliferation was examined through the Cell Counting Kit-8 assay and flow cytometry. Cell apoptosis was also evaluated by flow cytometry. The caspase-3 levels and inflammatory cytokines were quantified using an enzyme-linked immunosorbent assay (ELISA). Upregulated LINC01094 and downregulated miR-340-5p expression were observed in pulpitis and LPS-induced HDPC injury models. A negative correlation was observed between miR-340-5p and LINC01094 expression in pulpitis. LPS could suppress proliferation and promote apoptosis of HDPCs. The TNF-α, IL-6, and IL-1β levels in LPS-induced HDPCs were also elevated. The HDPC injury induced by LPS could be aggravated by the LINC01094 overexpression. MiR-340-5p showed a relieved effect on HDPC injury and could alleviate the HDPC injury aggravated by LINC01094 overexpression. In summary, upregulated LINC01094 and downregulated miR-340-5p expression was observed in pulpitis. LINC01094 could accelerate the pulpitis progression via targeting miR-340-5p.
Collapse
Affiliation(s)
- Yuao Huang
- Jinzhou Medical University Graduate Training Base (Central Hospital of Fengxian District, Shanghai), Shanghai, 201499, China
- Department of Stomatology, Shanghai Fengxian District Traditional Chinese Medicine Hospital, Shanghai, 201499, China
| | - Tao Su
- Department of Stomatology, Shanghai Fengxian District Central Hospital, No.6600 Nanfeng Highway, Shanghai, 201400, China.
| |
Collapse
|
5
|
Alrshedan A, Elsafadi M, Muthurangan M, Al-Hadlaq S. Tumor Necrosis Factor Superfamily 14 Regulates the Inflammatory Response of Human Dental Pulp Stem Cells. Curr Issues Mol Biol 2024; 46:13979-13990. [PMID: 39727964 PMCID: PMC11727631 DOI: 10.3390/cimb46120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Dental caries is a highly prevalent chronic disease that leads to dental pulp inflammation. It is treated by removing the damaged tooth structure and applying a material that promotes resolution of pulpal inflammation. Tumor necrosis factor superfamily 14 (TNFSF14) is an immunomodulatory cytokine and a member of the TNF superfamily. This study aimed to evaluate the effect of TNFSF14 on the levels of inflammatory cytokines involved in pulpal inflammation using lipoteichoic acid (LTA)-induced human dental pulp stem cells (hDPSCs). hDPSCs were cultured and induced with LTA, followed by treatment with TNFSF14 at 25 and 50 ng/mL. Cellular viability was evaluated using the Alamar Blue assay. The levels of inflammatory cytokines IL-6, IL-8, IL-10, and TNF-α were quantified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). TNFSF14 at 25 and 50 ng/mL significantly reduced the mRNA and protein levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-8, and increased the anti-inflammatory cytokine IL-10. In addition, TNFSF14-treated groups enhanced cell viability. Adding TNFSF14 to LTA-induced hDPSCs regulated the production of inflammatory cytokines by lowering the levels of IL-6, IL-8, and TNF-α and elevating IL-10 levels.
Collapse
Affiliation(s)
- Abdulelah Alrshedan
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (M.E.); (M.M.)
| | - Manikandan Muthurangan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (M.E.); (M.M.)
| | - Solaiman Al-Hadlaq
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| |
Collapse
|
6
|
Louzada LM, Arruda-Vasconcelos R, Kearney M, Yamauchi Y, Gomes BPFA, Duncan HF. Teeth with vital pulps and stage III periodontitis unresponsive to therapy exhibit a pulpal inflammatory profile similar to symptomatic irreversible pulpitis. Int Endod J 2024; 57:1769-1782. [PMID: 39189896 DOI: 10.1111/iej.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
AIM The aim of this study is to investigate the expression of inflammatory biomarkers (TNF-α, IL-10, IL-1β) and the pulpitis-associated miRNA (miR-30a-5p and miR-128-3p) in pulp tissue samples from unrestored teeth with a vital normal pulp (NP), teeth with symptomatic irreversible pulpitis (IP) and in unrestored teeth with periodontal disease, unresponsive to periodontal therapy, and a vital pulp (EP). METHODOLOGY Thirty patients were included in this observational study (10 teeth with NP, 10 teeth with IP, 10 teeth with EP). Dental pulp tissues samples were collected from patients during root canal treatment (RCT). RNA was extracted and qRT-PCR of target genes (tumour necrosis factor [TNF]-α, interleukin [IL]-1β, IL-10) and miRNAs (has-miR-30a-5p, has-miR-128-3p) performed to assess the expression profile. Fold-change in expression was calculated using the formula 2-(ΔCt(Exp)-ΔCt(Ctrl)). One-way anova with post-hoc Tukey's was used to determine significant differences between groups. The significance level was set at 5% (p < .05). All teeth were also followed up clinically for 1 year and evaluated for a range of endodontic and periodontal-related outcomes. RESULTS All investigated genes significantly increased in expression and miRNAs significantly decreased in expression in the IP and EP groups compared with the NP group (p < .05). With regards to TNF-α and IL-1β there were no significant differences in expression between the IP and EP groups (p > .05), whereas IL-10 expression levels were significantly reduced in the EP compared with the IP group (p < .05). Both miR-30a-5p and miR-128-3p showed significantly reduced expression in both IP and EP lesions, compared with NP (p < .05); however, no significant differences in miRNA expression were observed between IP and EP groups (p > .05). One year after root canal treatment and periodontal maintenance, tooth mobility and probing depth were significantly reduced in the EP group (p < .05). CONCLUSION Pulp tissues from teeth with IP and EP presented similar levels of altered inflammatory markers compared with NP. TNF-α, IL-10, IL-1β cytokines and miRNAs (miR-30a-5p and miR-128-3p) are potential objective biomarkers to indicate pulpal inflammatory status, aiding diagnosis and directing clinical decision-making. RCT may be beneficial to improve stage III periodontitis unresponsive to non-surgical periodontal treatment, but further research is required.
Collapse
Affiliation(s)
- Lidiane Mendes Louzada
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
- Division of Restorative Dentistry and Periodontology, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| | - Rodrigo Arruda-Vasconcelos
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Michaela Kearney
- Division of Restorative Dentistry and Periodontology, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| | - Yukako Yamauchi
- Division of Restorative Dentistry and Periodontology, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| | - Brenda P F A Gomes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Henry F Duncan
- Division of Restorative Dentistry and Periodontology, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Zhai S, Zhang L, Li X, Yu Q, Liu C. Clustering human dental pulp fibroblasts spontaneously activate NLRP3 and AIM2 inflammasomes and induce IL-1β secretion. Regen Ther 2024; 27:12-20. [PMID: 38487102 PMCID: PMC10937208 DOI: 10.1016/j.reth.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Objectives The objective of the present study was to investigate whether NOD-like receptor family pyrin domain-containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes pathways were involved in an experimental model of fibroblast activation named nemosis, which was used to mimic circumstances without bacteria stimulation. Methods Nemosis of human dental pulp fibroblast (DPFs) was induced by three-dimensional culture in U-shaped 96-well plates and investigated by scanning electron microscopy (SEM). DPFs monolayers were used as control. Annexin V-FITC/7-AAD apoptosis assay was performed on the DPFs spheroids by flowcytometry. Caspase-1 activity detection assay was conducted on the DPFs spheroids. Quantitative real-time polymerase chain reaction (qRT-PCR), cytokine measurements, Western blot and the effect of COX-2 inhibitor on spheroids was studied. Results SEM study observed human dental pulp fibroblast clusters and cell membranes damage on the surface of DPFs spheroids. The percentages of necrotic cells from DPFs spheroids gradually increased as the incubation time increased. A statistically significant increase in caspase-1 activity was observed after DPFs spheroids formation. DPFs spheroids displayed significant amounts of NLRP3, AIM2 mRNA and protein expression, caspase-1 mRNA expression and cleaved Caspase-1 protein expression and high IL-1β concentrations (P < 0.05) than DPFs monolayers. Specific COX-2 inhibitor (NS-398) decreased NLRP3 mRNA and protein expression, cleaved Caspase-1 protein expression, Caspase-1 activity and IL-1β mRNA expression and IL-1β concentrations (P < 0.05). However, Specific COX-2 inhibitor had no impact on AIM2 mRNA and protein expression, caspase-1 mRNA expression and pro-Caspase-1 protein expression. Conclusions In conclusion, clustering human DPFs spontaneously activated NLRP3 and AIM2 inflammasomes and induced IL-1β secretion which could be partially attenuated by COX-2 inhibitor. Thus, nemosis could become a powerful model for studying mechanisms underlying aseptic pulpitis.
Collapse
Affiliation(s)
- Shafei Zhai
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| | - Lihui Zhang
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| | - Xue Li
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, China
| | - Changkui Liu
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| |
Collapse
|
8
|
Bas A, Derelioglu SS, Laloglu E. Efficacy of proinflamatory cytokines in the clinical and radiograpic outcomes of different primary molar pulpotomy agents: a comperative randomised study featuring a novel biomarker for pulpal diagnosis. BMC Oral Health 2024; 24:1227. [PMID: 39407247 PMCID: PMC11481442 DOI: 10.1186/s12903-024-04972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND While the effect of biomaterials covering the pulp tissue is considered in the success of pulpotomy treatment, the level of pulpal inflammation is still very important for treatment success. The aim of this study was to compare IL-6 and IL-8 levels, known as good indicators of pulpal inflammation, with a new biomarker, presepsin, and to evaluate the impact of biomarker levels along with the pulp capping agents used in the treatment on the one-year success of pulpotomy treatment. METHODS The study included 120 primary second molar teeth with pulpotomy indications from 75 children. To determine the pulpal inflammation status, pulpal bleeding samples were taken during treatment, and the levels of IL-6, IL-8, and presepsin were measured. During the pulpotomy treatment, MTA, NeoMTA™, and Biodentine™, and ZOE were randomly applied to groups of thirty teeth each. Patients were monitored for a period of 12 months post-treatment. RESULTS IL-8, IL-6, and presepsin levels were significantly higher in teeth with pathology (p < 0.001). Biomarker levels were found to be higher in the NeoMTA and Biodentine groups, but this did not result in a statistically significant difference. (p > 0.05) Following pulpotomy treatment, the most successful material groups in order were MTA, ZOE, NeoMTA™, and Biodentine™. CONCLUSION Presepsin may be a usable indicator in predicting the level of inflammation. At the end of the one-year follow-up of pulpotomy treatment, more pathology was observed in the NeoMTA and Biodentine groups, where biomarker levels were higher, while no pathology was found in the MTA group, where biomarker levels were lower. TRIAL REGISTRATION NCT06398327/ 20,240,503.
Collapse
Affiliation(s)
- Aybike Bas
- Department of Pediatric Dentistry, Faculty of Dentistry, Ataturk University, Erzurum, 25240, Turkey.
| | - Sera Simsek Derelioglu
- Department of Pediatric Dentistry, Faculty of Dentistry, Ataturk University, Erzurum, 25240, Turkey
| | - Esra Laloglu
- Department of Biochemistry, Ataturk University Faculy of Medicine, Erzurum, Turkey
| |
Collapse
|
9
|
Papic M, Zivanovic S, Vucicevic T, Vuletic M, Papic MV, Milivojević N, Mirić A, Miletic Kovacevic M, Zivanovic M, Stamenkovic M, Zivkovic V, Mitrovic S, Jakovljevic V, Ljujic B, Popovic M. Effects of direct pulp capping with recombinant human erythropoietin and/or mineral trioxide aggregate on inflamed rat dental pulp. Mol Cell Biochem 2024; 479:2679-2695. [PMID: 37880442 DOI: 10.1007/s11010-023-04868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/01/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVE This study aimed to evaluate the dental pulp responses to recombinant human erythropoietin (rhEPO) and/or mineral trioxide aggregate (MTA) in pulp capping of inflamed dental pulp in vivo. MATERIALS AND METHODS In accordance with ARRIVE guidelines, pulp inflammation was induced by exposing the maxillary first molars (n = 64) of Wistar rats (n = 32) to the oral environment for two days. The exposed pulps were randomly assigned four groups based on the pulp capping material: rhEPO, MTA, MTA + rhEPO, or an inert membrane. An additional eight rats formed the healthy control group. After four weeks, the animals were euthanized, and histological, qRT-PCR, and spectrophotometric techniques were employed to analyze the left maxillary segments, right first maxillary molars, and blood samples, respectively. Statistical significance was set at p < 0.05 and < 0.001. RESULTS Pulp capping with rhEPO, MTA, or MTA + rhEPO resulted in lower inflammation and higher mineralization scores compared to untreated control. MTA + rhEPO group exhibited significantly decreased expression of tumor necrosis factor-alpha, and interleukin 1-beta, while MTA group showed substantially reduced expression of interferon-gamma. Both rhEPO and MTA + rhEPO groups presented elevated dentin matrix protein 1 levels compared to untreated control. Furthermore, pulp capping with rhEPO and/or MTA led to increased transforming growth factor-beta 1 expression and reductions of pro-inflammatory/immunoregulatory cytokine ratios and prooxidative markers. Pulp capping with rhEPO also resulted in increase of systemic antioxidative stress markers. CONCLUSION Capping with rhEPO or MTA + rhEPO resulted in a favorable effect that was similar or even superior to that of MTA.
Collapse
Affiliation(s)
- Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia.
| | - Suzana Zivanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia
| | - Tamara Vucicevic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia
| | - Miona Vuletic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia
| | - Mirjana V Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia
| | - Nevena Milivojević
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Ana Mirić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marko Zivanovic
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | | | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milica Popovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia
| |
Collapse
|
10
|
Soliman AA, Ezzat KM, Shaker OG, Abouelenien SS. Influence of Diclofenac Potassium versus Prednisolone on Postendodontic Pain and Pulpal Interleukin-8 Expression in Symptomatic Irreversible Pulpitis Cases: A Randomized Placebo-controlled Trial. J Endod 2024; 50:1213-1220. [PMID: 38925367 DOI: 10.1016/j.joen.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
AIM This prospective, randomized, double-blind clinical trial investigated the impact of diclofenac potassium, prednisolone, and placebo as oral premedication on postendodontic pain and pulpal interleukin (IL)-8 expression in patients with irreversible pulpitis. METHODS Thirty-six patients undergoing conventional endodontic treatment were assigned into one of 3 groups (n = 12). Pulpal blood samples were taken after access cavity preparation and stored until they were analyzed using enzyme-linked immunosorbent asssay for quantification of IL-8. Postendodontic pain was scored using the visual analogue scale. Outcome data were statistically analyzed using one-way analysis of variance, Kruskal-Wallis, Friedman's, Dunn's, Chi-square, and Fisher's exact tests and Spearman's correlation coefficient. The significance level (α) was set at 0.05. RESULTS Apart from preoperative pain scores, all groups had similar baseline characteristics (P > .05). Immediate postendodontic pain scores had a significant difference between all groups (P < .05) where placebo group showed the highest score. There was no significant difference between all groups at 6 and 12 hours postoperatively (P > .05). Furthermore, there was no significant difference in the incidence of postendodontic pain and in mean IL-8 levels between the 3 groups (P > .05). CONCLUSIONS The only impact the premedications had was on the immediate postendodontic pain intensity, and they had no influence on the later time points, incidence of postendodontic pain or pulpal IL-8 levels.
Collapse
Affiliation(s)
- Ahmed Adel Soliman
- Faculty of Dentistry, Endodontics Department, Cairo University, Cairo, Egypt; School of Dentistry, Newgiza University, Cairo, Egypt.
| | | | - Olfat Gamil Shaker
- Faculty of Medicine, Medical Biochemistry and Molecular Biology Department, Cairo University, Cairo, Egypt
| | | |
Collapse
|
11
|
Barbero-Navarro I, Irigoyen-Camacho ME, Zepeda-Zepeda MA, Ribas-Perez D, Castaño-Seiquer A, Sofian-Pauliuc I. Understanding the Dynamics of Inflammatory Cytokines in Endodontic Diagnosis: A Systematic Review. Diagnostics (Basel) 2024; 14:1099. [PMID: 38893626 PMCID: PMC11171959 DOI: 10.3390/diagnostics14111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The primary aim of this literature review is to delineate the key inflammatory cytokines involved in the pathophysiology of pulp inflammation. By elucidating the roles of these cytokines, a deeper comprehension of the distinct stages of inflamed pulp can be attained, thereby facilitating more accurate diagnostic strategies in endodontics. The PRISMA statement and Cochrane handbook were used for the search strategy. The keywords were created based on the review question using the PICO framework. The relevant studies were meticulously assessed according to predefined inclusion and exclusion criteria for this systematic review. A rigorous quality checklist was implemented to evaluate each included study, ensuring scrutiny for both quality and risk-of-bias assessments. The initial pilot search conducted on PubMed, Scopus, Cochrane, and WoS databases yielded 9 pertinent articles. Within these articles, multiple cytokines were identified and discussed as potential candidates for use in endodontic diagnosis, notably including IL-8, IL-6, TNF-α, and IL-2. These cytokines have been highlighted due to their significant roles in the inflammatory processes associated with pulp pathology. The identification of specific inflammatory cytokines holds promise for enhancing endodontic diagnostic procedures and exploring diverse treatment modalities. However, the current body of research in this area remains limited. Further comprehensive studies are warranted to fully elucidate the potential of cytokines in refining diagnostic techniques in endodontics.
Collapse
Affiliation(s)
| | | | | | - David Ribas-Perez
- Dental School, University of Seville, 41009 Seville, Spain; (I.B.-N.)
| | | | | |
Collapse
|
12
|
Sabeti MA, Nikghalb KD, Pakzad R, Fouad AF. Expression of Selected Inflammatory Mediators with Different Clinical Characteristics of Pulpal Inflammation. J Endod 2024; 50:336-343. [PMID: 38147909 DOI: 10.1016/j.joen.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Accurately diagnosing the state of dental pulp is crucial when addressing tooth pain to determine the best treatment approach. This study aimed to investigate the concentration of inflammatory mediators in the dental pulp of mature teeth that have been exposed via caries but show no signs of apical periodontitis. METHODS Samples of pulpal blood from adults with mature teeth responsive to pulp testing and have carious pulp exposures were obtained. These samples were analyzed for 12 inflammatory cytokines and other inflammatory proteins using the Luminex assay platform. Clinical factors were correlated with cytokine levels, and statistical analysis was performed to evaluate the impact of these factors on cytokine expression. RESULTS Of the 36 patients that were included, 44.44% took pain medications, 33.33% had prolonged pulpal bleeding, 41.67% felt spontaneous pain, and 72.22% were diagnosed with symptomatic irreversible pulpitis. Significant correlations existed between presenting pain scores and levels of interleukin (IL)-1α, IL-6, and IL-8 (P < .05). Factors like analgesic medication intake, pain to percussion, pain to thermal testing, spontaneous pain, and nocturnal pain were significantly associated with higher levels of specific inflammatory proteins. No significant associations were observed with pain to palpation, bleeding time, or pulpal diagnosis. CONCLUSIONS Inflammatory proteins, including cytokine levels may play a critical role in characterizing pulpal inflammation. Future studies should investigate the role of these potential biomarkers in determining the diagnosis of pulpitis and the prognosis of vital pulp therapy.
Collapse
Affiliation(s)
- Mohammad A Sabeti
- Department of Preventive and Restorative Dental Sciences, Advanced Specialty Program in Endodontics, University of California, San Francisco School of Dentistry, San Francisco, California.
| | - Keyvan D Nikghalb
- Department of Preventive and Restorative Dental Sciences, Advanced Specialty Program in Endodontics, University of California, San Francisco School of Dentistry, San Francisco, California
| | - Reza Pakzad
- Department of Epidemiology, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Ashraf F Fouad
- Professor and Chair, Department of Endodontics, Director, Advanced Educational Program in Endodontics, Interim Director, Health Information and Business Systems (HIBS), School of Dentistry, UAB | The University of Alabama at Birmingham, San Francisco, California
| |
Collapse
|
13
|
Karrar RN, Cushley S, Duncan HF, Lundy FT, Abushouk SA, Clarke M, El-Karim IA. Molecular biomarkers for objective assessment of symptomatic pulpitis: A systematic review and meta-analysis. Int Endod J 2023; 56:1160-1177. [PMID: 37392154 DOI: 10.1111/iej.13950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Inflammatory biomarkers are potentially useful targets for pulpal diagnostic tests that can identify pulp status and predict vital pulp treatment (VPT) outcome, however, their accuracy is unknown. OBJECTIVES (1) Calculate sensitivity, specificity and diagnostic odds ratio (DOR) of previously investigated pulpitic biomarkers; (2) Determine if biomarker levels discriminate between clinical diagnoses of pulpitis based on the presence or absence of spontaneous pain (3) Evaluate if biomarker level can predict VPT outcome. METHODS Searches: PubMed/MEDLINE, Ovid SP, Cochrane Central Register of Controlled Trials (CENTRAL), International Clinical Trials Registry Platform (ICTRP), ClinicalTrials.gov, Embase, Web of Science and Scopus in May 2023. INCLUSION prospective and retrospective observational studies and randomized trials. Participants were humans with vital permanent teeth and a well-defined pulpal diagnosis. EXCLUSION deciduous teeth, in vitro and animal studies. Risk of bias was assessed with modified-Downs and Black quality assessment checklist. Meta-analysis was performed using bivariate random effect model in Meta-DiSc 2.0 and RevMan and the quality of the evidence was assessed using Grading of Recommendations Assessment, Development and Evaluation. RESULTS Fifty-six studies were selected, reporting >70 individual biomolecules investigating pulpal health and disease at the gene and protein level. Most studies were of low and fair quality. Among the biomolecules investigated, IL-8 and IL-6 demonstrated a level of diagnostic accuracy with high sensitivity, specificity and DOR to discriminate between healthy pulps and those exhibiting spontaneous pain suggestive of IRP (low-certainty evidence). However, none was shown to have high DOR and the ability to discriminate between pulpitic states (very low certainty evidence). Limited data suggests high levels of matrix metalloproteinase 9 correlate with poorer outcomes of full pulpotomy. DISCUSSION The inability of identified molecular inflammatory markers to discriminate between dental pulps with spontaneous and non-spontaneous pain should shift the focus to improved study quality or the pursuit of other molecules potentially associated with healing and repair. CONCLUSIONS Low-quality evidence suggests IL-8 and IL-6 demonstrated level of diagnostic accuracy to discriminate between healthy pulps and those exhibiting spontaneous pain. There is a need for standardized biomarker diagnostic and prognostic studies focusing on solutions that can accurately determine the degree of pulp inflammation. REGISTRATION PROSPERO CRD42021259305.
Collapse
Affiliation(s)
- Riham N Karrar
- Faculty of Dentistry, University of Khartoum, Khartoum, Sudan
| | - Siobhan Cushley
- School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Henry F Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Fionnuala T Lundy
- School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - Mike Clarke
- School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Ikhlas A El-Karim
- School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
14
|
Donnermeyer D, Dammaschke T, Lipski M, Schäfer E. Effectiveness of diagnosing pulpitis: A systematic review. Int Endod J 2023; 56 Suppl 3:296-325. [PMID: 35536159 DOI: 10.1111/iej.13762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The diagnosis of the status of the inflamed pulp is essential in clinical diagnosis and treatment provision. There are a limited number of well-designed and well-executed clinical trials on the diagnosis of the true status of the pulp. OBJECTIVES Three PICO questions were formulated and agreed a priori by the European Society of Endodontology to evaluate the clinical tests for sensibility testing, determination of biomarkers and pulp bleeding with regard to their suitability to correctly diagnose the condition of the pulp tissue for the development of S3-Level guidelines. METHODS A literature search was conducted using PubMed, Clarivate Analytics' Web of Science, Scopus, Google Scholar and Cochrane Central Register of Controlled Trials from inception to 21 January 2022. Additionally, a hand search was performed, and the contents of the major subject journals were also examined. Eligibility criteria followed the proposed PICO questions. Two independent reviewers were involved in study selection, data extraction and appraising the included studies; disagreements were resolved by a third reviewer. The risk of bias was assessed by the QUADAS-2 tool for diagnostic accuracy studies, the Newcastle-Ottawa scale for noncomparative, nonrandomized studies and the Newcastle-Ottawa Quality Assessment scale adapted for cross-sectional studies. RESULTS In total, 28 studies out of 29 publications were considered eligible and were included in the review. Twelve studies were identified to investigate the diagnostic accuracy of the pulp vitality. Ten studies fulfilled the criteria to evaluate the diagnostic accuracy of the pulpal conditions, while 6 studies investigating the expression of biomarkers were eligible. Three studies addressing the prognostic factors and therapeutic interventions relating to pulpal status were included. DISCUSSION The core problem in pulp diagnostics is that a reliable reference standard is lacking under clinical conditions. Based on limited evidence, the most promising current approach seems to define a combination of different clinical tests and symptoms, probably in future including molecular diagnosis ("diagnostic package") will be required to ascertain the best possible strategy to clinically diagnose true pulpal conditions. CONCLUSIONS The effectiveness of diagnosing pulpitis is low due to limited scientific evidence regarding the accuracy and reproducibility of diagnostic tests. There is a lack of evidence to determine the true status of the pulp or to identify prognostic indicators allowing for a reliable pre-operative estimation of the outcome of vital pulp treatment. REGISTRATION PROSPERO database (CRD42021265366).
Collapse
Affiliation(s)
- David Donnermeyer
- Department of Periodontology and Operative Dentistry, Westphalian Wilhelms-University, Münster, Germany
| | - Till Dammaschke
- Department of Periodontology and Operative Dentistry, Westphalian Wilhelms-University, Münster, Germany
| | - Mariusz Lipski
- Department of Preclinical Conservative Dentistry and Preclinical Endodontics, Pomeranian Medical University, Szczecin, Poland
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, Münster, Germany
| |
Collapse
|
15
|
Almeida-Junior LA, de Carvalho MS, Almeida LKY, Silva-Sousa AC, Sousa-Neto MD, Silva RAB, Silva LAB, Paula-Silva FWG. TNF-α-TNFR1 Signaling Mediates Inflammation and Bone Resorption in Apical Periodontitis. J Endod 2023; 49:1319-1328.e2. [PMID: 37499863 DOI: 10.1016/j.joen.2023.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION The aim of this study was to investigate the role of the proinflammatory axis TNF-α-TNFR1 in experimentally induced periapical inflammation and bone resorption in mice. METHODS After receiving Ethics Committee Approval (2019.1.139.58.0), experimental apical periodontitis was induced by means of inoculating oral microorganisms into the root canals of molars of mice. Genetically deficient tumor necrosis factor-α receptor-1 mice (TNFR1-/-; n = 50) response was compared with that of C57Bl6 wild-type mice (wild-type; n = 50) after 7, 14, 28, and 42 days. The analyses performed were micro-computed tomographic, histopathologic, histomicrobiological, and histometric evaluation, tartrate-resistant acid phosphatase staining, immunohistochemistry, and quantitative reverse transcriptase polymerase chain reaction. Data were analyzed by using one-way analysis of variance, followed by Tukey or Bonferroni tests (α = 5%). RESULTS TNFR1-/- mice exhibited lower recruitment of neutrophils at 14, 28, and 42 days (P < .05), which resulted in reduced area and volume of apical periodontitis at 42 days (P < .05). The number of osteoclasts was also lower in TNFR1-/- animals at 14 and 42 days (P < .01), along with reduced synthesis of CTSK, MMP-9, and COX-2. Expression of RANKL, but not OPG, was reduced at 14 and 42 days (P < .001). The highest RANKL expression over OPG (ratio > 1) was found in wild-type animals at 7 (P < .0001) and 42 days (P < .001). CONCLUSIONS Periapical inflammation and bone resorption were exacerbated in wild-type animals compared with TNFR1-/- mice, demonstrating that the TNF-α-TNFR1 signaling pathway mediated catabolic events in bone after root canal contamination.
Collapse
Affiliation(s)
| | - Marcio Santos de Carvalho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lana Kei Yamamoto Almeida
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alice Corrêa Silva-Sousa
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Manoel Damião Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Raquel Assed Bezerra Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Léa Assed Bezerra Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
16
|
Xie F, Zhu C, Gong L, Zhu N, Ma Q, Yang Y, Zhao X, Qin M, Lin Z, Wang Y. Engineering core-shell chromium nanozymes with inflammation-suppressing, ROS-scavenging and antibacterial properties for pulpitis treatment. NANOSCALE 2023; 15:13971-13986. [PMID: 37606502 DOI: 10.1039/d3nr02930a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Oral diseases are usually caused by inflammation and bacterial infection. Reactive oxygen species (ROS), which come from both autologous inflammation tissue and bacterial infection, play an important role in this process. Thus, the elimination of excessive intracellular ROS can be a promising strategy for anti-inflammatory treatment. With the rapid development of nanomedicines, nanozymes, which can maintain the intracellular redox balance and protect cells against oxidative damage, have shown great application prospects in the treatment of inflammation-related diseases. However, their performance in pulpitis and their related mechanisms have yet to be explored. Herein, we prepared dozens of metallic nanoparticles with core-shell structures, and among them, chromium nanoparticles (NanoCr) were selected for their great therapeutic potential for pulpitis disease. NanoCr showed a broad antibacterial spectrum and strong anti-inflammatory function. Antibacterial assays showed that NanoCr could effectively inhibit a variety of common pathogens of oral infection. In vitro experiments offered evidence of the multienzyme activity of NanoCr and its function in suppressing ROS-induced inflammation reactions. The experimental results show that NanoCr has optimal antibacterial and anti-inflammatory properties in in vitro cell models, showing great potential for the treatment of pulpitis. Therefore, the use of NanoCr could become a new therapeutic strategy for clinical pulpitis.
Collapse
Affiliation(s)
- Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Chuanda Zhu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Lidong Gong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese academy of Agriculture, Beijing 100081, P.R. China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Xinrong Zhao
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| |
Collapse
|
17
|
Mendes Soares IP, Anselmi C, Pires MLBA, Ribeiro RADO, Leite ML, Soares DG, DE Souza Costa CA, Hebling J. Chronic exposure to lipopolysaccharides as an in vitro model to simulate the impaired odontogenic potential of dental pulp cells under pulpitis conditions. J Appl Oral Sci 2023; 31:e20230032. [PMID: 37493701 PMCID: PMC10382076 DOI: 10.1590/1678-7757-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Simulating a bacterial-induced pulpitis environment in vitro may contribute to exploring mechanisms and bioactive molecules to counteract these adverse effects. OBJECTIVE To investigate the chronic exposure of human dental pulp cells (HDPCs) to lipopolysaccharides (LPS) aiming to establish a cell culture protocol to simulate the impaired odontogenic potential under pulpitis conditions. METHODOLOGY HDPCs were isolated from four healthy molars of different donors and seeded in culture plates in a growth medium. After 24 h, the medium was changed to an odontogenic differentiation medium (DM) supplemented or not with E. coli LPS (0 - control, 0.1, 1, or 10 µg/mL) (n=8). The medium was renewed every two days for up to seven days, then replaced with LPS-free DM for up to 21 days. The activation of NF-κB and F-actin expression were assessed (immunofluorescence) after one and seven days. On day 7, cells were evaluated for both the gene expression (RT-qPCR) of odontogenic markers (COL1A1, ALPL, DSPP, and DMP1) and cytokines (TNF, IL1B, IL8, and IL6) and the production of reactive nitrogen (Griess) and oxygen species (Carboxy-H2DCFDA). Cell viability (alamarBlue) was evaluated weekly, and mineralization was assessed (Alizarin Red) at 14 and 21 days. Data were analyzed with ANOVA and post-hoc tests (α=5%). RESULTS After one and seven days of exposure to LPS, NF-κB was activated in a dose-dependent fashion. LPS at 1 and 10 µg/mL concentrations down-regulated the gene expression of odontogenic markers and up-regulated cytokines. LPS at 10 µg/mL increased both the production of reactive nitrogen and oxygen species. LPS decreased cell viability seven days after the end of exposure. LPS at 1 and 10 µg/mL decreased hDPCs mineralization in a dose-dependent fashion. CONCLUSION The exposure to 10 µg/mL LPS for seven days creates an inflammatory environment that is able to impair by more than half the odontogenic potential of HDPCs in vitro, simulating a pulpitis-like condition.
Collapse
Affiliation(s)
- Igor Paulino Mendes Soares
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Caroline Anselmi
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Maria Luiza Barucci Araujo Pires
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Rafael Antonio de Oliveira Ribeiro
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Maria Luísa Leite
- Department of Oral Health Sciences, The University of British Columbia, School of Dentistry, Vancouver, Canada
| | - Diana Gabriela Soares
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, SP, Brasil
| | - Carlos Alberto DE Souza Costa
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Fisiologia e Patologia, Araraquara, SP, Brasil
| | - Josimeri Hebling
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| |
Collapse
|
18
|
Wang J, Qiao J, Ma L, Li X, Wei C, Tian X, Liu K. Identification of the characteristics of infiltrating immune cells in pulpitis and its potential molecular regulation mechanism by bioinformatics method. BMC Oral Health 2023; 23:287. [PMID: 37179325 PMCID: PMC10182635 DOI: 10.1186/s12903-023-03020-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVE The inflammation of dental pulp will also trigger an immune response. The purpose of this study is to demonstrate the immune cell's function and explore their regulatory molecules and signal pathways in pulpitis. METHOD The CIBERSORTx method was used to quantitatively analyze 22 types of immune cells infiltrating in the GSE77459 dataset of dental pulp tissues. The immune-related differential genes (IR-DEGs) were further screened and enriched for the GO and KEGG pathways. Protein-protein interaction (PPI) networks were constructed and the hub IR-DEGs were screened. Finally, we constructed the regulatory network of hub genes. RESULTS The GSE77459 dataset screened 166 IR-DEGs and was enriched for three signal pathways involved in pulpitis development: chemokine signaling, TNF signaling, and NF-κB signaling. Significant differences in immune cell infiltration were observed between normal and inflamed dental pulp. The proportions of M0 macrophages, neutrophils, and follicular helper T cells were significantly higher than that of the normal dental pulp, while the proportions of resting mast cells, resting dendritic cells, CD8 T cells, and monocytes were significantly lower. The random forest algorithm concluded that M0 macrophages and neutrophils were the two most important immune cells. We identified five immune-related hub genes IL-6, TNF-α, IL-1β, CXCL8, and CCL2. In addition, IL-6, IL-1β, and CXCL8 are highly correlated with M0 macrophages and neutrophils, and the five hub genes have many shared regulatory molecules: four miRNAs and two lncRNAs, three transcription factors. CONCLUSION Immune cell infiltration plays an important role in pulpitis among which M0 macrophages and neutrophils are the most significant immune cells. IL-6, TNF-α, IL-1, CXCL8, and CCL2 may be essential molecule of the immune response regulation network in pulpitis. This will help us understand the immune regulatory network in pulpitis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Junxia Qiao
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Lili Ma
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Xin Li
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Chengshi Wei
- Department of Endodontics, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, P.R. China
| | - Xiufen Tian
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China.
| | - Kun Liu
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China.
| |
Collapse
|
19
|
Zeng Q, Zhou C, Li M, Qiu Y, Wei X, Liu H. Concentrated growth factor combined with iRoot BP Plus promotes inflamed pulp repair: an in vitro and in vivo study. BMC Oral Health 2023; 23:225. [PMID: 37076830 PMCID: PMC10114309 DOI: 10.1186/s12903-023-02903-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Platelet concentrates combined with calcium silicate cements may promote reparative dentin formation. However, few studies have reported their effect on dental pulp inflammation. This study aimed to evaluate the effects of concentrated growth factor (CGF) combined with iRoot BP Plus on inflammatory human dental pulp stem cells (hDPSCs) in vitro and inflamed pulp in rats in vivo. METHODS The proliferation of LPS-stimulated hDPSCs treated with 50% CGF with/without 25% iRoot BP Plus was evaluated using Cell Counting Kit-8 on days 1, 4 and 7. The expression of genes associated with inflammation on day 1 and differentiation on day 14 was analysed by real-time polymerase chain reaction. The exposed pulp of rat maxillary molars was injected with 10 mg/mL LPS and directly capped with CGF membrane with/without iRoot BP Plus extract for 1, 7 and 28 days. The teeth were subjected to histologic analyses and immunohistochemistry. RESULTS The proliferation rates of the inflammatory hDPSCs after the combination treatment were significantly higher than those after the other treatments on days 4 and 7 (P < 0.05). IL-1β, IL-6, and TNF-α levels were increased in inflammatory hDPSCs but decreased after treatment with CGF combined with iRoot BP Plus extract, whereas IL-4 and IL-10 showed the opposite expression patterns. Expression of the odontogenesis-related genes OCN, Runx2, and ALP was dramatically enhanced by combined treatment with CGF and iRoot BP Plus extract. In rat pulp, the average inflammation scores of the CGF and CGF-iRoot BP Plus groups significantly decreased in comparison with those of the LPS group (P < 0.05), and the CGF-iRoot BP Plus group had more reparative dentin than the CGF and BP groups. Immunohistochemical staining showed fewer M1 macrophages on day 1 and more M2 macrophages on day 7 in the CGF-iRoot BP Plus group than in the other groups. CONCLUSIONS The combination of CGF and iRoot BP Plus showed a synergistic effect on anti-inflammatory potential and promoted greater pulp healing than CGF or iRoot BP Plus alone.
Collapse
Affiliation(s)
- Qian Zeng
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Can Zhou
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Mengjie Li
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Yu Qiu
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Xi Wei
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| | - Hongyan Liu
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| |
Collapse
|
20
|
Tsai YL, Wang CY, Chuang FH, Pan YH, Lin YR, Dhingra K, Liao PS, Huang FS, Chang MC, Jeng JH. Stimulation phosphatidylinositol 3-kinase/protein kinase B signaling by Porphyromonas gingivalis lipopolysacch aride mediates interleukin-6 and interleukin-8 mRNA/protein expression in pulpal inflammation. J Formos Med Assoc 2023; 122:47-57. [PMID: 36031486 DOI: 10.1016/j.jfma.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND/PURPOSE The signaling mechanisms for Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammation in human dental pulp cells are not fully clarified. This in vitro study aimed to evaluate the involvement of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in PgLPS-induced pulpal inflammation. METHODS Human dental pulp cells (HDPCs) were challenged with PgLPS with or without pretreatment and coincubation with a PI3K/Akt inhibitor (LY294002). The gene or protein levels of PI3K, Akt, interleukin (IL)-6, IL-8, alkaline phosphatase (ALP), osteocalcin and osteonectin were analyzed by reverse transcription polymerase chain reaction (PCR), real-time PCR, western blotting, and immunofluorescent staining. In addition, an enzyme-linked immunosorbent assay was used to analyze IL-6 and IL-8 levels in culture medium. RESULTS In response to 5 μg/ml PgLPS, IL-6, IL-8, and PI3K, but not Akt mRNA expression of HDPCs, was upregulated. IL-6, IL-8, PI3K, and p-Akt protein levels were stimulated by 10-50 μg/ml of PgLPS in HDPCs. PgLPS also induced IL-6 and IL-8 secretion at concentrations higher than 5 μg/ml. Pretreatment and co-incubation by LY294002 attenuated PgLPS-induced IL-6 and IL-8 mRNA expression in HDPCs. The mRNA expression of ALP, but not osteocalcin and osteonectin, was inhibited by higher concentrations of PgLPS in HDPCs. CONCLUSION P. gingivalis contributes to pulpal inflammation in HDPCs by dysregulating PI3K/Akt signaling pathway to stimulate IL-6 and IL-8 mRNA/protein expression and secretion. These results are useful for understanding the pulpal inflammation and possible biomarkers of inflamed pulp diagnosis and treatment.
Collapse
Affiliation(s)
- Yi-Ling Tsai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ying Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Hsiung Chuang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yan-Ru Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kunaal Dhingra
- Periodontics Division, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Pai-Shien Liao
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Fong-Shung Huang
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Chi Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan; Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Jiiang-Huei Jeng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
de Carvalho MS, de Almeida-Junior LA, Silva-Sousa AC, Damião Sousa-Neto M, Lucisano MP, Arnez MFM, da Silva LAB, Paula-Silva FWG. Absence of tumor necrosis factor receptor 1 inhibits osteoclast activity in apical dental resorption caused by endodontic infection in mice. J Endod 2022; 48:1400-1406. [PMID: 35964707 DOI: 10.1016/j.joen.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023]
Abstract
INTRODUCTION To evaluate osteoclastogenesis and dental resorption resulting from endodontic infection in wild-type (WT) and tumor necrosis factor receptor 1 genetically deficient (TNFR1 KO) mice. METHODS After approval by the Ethics Committee on the use of Animals, 40 mice were distributed into two experimental groups based on periods: 14 days (n=10 WT mice; n=10 TNFR1 KO mice) and 42 days (n=10 WT mice; n=10 TNFR1 KO mice). After these periods, morphometrics analysis was done using bright field and fluorescence microscopy and tartrate-resistant acid phosphatase histoenzymology to identify osteoclasts. One-way analysis of variance followed by Tukey's post-hoc test was used for the statistical analysis (a=0.05). RESULTS WT mice in the 42-day period had a greater resorption in the apical region distal root of the first molar than TNFR1 KO mice (p<0.05). On the other hand, TNFR1 KO mice showed a smaller number of osteoclasts on the dental surface than WT mice (p<0.05). CONCLUSION WT mice had more extensive bone and apical dental resorptions and a larger number of osteoclasts on the tooth surface than TNFR1 KO mice.
Collapse
Affiliation(s)
- Marcio Santos de Carvalho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Alice Corrêa Silva-Sousa
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Manoel Damião Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marília Pacífico Lucisano
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maya Fernanda Manfrin Arnez
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Léa Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
22
|
An S, Chen Y, Yang T, Huang Y, Liu Y. A role for the calcium-sensing receptor in the expression of inflammatory mediators in LPS-treated human dental pulp cells. Mol Cell Biochem 2022; 477:2871-2881. [PMID: 35699827 DOI: 10.1007/s11010-022-04486-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
The aim of this study is to investigate the role of calcium-sensing receptor (CaSR) in the expression of inflammatory mediators of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). The expression profile of CaSR in LPS-simulated hDPCs was detected using immunofluorescence, real time quantitative PCR (RT-qPCR), and Western blot analyses. Then, its regulatory effects on the expression of specific inflammatory mediators such as interleukin (IL)-1β, IL-6, cyclooxygenase 2 (COX2)-derived prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, and IL-10 were determined by RT-qPCR and enzyme-linked immunosorbent assay (ELISA). LPS significantly downregulated the gene expression of CaSR, but upregulated its protein expression level in hDPCs. Treatments by CaSR agonist R568 or its antagonist Calhex231, and their combinations with protein kinase B (AKT) inhibitor LY294002 showed obvious effects on the expression of selected inflammatory mediators in a time-dependent manner. Meanwhile, an opposite direction was found between the action of R568 and Calhex231, as well as the expression of the pro- (IL-1β, IL-6, COX2-derived PGE2, and TNF-α) and anti-inflammatory (IL-10) mediators. The results provide the first evidence that CaSR-phosphatidylinositol-3 kinase (PI3K)-AKT-signaling pathway is involved in the release of inflammatory mediators in LPS-treated hDPCs, suggesting that the activation or blockade of CaSR may provide a novel therapeutic strategy for the treatment of pulp inflammatory diseases.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China.
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Yanhuo Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ting Yang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yiwei Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| |
Collapse
|
23
|
Caldas IP, da Silva EM, Lourenço ES, Martins do Nascimento JC, Leite PEC, Leão MP, Alves G, Scelza MZ. The influence of methodology on the comparison of cytotoxicity of total-etch and self-etch adhesive systems. J Dent 2022; 122:104158. [PMID: 35550400 DOI: 10.1016/j.jdent.2022.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES The present study aimed to compare the in vitro cytocompatibility of two etch-and-rinse (Adper Scothbond, Optibond) and two self-etch (Clearfill SE Bond and Single Bond Universal) dental adhesives through a dentin-barrier model with human pulp fibroblasts. METHODS Human fibroblasts were placed on a plastic device containing 500μm human dentin discs treated with each adhesive or without treatment (control). Other groups were directly exposed to media conditioned with adhesive samples according to ISO 10993-5:2009. After 24h exposure, cell viability was assessed by XTT, and released inflammatory mediators were detected with a multiparametric immunoassay. RESULTS The standardized test without barrier indicated both etch-and-rinse adhesives and self-etch as cytotoxic, promoting viabilities under 70% of the control group (p<0.05). The dentin-barrier model identified increased cell viability for self-etch adhesives, with Clearfill SE Bond identified as non-cytotoxic. The immunoassay evidenced high rates of cytokines by cells exposed to the conditioned media of Adper Scotchbond, Optibond S, and Single Bond Universal. CONCLUSIONS The use of a dentin-barrier in vitro model detected a better biocompatibility for self-etching adhesives and, in the case of Clearfill SE Bond, with a reversion from cytotoxic to biocompatible when compared to the indirect standardized test. CLINICAL SIGNIFICANCE The use of a dentin-barrier in vitro model was able to detect a better biocompatibility for self-etching adhesives when compared to the indirect standardized test and presents itself as a predictive in vitro method for assessing the cytotoxicity of dental restorative materials that may simulate the clinical condition more accurately.
Collapse
Affiliation(s)
- Isleine Portal Caldas
- Geriatric Dentistry Department, School of Dentistry, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Fluminense Federal University, Niterói, RJ, Brazil
| | | | | | - Paulo Emilio Correa Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Gutemberg Alves
- Clinical Research Unit of the Antonio Pedro Hospital, Fluminense Federal University, Niteroi, RJ, Brazil; Cell and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niteroi, Brazil
| | - Miriam Zaccaro Scelza
- Laboratory of Experimental Culture Cell (LECCel), School of Dentistry, Fluminense Federal University (UFF), Niteroi, RJ, Brazil; Endodontics Department, School of Dentistry, Fluminense Federal University (UFF), Niteroi, RJ, Brazil.
| |
Collapse
|
24
|
Parirokh M, Abbott P. Present status and future directions - Mechanisms and management of local anaesthetic failures. Int Endod J 2022; 55 Suppl 4:951-994. [PMID: 35119117 DOI: 10.1111/iej.13697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/05/2022]
Abstract
Pain control during root canal treatment is of utmost importance for both the patient and the dental practitioner and many studies have investigated ways of overcoming problems with gaining adequate anaesthesia during treatment. The PubMed and Cochrane databases were searched for evidence-based studies regarding local anaesthesia for root canal treatment. Many variables, including premedication, pain during needle insertion, pain on injection, premedication with various types of drugs, volume of anaesthetic solutions, supplemental anaesthetic techniques, and additives to the anaesthetic solutions, may influence pain perception during root canal treatment. Differences between teeth with healthy pulps versus those with irreversible pulpitis should be considered when the effects of variables are interpreted. There are several concerns regarding the methodologies used in studies that have evaluated anaesthesia success rates. There are some conditions that may help to predict a patient's pain during root canal treatment and these conditions could be overcome either by employing methods such as premedication with a non-steroidal anti-inflammatory drug prior to the treatment visit or by using supplementary anaesthetic techniques before or during the treatment. However, authors need to be more careful when reporting details of their studies to reduce concerns regarding their study bias.
Collapse
Affiliation(s)
- Masoud Parirokh
- Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Paul Abbott
- School of Dentistry, University of Western Australia, Perth, Australia
| |
Collapse
|
25
|
Therapeutic Potential of Synthetic Human β-Defensin 1 Short Motif Pep-B on Lipopolysaccharide-Stimulated Human Dental Pulp Stem Cells. Mediators Inflamm 2022; 2022:6141967. [PMID: 35110972 PMCID: PMC8803462 DOI: 10.1155/2022/6141967] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Dental pulp inflammation is a widespread public problem usually caused by caries or trauma. Alleviating inflammation is critical to inflamed pulp repair. Human β-defensin 1 short motif Pep-B is a cationic peptide that has anti-inflammatory, antibacterial, and immunoregulation properties, but its repair effect on human dental pulp stem cells (hDPSCs) under inflammation remains unclear. In this study, we aimed to investigate anti-inflammatory function of Pep-B and explore its therapeutic potential in lipopolysaccharide-(LPS-) induced hDPSCs. CCK-8 assay and transwell assay evaluated effects of Pep-B on hDPSC proliferation and chemotaxis. Inflammatory response in hDPSCs was induced by LPS; after Pep-B application, lactate dehydrogenase release, intracellular ROS, inflammatory factor genes expression and possible signaling pathway were measured. Then, osteo-/odontoblast differentiation effect of Pep-B on LPS-induced hDPSCs was detected. The results showed that Pep-B promoted hDPSC proliferation and reduced LPS-induced proinflammatory marker expression, and western blot result indicated that Pep-B inhibited inflammatory activation mediated by NF-κB and MAPK pathways. Pep-B also enhanced the expression of the osteo-/odontogenic genes and proteins, alkaline phosphatase activity, and nodule mineralization in LPS-stimulated hDPSCs. These findings indicate that Pep-B has anti-inflammatory activity and promote osteo-/odontoblastic differentiation in LPS-induced inflammatory environment and may have a potential role of hDPSCs for repair and regeneration.
Collapse
|
26
|
Richert R, Ducret M, Alliot-Licht B, Bekhouche M, Gobert S, Farges JC. A critical analysis of research methods and experimental models to study pulpitis. Int Endod J 2022; 55 Suppl 1:14-36. [PMID: 35034368 DOI: 10.1111/iej.13683] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Pulpitis is the inflammatory response of the dental pulp to a tooth insult, whether it is microbial, chemical, or physical in origin. It is traditionally referred to as reversible or irreversible, a classification for therapeutic purposes that determines the capability of the pulp to heal. Recently, new knowledge about dental pulp physiopathology led to orientate therapeutics towards more frequent preservation of pulp vitality. However, full adoption of these vital pulp therapies by dental practitioners will be achieved only following better understanding of cell and tissue mechanisms involved in pulpitis. The current narrative review aimed to discuss the contribution of the most significant experimental models developed to study pulpitis. Traditionally, in vitro two(2D)- or three(3D)-dimensional cell cultures or in vivo animal models were used to analyse the pulp response to pulpitis inducers at cell, tissue or organ level. In vitro 2D cell cultures were mainly used to decipher the specific roles of key actors of pulp inflammation such as bacterial by-products, pro-inflammatory cytokines, odontoblasts or pulp stem cells. However, these simple models did not reproduce the 3D organisation of the pulp tissue and, with rare exceptions, did not consider interactions between resident cell types. In vitro tissue/organ-based models were developed to better reflect the complexity of the pulp structure. Their major disadvantage is that they did not allow the analysis of blood supply and innervation participation. On the contrary, in vivo models have allowed researchers to identify key immune, vascular and nervous actors of pulpitis and to understand their function and interplay in the inflamed pulp. However, inflammation was mainly induced by iatrogenic dentine drilling associated with simple pulp exposure to the oral environment or stimulation by individual bacterial by-products for short periods. Clearly, these models did not reflect the long and progressive development of dental caries. Lastly, the substantial diversity of the existing models makes experimental data extrapolation to the clinical situation complicated. Therefore, improvement in the design and standardization of future models, for example by using novel molecular biomarkers, databased models and artificial intelligence, will be an essential step in building an incremental knowledge of pulpitis in the future.
Collapse
Affiliation(s)
- Raphaël Richert
- Hospices Civils de Lyon, Service d'Odontologie, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon, France.,Laboratoire de Mécanique des Contacts et Structures, UMR 5259, Villeurbanne, France
| | - Maxime Ducret
- Hospices Civils de Lyon, Service d'Odontologie, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon, France.,Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305, CNRS, Université, UMS, Claude Bernard Lyon 1, 3444 BioSciences Gerland-Lyon Sud, Lyon, France
| | - Brigitte Alliot-Licht
- Université de Nantes, Faculté d'Odontologie, Nantes, France.,CHU de Nantes, Odontologie Conservatrice et Pédiatrique, Service d, Nantes, France
| | - Mourad Bekhouche
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon, France.,Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305, CNRS, Université, UMS, Claude Bernard Lyon 1, 3444 BioSciences Gerland-Lyon Sud, Lyon, France
| | - Stéphanie Gobert
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305, CNRS, Université, UMS, Claude Bernard Lyon 1, 3444 BioSciences Gerland-Lyon Sud, Lyon, France
| | - Jean-Christophe Farges
- Hospices Civils de Lyon, Service d'Odontologie, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon, France.,Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305, CNRS, Université, UMS, Claude Bernard Lyon 1, 3444 BioSciences Gerland-Lyon Sud, Lyon, France
| |
Collapse
|
27
|
Nageh M, Ibrahim LA, AbuNaeem FM, Salam E. Management of internal inflammatory root resorption using injectable platelet-rich fibrin revascularization technique: a clinical study with cone-beam computed tomography evaluation. Clin Oral Investig 2021; 26:1505-1516. [PMID: 34387731 DOI: 10.1007/s00784-021-04123-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The current study evaluated clinically and radiographically the management of internal inflammatory root resorption (IIRR) in permanent anterior teeth with or without periapical lesions using injectable platelet-rich fibrin (i-PRF) regenerative approach. METHODS Ten systemically healthy patients, with thirteen anterior mature teeth diagnosed with IIRR were selected for the study. At the first visit, the tooth was anesthetized, access cavity opened, root canals were mechanically prepared then medicated with calcium hydroxide and temporarily sealed. After 2-4 weeks, regenerative endodontic procedures were performed by preparing and applying i-PRF inside the canal, then a freshly prepared PRF membrane was placed over it. White mineral trioxide aggregate was placed over the PRF matrix, and the tooth was restored with a glass ionomer cement base and resin composite restoration. The patients were recalled for clinical and radiographic evaluation and follow-up every 3 months for 12 months. Cone-beam computed tomography (CBCT) imaging was performed preoperatively and after 12 months. RESULTS Clinical evaluation results showed resolution of signs and symptoms through the follow-up period in all of the cases. Both CBCT imaging readings of IIRR lesions and periapical lesions revealed a volumetric significant difference (p = 0.00) between the preoperative and the 12-month follow-up period. CONCLUSIONS Usage of i-PRF could arrest and allow for healing of IIRR in permanent mature teeth and allow for periapical healing with successful clinical results. CLINICAL RELEVANCE i-PRF revascularization technique proved to be a successful REP in the treatment of the IIRR, reducing the number of appointments and increasing patient compliance.
Collapse
Affiliation(s)
- Mohamed Nageh
- Department of Endodontics, Faculty of Dentistry, Fayoum University, Batal Al-Salam Street, Al bahary, Fayoum, Egypt.
| | - Lamiaa A Ibrahim
- Department of Endodontics, Faculty of Dentistry, Fayoum University, Batal Al-Salam Street, Al bahary, Fayoum, Egypt
| | - Fatma M AbuNaeem
- Department of Endodontics, Faculty of Dentistry, Cairo University, 11 Sarya el Manyal Street, Manyal, Cairo, Egypt
| | - Engy Salam
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Fayoum University, Batal Al-Salam Street, Al bahary, Fayoum, Egypt
| |
Collapse
|
28
|
Non-coding RNAs in endodontic disease. Semin Cell Dev Biol 2021; 124:82-84. [PMID: 34257038 DOI: 10.1016/j.semcdb.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/27/2021] [Accepted: 07/04/2021] [Indexed: 12/22/2022]
Abstract
The immunocompetence and regeneration potential of the dental pulp and its surrounding apical tissues have been investigated extensively in the field of endodontics. While research on the role of non-coding RNAs in these tissues is still in its infancy, it is envisioned that improved understanding of the regulatory function of ncRNAs in pulpal and periapical immune response will help prevent or treat endodontic disease. Of particular importance is the role of these RNAs in regenerating the dentin-pulp complex. In this review, we highlight recent progress on the role of non-coding RNAs in the immune response to endodontic infection as well as the repair and regenerative response to injury.
Collapse
|
29
|
Kritikou K, Greabu M, Imre M, Miricescu D, Ripszky Totan A, Burcea M, Stanescu-Spinu II, Spinu T. ILs and MMPs Levels in Inflamed Human Dental Pulp: A Systematic Review. Molecules 2021; 26:4129. [PMID: 34299403 PMCID: PMC8304045 DOI: 10.3390/molecules26144129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/04/2022] Open
Abstract
A wide range of mediators are released from the pulp tissue because of bacterial invasion which causes inflammation. Interleukins (ILs) and matrix metalloproteinases (MMPs) have a leading role in initiating and spreading of inflammation because of their synergic action. Biomarkers such as ILs and MMPs can be identified via several methods, establishing the inflammatory response of the dental pulp. The aim of this systematic review is to evaluate the levels of ILs and/or MMPs in human dental pulp. PubMed, OVID, Cochrane, Scopus, Web of Science and Wiley online library databases were searched for original clinical studies. After applying inclusion and exclusion criteria, a quality assessment of studies was performed based on a modified Newcastle-Ottawa scale. In the review were included articles that evaluated the presence of ILs and/or MMPs in pulp tissue using enzyme-linked immunosorbent assay (ELISA) or western blot or multiplex assay. Six articles were included in the present synthesis. Although various diagnostic methods were used, statistically significant higher levels of ILs and/or MMPs were mostly found in the experimental groups compared to healthy pulp samples. The biomarkers studied can be a promising tool to evaluate pulp tissue health or even in pulpitis treatment.
Collapse
Affiliation(s)
- Konstantina Kritikou
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, Sector 5, 050474 Bucharest, Romania; (K.K.); (M.G.); (D.M.); (I.-I.S.-S.)
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, Sector 5, 050474 Bucharest, Romania; (K.K.); (M.G.); (D.M.); (I.-I.S.-S.)
| | - Marina Imre
- Department of Complete Denture, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, Sector 5, 050474 Bucharest, Romania; (K.K.); (M.G.); (D.M.); (I.-I.S.-S.)
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, Sector 5, 050474 Bucharest, Romania; (K.K.); (M.G.); (D.M.); (I.-I.S.-S.)
| | - Marian Burcea
- Department of Ophthalmology, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, Sector 5, 050474 Bucharest, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, Sector 5, 050474 Bucharest, Romania; (K.K.); (M.G.); (D.M.); (I.-I.S.-S.)
| | - Tudor Spinu
- Department of Fixed Prosthodontics and Occlusion, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| |
Collapse
|
30
|
Ran R, Yang H, Cao Y, Yan W, Jin L, Zheng Y. Depletion of EREG enhances the osteo/dentinogenic differentiation ability of dental pulp stem cells via the p38 MAPK and Erk pathways in an inflammatory microenvironment. BMC Oral Health 2021; 21:314. [PMID: 34154572 PMCID: PMC8215766 DOI: 10.1186/s12903-021-01675-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Epiregulin (EREG) is an important component of EGF and was demonstrated to promote the osteo/dentinogenic differentiation of stem cells from dental apical papilla (SCAPs). Whether EREG can stimulate the osteo/dentinogenic differentiation of dental pulp stem cells (DPSCs) in inflammatory environment is not clear. The purpose of the present study is to investigate the role of EREG on the osteo/dentinogenic differentiation ability of DPSCs in inflammatory environment. METHODS DPSCs were isolated from human third molars. Short hairpin RNAs (shRNAs) were used to knock down EREG expression in DPSCs. Recombinant human EREG (rhEREG) protein was used in the rescue experiment. TNF-α was employed to mimic the inflammatory environment in vitro. Alkaline phosphatase (ALP) staining, Alizarin red staining, quantitative calcium analysis, and real-time RT-PCR were performed to detect osteo/dentinogenic differentiation markers and related signalling pathways under normal and inflammatory conditions. RESULTS EREG depletion promoted the ALP activity and mineralization ability of DPSCs. The expression of BSP, DMP-1, and DSPP was also enhanced. Moreover, 50 ng/mL rhEREG treatment decreased the osteo/dentinogenic differentiation potential of DPSCs, while treatment with 10 ng/mL TNF-α for 4 h increased the expression of EREG in DPSCs. Conversely, EREG knockdown rescued the impaired osteo/dentinogenic differentiation ability caused by TNF-α treatment. Further mechanistic studies showed that EREG depletion activated the p38 MAPK and Erk signalling pathways in DPSCs under normal and inflammatory conditions. CONCLUSIONS Our results demonstrated that EREG could inhibit the osteo/dentinogenic differentiation potential of DPSCs via the p38 MAPK and Erk signalling pathways. Under inflammatory environment, EREG depletion enhanced osteo/dentinogenic differentiation potential of DPSCs by improving the expression of p-p38 MAPK and p-Erk.
Collapse
Affiliation(s)
- Ran Ran
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Wanhao Yan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, China.
| | - Ying Zheng
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China.
| |
Collapse
|
31
|
Aubeux D, Renard E, Pérez F, Tessier S, Geoffroy V, Gaudin A. Review of Animal Models to Study Pulp Inflammation. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.673552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human dental pulp is a highly dynamic tissue equipped with a network of resident immunocompetent cells that play a major role in the defense against pathogens and during tissue injury. Animal studies are mandatory and complementary to in vitro experiments when studying the physiopathology of dental pulp, new diagnostic tools, or innovative therapeutic strategies. This animal approach makes it possible to define a benefit-risk ratio necessary to be subsequently tested in humans. Among the animal kingdom, rodents, rabbits, ferrets, swine, dogs, and non-human primates have been used to model human pulpitis. The diversity of animals found in studies indicate the difficulty of choosing the correct and most efficient model. Each animal model has its own characteristics that may be advantageous or limiting, according to the studied parameters. These elements have to be considered in preclinical studies. This article aims to provide a thorough understanding of the different animal models used to study pulp inflammation. This may help to find the most pertinent or appropriate animal model depending on the hypothesis investigated and the expected results.
Collapse
|
32
|
Chen W, Guan Y, Xu F, Jiang B. 4-Methylumbelliferone promotes the migration and odontogenetic differentiation of human dental pulp stem cells exposed to lipopolysaccharide in vitro. Cell Biol Int 2021; 45:1415-1422. [PMID: 33675275 DOI: 10.1002/cbin.11579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/27/2021] [Indexed: 01/04/2023]
Abstract
Hyaluronic acid (HA), a major component of the extracellular matrix, is essential to inflammatory regulation. 4-Methylumbelliferone (4-mu), as the specific inhibitor of HA synthesis, is an anti-inflammatory in multiple systems. However, there have been no studies, to our knowledge, regarding 4-mu treatment in pulp inflammation. Therefore, the purpose of this study was to investigate the effects of 4-mu on biological behaviors in human dental pulp stem cells (hDPSCs) exposed to lipopolysaccharide (LPS) in vitro. hDPSCs were exposed to LPS to construct the inflammation model in vitro. Immunocytochemistry, quantitative polymerase chain reaction, western blotting, Cell Counting Kit-8, scratch/Transwell assay, and alizarin red staining/alkaline phosphatase staining were selected to explore the effect of 4-mu on the expression of inflammatory factors, cell proliferation, cell migration, and the odontogenic differentiation ability of hDPSCs. LPS stimulated hDPSCs to highly express the related inflammatory factors and CD44 (the major HA receptor), which were all inhibited by 0.1 mM of 4-mu. In addition, the cell proliferation ability of hDPSCs was suppressed by 4-mu, while cell migration and odontogenic differentiation abilities were significantly improved under inflammation. In conclusion, 4-mu suppressed inflammatory cytokines in inflamed hDPSCs and had a positive effect on the migration and odontogenic differentiation of hDPSCs.
Collapse
Affiliation(s)
- Weiting Chen
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yun Guan
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Fangfang Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Beizhan Jiang
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
33
|
Li M, Tian J, Xu Z, Zeng Q, Chen W, Lei S, Wei X. Histology-based profile of inflammatory mediators in experimentally induced pulpitis in a rat model: screening for possible biomarkers. Int Endod J 2021; 54:1328-1341. [PMID: 33715185 PMCID: PMC8360108 DOI: 10.1111/iej.13514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Aim To profile molecular changes in lipopolysaccharide (LPS)‐induced experimental pulpitis in a rat model and explore the feasibility of a molecular‐based diagnostic strategy for pulpitis. Methodology Seventy‐three maxillary incisors of Sprague‐Dawley rats were used to establish pulpitis models with LPS. Inflammatory grading was performed in four equal sections of the pulp divided from the injured site to the root apex. An antibody array was used to compare the expression of 67 molecules between control pulp and inflamed pulp 12 and 72 h after LPS application. The levels of differentially expressed molecules in the control and inflamed pulp (collected at 3, 6, 9, 12, 24 and 72 h after LPS treatment) were examined via ELISA, and correlations between inflammatory scores and molecule expression were assessed. The molecule distributions in the pulp were investigated by immunofluorescence staining. Data were analysed with paired t‐test, one‐way anova, Kruskal–Wallis tests, and Spearman’s and Pearson’s correlations with significance set at P < 0.05. Results Polymorphonuclear neutrophils were observed in the injured site 3 h after LPS stimulation. Inflammatory infiltration peaked at 12 h and was limited to the injured site with osteodentine deposition at 72 h. Thirteen molecules were significantly differentially expressed between the control and LPS‐injured pulp. ELISA validated that tissue inhibitor of metalloproteinase‐1 (TIMP‐1) expression dramatically peaked at 12 h (compared with other time points, P < 0.05) and returned to baseline at 72 h. The TIMP‐1 concentration was strongly correlated with inflammation severity in the apical three‐quarters of the pulp, and the strongest correlation was found in the lower‐middle quarter (r = 0.786, P < 0.001). Immunofluorescence staining revealed that in the apical three‐quarters of the pulp, TIMP‐1 expression was significantly higher in the 12 h group than in the control and 3, 6, 24 and 72 h groups (P < 0.01). Conclusion This study provides a molecular profile of LPS‐induced pulpitis in a rat model. TIMP‐1 had a strong positive correlation with the severity of dental pulp inflammation, verifying the feasibility of applying biomarkers to identify specific pathological conditions in pulpitis.
Collapse
Affiliation(s)
- M Li
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - J Tian
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Z Xu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Q Zeng
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - W Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - S Lei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - X Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
34
|
Detection of Inflammatory and Homeostasis Biomarkers after Selective Removal of Carious Dentin-An In Vivo Feasibility Study. J Clin Med 2021; 10:jcm10051003. [PMID: 33801317 PMCID: PMC7958315 DOI: 10.3390/jcm10051003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022] Open
Abstract
Deep carious dentin lesions induce an immune reaction within the pulp-dentin complex, leading to the release of cytokines, which might be suitable biomarkers in pulp diagnostics. This in vivo feasibility study determines the concentration of different cytokines after selective removal of carious infected dentin (SCR). In our methodology, paired samples are obtained from 21 patients—each of them with two deep carious lesions at posterior teeth without clinical symptoms. After SCR, lesions are randomly assigned to treatment strategy: Group 1 (11 patients): Carious dentin is covered either with BiodentineTM (n = 11) or gutta-percha (n = 11) before using the adhesive OptibondTM FL. Group 2 (10 patients): The adhesives ClearfilTM SE Protect Bond (n = 10) or ClearfilTM SE Bond 2 (n = 10) are directly applied. Prepared cavities are rinsed with phosphate buffered saline containing 0.05% Tween 20 (10X) for five minutes immediately after SCR (visit 1) and eight weeks later (visit 2). Rinsing liquid is regained. Concentrations of IL-1β, IL-6, IL-10, C-reactive protein (CRP), TNF-α, IFN-γ, TIMP-1, -2, and MMP-7, -8, -9 are assessed by customized multiplex assays, evaluated with fluorescence analyzer. Non-parametric statistical analysis (Wilcoxon, Mann–Whitney U Test, p < 0.05) is performed (SPSS 25). Our results show that concentrations of CRP, IL-1β, IL-6, TIMP-1, -2, and MMPs were detectable. Median concentrations of CRP, IL-1β und IL-6 were significantly higher in visit 1 (304.9, 107.4, 3.8 pg/mL), compared to visit 2 (67.8, 2.3, 0.0 pg/mL; pi < 0.001). The study revealed that the non-invasive determination of cytokines from prepared dental cavities is possible.
Collapse
|
35
|
Zhang Y, Lian M, Zhao X, Cao P, Xiao J, Shen S, Tang W, Zhang J, Hao J, Feng X. RICK regulates the odontogenic differentiation of dental pulp stem cells through activation of TNF-α via the ERK and not through NF-κB signaling pathway. Cell Biol Int 2021; 45:569-579. [PMID: 33169892 DOI: 10.1002/cbin.11498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/17/2020] [Accepted: 10/31/2020] [Indexed: 12/27/2022]
Abstract
Dental pulp stem cells (DPSCs) are capable of both self-renewal and multilineage differentiation, which play a positive role in dentinogenesis. Studies have shown that tumor necrosis factor-α (TNF-α) is involved in the differentiation of DPSCs under pro-inflammatory stimuli, but the mechanism of action of TNF-α is unknown. Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) is a biomarker of an early inflammatory response that plays a key role in modulating cell differentiation, but the role of RICK in DPSCs is still unclear. In this study, we identified that RICK regulates TNF-α-mediated odontogenic differentiation of DPSCs via the ERK signaling pathway. The expression of the biomarkers of odontogenic differentiation dental matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), biomarkers of odontogenic differentiation, increased in low concentration (1-10 ng/ml) of TNF-α and decreased in high concentration (50-100 ng/ml). Odontogenic differentiation increased over time in the odontogenic differentiation medium. In the presence of 10 ng/L TNF-α, the expression of RICK increased gradually over time, along with odontogenic differentiation. Genetic silencing of RICK expression reduced the expression of odontogenic markers DMP-1 and DSPP. The ERK, but not the NF-κB signaling pathway, was activated during the odontogenic differentiation of DPSCs. ERK signaling modulators decreased when RICK expression was inhibited. PD98059, an ERK inhibitor, blocked the odontogenic differentiation of DPSCs induced by TNF-α. These results provide a further theoretical and experimental basis for the potential use of RICK in targeted therapy for dentin regeneration.
Collapse
Affiliation(s)
- Ye Zhang
- Jiangsu Vocational College of Medicine, Yancheng, China.,Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Zhao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Peipei Cao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingwen Xiao
- Department of Stomatology, Haimen People's Hospital, Nantong, China
| | - Shuling Shen
- Department of Stomatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wanxian Tang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaxuan Zhang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Hao
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
36
|
Mitronin AV, Mitronin YA, Ostanina DA, Ostrovskaya IG, Mitronin VA, Wolgin M. [Comparative analysis of methods to stimulate and collect dentinal fluid: a clinical and experimental study]. STOMATOLOGIIA 2021; 100:7-12. [PMID: 34953181 DOI: 10.17116/stomat20211000617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The aim - to determine the most effective method of dentinal fluid collection and dentinal fluid flow rate stimulation. MATERIAL AND METHODS In a series of dentinal fluid collection tests, 3 types of filter membranes «Technofilter» were compared to a blotting nitrocellulose membrane Sartorius 1288. An ability of the studied membranes to adsorb dentinal fluid was assessed based on the data of proton magnetic resonance using signal magnitudes of the organic molecules accumulation in dentine fluid samples. In the study 30 permanent teeth with a diagnosis of K04.00 «Initial pulpitis» were included. Teeth were randomly divided into 5 groups in accordance with the method used to stimulate the dentinal fluid flow rate. Dentinal fluid volume before and after stimulation within and between the groups was compared. RESULTS The nitrocellulose membrane Sartorius 1288 has the highest ability to adsorb dentinal fluid; predominant dentinal fluid volume was obtained using a 10% dextran solution with low molecular weight. Based on the results of the study, the author proposed the method of dentinal fluid collection. CONCLUSION The proposed stimulation method increases the dentinal fluid yields by 2 times in comparison with sampling under natural conditions.
Collapse
Affiliation(s)
- A V Mitronin
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Yu A Mitronin
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - D A Ostanina
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - I G Ostrovskaya
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - V A Mitronin
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - M Wolgin
- Danube Private University, Krems, Austria
| |
Collapse
|
37
|
In vivo temperature rise and acute inflammatory response in anesthetized human pulp tissue of premolars having Class V preparations after exposure to Polywave® LED light curing units. Dent Mater 2020; 36:1201-1213. [DOI: 10.1016/j.dental.2020.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/20/2022]
|
38
|
Sex Hormones and Inflammation Role in Oral Cancer Progression: A Molecular and Biological Point of View. JOURNAL OF ONCOLOGY 2020; 2020:9587971. [PMID: 32684934 PMCID: PMC7336237 DOI: 10.1155/2020/9587971] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Oral cancers have been proven to arise from precursors lesions and to be related to risk behaviour such as alcohol consumption and smoke. However, the present paper focuses on the role of chronic inflammation, related to chronical oral infections and/or altered immune responses occurring during dysimmune and autoimmune diseases, in the oral cancerogenesis. Particularly, oral candidiasis and periodontal diseases introduce a vicious circle of nonhealing and perpetuation of the inflammatory processes, thus leading toward cancer occurrence via local and systemic inflammatory modulators and via genetic and epigenetic factors.
Collapse
|
39
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
40
|
Wang F, Han Y, Xi S, Lu Y. Catechins reduce inflammation in lipopolysaccharide-stimulated dental pulp cells by inhibiting activation of the NF-κB pathway. Oral Dis 2020; 26:815-821. [PMID: 31999881 DOI: 10.1111/odi.13290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/02/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
AIM To ascertain the anti-inflammation mechanism of catechins in lipopolysaccharide-treated human dental pulp cells (HDPCs). METHODS Expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 was measured using quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assays. The anti-inflammatory mechanism was explored by examining activation of nuclear factor-kappa B (NF-κB) signaling using qPCR, Western blotting, and immunofluorescence staining. RESULTS Human dental pulp cells proliferation was not affected by treatment with epigallocatechin (ECG) or epigallocatechin 3-gallate (EGCG). mRNA expression of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 was decreased significantly in ECG- and EGCG-treated HDPCs. Subsequently, the effects of ECG and EGCG upon activation of NF-κB signaling were evaluated by Western blotting and immunofluorescence staining. Expression of p-p65 protein in HDPCs treated with ECG, EGCG, or an NF-κB inhibitor (Bay 11-7082) was lower than that in HDPCs treated with lipopolysaccharide, data that were consistent with the location of p65 protein according to immunofluorescence staining. CONCLUSIONS Catechin could reduce lipopolysaccharide-stimulated inflammation in HDPCs by inhibiting activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Han
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuang Xi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Lu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Castillo-Silva BE, Martínez-Jiménez V, Martínez-Castañón GA, Medina-Solís CE, Aguirre-López EC, Castillo-Hernández JR, Niño-Martínez N, Patiño-Marín N. Expression of calcitonin gene-related peptide and pulp sensitivity tests in irreversible pulpitis. Braz Oral Res 2019; 33:e077. [PMID: 31531564 DOI: 10.1590/1807-3107bor-2019.vol33.0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to identify the relationship between the expression of calcitonin gene-related peptide (CGRP) and the responses of pulp sensitivity tests in healthy pulps and irreversible pulps by performing a cross-sectional study on patients. Two hundred subjects were evaluated. A total of 75 subjects complied with the criteria. The participants were divided into two groups: a) Healthy pulp (subjects [n = 35] having posterior teeth with clinically normal pulp tissue), and b) Irreversible pulpitis (subjects [n = 40] having posterior teeth with irreversible pulpitis). All participants were evaluated using the following variables: a) medical and dental history, b) pulp sensitivity tests, c) expression of CGRP by the enzyme-linked immunosorbent assay (ELISA), and d) expression levels of mRNA CGRP and mRNA CGRP receptor genes. We determined that the responses of the cold test between 4 and ≥12 s presented a higher average of the expression of CGRP in the group having irreversible pulpitis (p = 0.0001). When we compared the groups with the value of the electrical impulse, we found statistically significant differences (p = 0.0001), observing positive responses to the test with electrical impulses of 7 to 10, with an average of 72.15 ng/mL of CGRP in the irreversible pulpitis group. High values of CGRP expression were observed in that group in the responses of pulp sensitivity.
Collapse
Affiliation(s)
- Brenda Eréndida Castillo-Silva
- University of San Luis Potosí, Program of Doctorate in Dental Sciences, Department of Clinical Research, San Luis Potosí, SLP, Mexico
| | - Verónica Martínez-Jiménez
- University of San Luis Potosí, Program of Doctorate in Dental Sciences, Department of Clinical Research, San Luis Potosí, SLP, Mexico
| | | | - Carlo Eduardo Medina-Solís
- Autonomous University of The State of Hidalgo, Institute of Health Sciences, Department of Dentistry, Pachuca, Hidalgo, Mexico
| | - Eva Concepción Aguirre-López
- University of San Luis Potosí, Program of Doctorate in Dental Sciences, Department of Clinical Research, San Luis Potosí, SLP, Mexico
| | | | - Nereyda Niño-Martínez
- University of San Luis Potosí, Program of Doctorate in Dental Sciences, San Luis Potosí, SLP, Mexico
| | - Nuria Patiño-Marín
- University of San Luis Potosí, Program of Doctorate in Dental Sciences, Department of Clinical Research, San Luis Potosí, SLP, Mexico
| |
Collapse
|
42
|
Chang MC, Lin SI, Pan YH, Lin LD, Wang YL, Yeung SY, Chang HH, Jeng JH. IL-1β-induced ICAM-1 and IL-8 expression/secretion of dental pulp cells is differentially regulated by IRAK and p38. J Formos Med Assoc 2019; 118:1247-1254. [PMID: 30558829 DOI: 10.1016/j.jfma.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/PURPOSE Interleukin 1 beta (IL-1β) is a pro-inflammatory cytokine involved in the acute and chronic inflammatory processes of dental pulp. Intercellular adhesion molecule-1 (ICAM-1) and IL-8 are two major inflammatory mediators. However, the role of interleukin-1 receptor-associated kinases (IRAKs) signaling pathways in responsible for the inflammatory effects of IL-1β on dental pulp cells is not clear. METHODS Cultured human dental pulp cells were exposed to IL-1β with/without pretreatment and co-incubation with IRAK1/4 inhibitor or SB203580 (p38 inhibitor). IRAK-1 phosphorylation was evaluated by immunno fluorescent staining. The protein expression of ICAM-1 and IL-8 were tested by western blotting. The secretion of soluble ICAM-1 (sICAM-1) and IL-8 was measured by enzyme-linked immunosorbant assay (ELISA). RESULTS IL-1β stimulated IRAK-1 phosphorylation of pulp cells within 120 min of exposure. IRAK1/4 inhibitor attenuated the IL-1β-induced ICAM-1, but not IL-8 protein expression. IRAK1/4 inhibitor also prevented the IL-1β-induced sICAM-1, but not IL-8 secretion. SB203580 showed little effect on IL-1β-induced sICAM-1 secretion, but effectively inhibited its induction of IL-8 secretion in pulp cells. CONCLUSION The Results reveal the important role of IL-1β in pulpal inflammatory responses via stimulation of IL-8 and ICAM-1 expression and secretion. Moreover, IL-1β-induced effects on IL-8 and ICAM-1 are differentially regulated by IRAK1/4 and p38 signaling in dental pulp cells. Blocking of IRAKs and p38 signaling may have potential to control inflammation of dental pulp in the future.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan; Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Szu-I Lin
- Department of Dentistry, Tao-Yuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan; Department of Dentistry and School of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Li-Deh Lin
- Department of Dentistry and School of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taiwan
| | - Yin-Lin Wang
- Department of Dentistry and School of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- Department of Dentistry and School of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taiwan.
| | - Jiiang-Huei Jeng
- Department of Dentistry and School of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taiwan.
| |
Collapse
|
43
|
Guo X, Chen J. The protective effects of saxagliptin against lipopolysaccharide (LPS)-induced inflammation and damage in human dental pulp cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1288-1294. [PMID: 30942641 DOI: 10.1080/21691401.2019.1596925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacteria play a pivotal role in the pathological initiation and progression of pulpitis. Lipopolysaccharide (LPS) is recognized as a major component of the outer wall of Gram-negative bacteria. Saxagliptin, a potent inhibitor of dipeptidyl peptidase-4 (DPP-4), has been licensed for the treatment of type 2 diabetes. In this study, we aimed to evaluate the protective effects of saxagliptin against LPS-induced intracellular insults in human dental pulp cells (HDPCs). We found that DPP-4 is expressed in HDPCs. Interestingly, the expression of DPP-4 was increased in response to LPS treatment. We also found that saxagliptin ameliorated LPS-induced production of ROS and reduction of glutathione (GSH). Additionally, saxagliptin prevented LPS-induced mitochondrial dysfunction by increasing the levels of mitochondrial membrane potential (MMP) and the production of adenosine triphosphate (ATP). Importantly, saxagliptin ameliorated LPS-induced reduction of cell viability and lactate dehydrogenase (LDH) release. Our results indicate that saxagliptin significantly inhibited LPS-induced expression and secretions of tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β and IL-6 in HDPCs. Mechanistically, we found that saxagliptin inhibited the phosphorylation of p38 and the activation of NF-κB. Our findings suggest that saxagliptin might have a potential therapeutic capacity for the treatment of pulpitis through mitigating inflammatory signalling in dental pulp cells.
Collapse
Affiliation(s)
- Xinxing Guo
- a Department of orthodontics , Jinan Stomatological Hospital , Jinan , PR China
| | - Jing Chen
- b Department of Emergency, School of Stomatology , Shandong University , Jinan , PR China
| |
Collapse
|
44
|
Mo Z, Li Q, Cai L, Zhan M, Xu Q. The effect of DNA methylation on the miRNA expression pattern in lipopolysaccharide-induced inflammatory responses in human dental pulp cells. Mol Immunol 2019; 111:11-18. [PMID: 30952010 DOI: 10.1016/j.molimm.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/07/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Endodontic infection is a widespread oral problem. DNA methylation is a key epigenetic modification that plays important roles in various inflammatory responses, but its role in dental pulp inflammation is poorly understood. In this study, we assessed the expression of DNA methyltransferases (DNMTs) in human dental pulp cells (hDPCs) during lipopolysaccharide (LPS)-induced inflammation and found that DNMT3B mRNA expression was reduced and DNMT1 mRNA and protein levels decreased significantly. Pretreatment with the DNMT inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) significantly enhanced the expression of the inflammatory cytokines IL-6 and IL-8 in LPS-stimulated hDPCs, indicating that DNA methylation may play a role in hDPC inflammation. Studies have reported that some microRNAs (miRNAs) are involved in dental pulp infection. DNA methylation can modulate the inflammatory response by regulating miRNA expression, but this phenomenon has not yet been reported in pulp inflammation. The present study used next-generation sequencing to examine the effect of 5-Aza-CdR on the miRNA expression profile of LPS-treated hDPCs, and the results showed that 5-Aza-CdR pretreatment changed the miRNA expression pattern in hDPCs during inflammation. Among the changed miRNAs, miR-146a-5p, which is a pulp inflammation-related miRNA, demonstrated the most noticeably altered expression. miR-146a-5p could be induced by LPS in hDPCs, and 5-Aza-CdR preincubation or DNMT1 knockdown markedly increased its expression level. However, no significant difference was found in the methylation pattern of the MIR146A promoter with 5-Aza-CdR pretreatment or DNMT1 knockdown in LPS-stimulated hDPCs. These results indicate that DNA methylation may regulate the LPS-induced inflammatory response by changing the miRNA expression in hDPCs.
Collapse
Affiliation(s)
- Zehuan Mo
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Qimeng Li
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Luhui Cai
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Minkang Zhan
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Qiong Xu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| |
Collapse
|
45
|
Chai J, Jin R, Yuan G, Kanter V, Miron RJ, Zhang Y. Effect of Liquid Platelet-rich Fibrin and Platelet-rich Plasma on the Regenerative Potential of Dental Pulp Cells Cultured under Inflammatory Conditions: A Comparative Analysis. J Endod 2019; 45:1000-1008. [PMID: 31248700 DOI: 10.1016/j.joen.2019.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Platelet-rich plasma (PRP) has been widely used in regenerative dentistry for over 2 decades. Nevertheless, previous studies have shown that its growth factor content is released over a short time period, and the application of anticoagulants limits its regenerative potential. Therefore, a second-generation platelet concentrate (liquid platelet-rich fibrin [PRF]) was developed without the use of anticoagulants and with shorter centrifugation times. The purpose of the present study was to compare the cellular regenerative activity of human dental pulp cells (hDPCs) when cultured with either liquid PRF or traditional PRP. METHODS The regenerative potential of hDPCs isolated from healthy human third molars (18-22 years, n = 5) was investigated in both normal and inflammatorylike conditions (lipopolysaccharide [LPS]) and assessed for their potential for dentin repair. The effects of liquid PRF and PRP were assessed for cellular migration, proliferation, and odontoblastic differentiation using a transwell assay, scratch assay, proliferation assay, alkaline phosphatase assay, alizarin red staining, and real-time polymerase chain reaction for genes encoding collagen type 1 alpha 1, dentin sialophosphoprotein, and dentin matrix protein 1, respectively. The effects of both platelet concentrates were also assessed for their ability to influence nuclear translocation of nuclear factor kappa B (p65) by immunofluorescence, and reverse-transcription polymerase chain reaction for genes encoding interleukin-1β, tumor necrosis factor alpha, and nuclear factor kappa B (p65) during an inflammatory condition. RESULTS Both PRP and liquid PRF increased the migration and proliferation of hDPCs when compared with the control group, whereas liquid PRF showed a notable significant increase in migration when compared with PRP. Furthermore, liquid PRF induced significantly greater alkaline phosphatase activity, alizarin red staining, and a messenger RNA expression of genes encoding collagen type 1 alpha 1, dentin sialophosphoprotein, and dentin matrix protein 1 when compared with PRP. When hDPCs were cultured with LPS to stimulate an inflammatory environment, a marked decrease in dentin-related repair was observed. When liquid PRF was cultured within this inflammatory environment, the reduced regenerative potential in this LPS-produced environment was significantly and markedly improved, facilitating hDPC regeneration. The messenger RNA expression of inflammatory markers including tumor necrosis factor alpha, interleukin-1β, and p65 were all significantly decreased in the presence of liquid PRF, and, furthermore, liquid PRF also inhibited the transport of p65 to the nucleus in hDPCs (suggesting a reduced inflammatory condition). CONCLUSIONS The findings from the present study suggest that liquid PRF promoted greater regeneration potential of hDPCs when compared with traditional PRP. Furthermore, liquid PRF also attenuated the inflammatory condition created by LPS and maintained a supportive regenerative ability for the stimulation of odontoblastic differentiation and reparative dentin in hDPCs.
Collapse
Affiliation(s)
- Jihua Chai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Runze Jin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Valerie Kanter
- Department of Endodontics, University of California Los Angeles, Los Angeles, California
| | - Richard J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Huang H, Luo SH, Huang DC, Cheng SJ, Cao CJ, Chen GT. Immunomodulatory activities of proteins from Astragalus membranaceus waste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4174-4181. [PMID: 30779132 DOI: 10.1002/jsfa.9650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/16/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Astragalus membranaceus is a traditional Chinese medicine that has a long history of medical applications. It is of interest to investigate the functional components of A. membranaceus waste with regard to its development and utilization and increasing resource utilization. RESULTS The protein AMWP was isolated from the A. membranaceus waste. This protein was further purified by DEAE-cellulose-52 chromatography and Sephadex G-200 size-exclusion chromatography to obtain three fractions, named AMWPDG2, AMWPDG4 and AMWPDG6. Then, their immunomodulatory activities were evaluated by using cell model experiments. The results indicated that the protein fractions could significantly increase the proliferation of splenic lymphocytes, peritoneal macrophages and bone-marrow-derived cells (BMDCs). AMWPDG2 showed the highest immunocompetence. AMWPDG2, AMWPDG4 and AMWPDG6 not only significantly improved the phagocytosis and immunomodulatory factors (interleukin (IL)-6, tumor necrosis factor-α, nitric oxide, hydrogen peroxide) secretion of peritoneal macrophages, but also promoted the expression of inflammatory cytokines (IL-6, IL-12 p40, IL-1β, IL-1α) and chemokines (CXCL1, CCL3) in BMDCs. CONCLUSION Taken together, these results indicated that three protein fractions from the A. membranaceus waste might be a potential natural immunomodulator. Moreover, it also provided the theoretical basis for further researching the mechanism of AMWPDG2, AMWPDG4 and AMWPDG6 on improving the immune response. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Huang
- Department of Food Quality and Safety, China Pharmaceutical University, Nanjing, China
| | - Shuang-Hui Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - De-Chun Huang
- Department of Food Quality and Safety, China Pharmaceutical University, Nanjing, China
| | - Shu-Jie Cheng
- Department of Food Quality and Safety, China Pharmaceutical University, Nanjing, China
| | - Chong-Jiang Cao
- Department of Food Quality and Safety, China Pharmaceutical University, Nanjing, China
| | - Gui-Tang Chen
- Department of Food Quality and Safety, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
47
|
Xu F, Qiao L, Zhao Y, Chen W, Hong S, Pan J, Jiang B. The potential application of concentrated growth factor in pulp regeneration: an in vitro and in vivo study. Stem Cell Res Ther 2019; 10:134. [PMID: 31109358 PMCID: PMC6528367 DOI: 10.1186/s13287-019-1247-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Concentrated growth factor (CGF), as a natural biomaterial, is known to contain platelets, cytokines, and growth factors to facilitate the healing process, but there has been little information acquired in regenerative endodontics. The purpose of this study was to investigate the effects of CGF on proliferation, migration, and differentiation in human dental stem pulp cells (hDPSCs) exposed to lipopolysaccharide (LPS) in vitro and its potential role in pulp regeneration of the immature teeth in vivo. Methods In vitro experiments: CGF-conditioned medium were extracted by freeze-dried method. hDPSCs were isolated and identified. The proliferative potential of hDPSCs with different concentration of CGF and LPS was evaluated by Cell Counting Kit-8. Migration capacity was analyzed by Transwell assays, odonto/osteoblastic differentiation was determined by measuring alkaline phosphatase (ALP) activity using ALP staining, and the extent of mineralization was evaluated by using Alizarin red S staining. The mRNA expression level of DMP-1, DSPP, OPN, Runx2, and OCN were determined by quantitative polymerase chain reaction (qPCR). In vivo experiments: CGF were used as root canal filling agent of the immature single-rooted teeth in the beagle dogs. The teeth were then radiographed, extracted, fixed, demineralized, and subjected to histologic analyses at 8 weeks. The newly formed dentine-pulp complex and the development of apical foramen were evaluated by the hematoxylin-eosin (HE) and Masson trichrome technique. Soft tissues were analyzed by immunohistochemical staining of vascular endothelial growth factor (VEGF) and Nestin. Results In vitro experiments: The cultured cells exhibited the characteristics of mesenchymal stem cell. The treatment of LPS significantly increased the expression of TNF-α, IL-1β, IL-6, and IL-8 in hDPSCs, and CGF inhibited the mRNA expression of IL-8 in LPS-stimulated hDPSCs. The proliferation values of the CGF group in LPS-stimulated hDPSCs were significantly higher than that of the control group from day 3 to day 7 (P < 0.05). In addition, the number of migratory cells of the CGF group was greater than that of the control group at 24 h with or without LPS treatment. ALP activities increased gradually in both groups from day 4 to day 7. The mineralized nodules and the expression of odontogenesis-related genes DMP-1 and DSPP, osteogenesis-related genes OPN, Runx2, and OCN were dramatically enhanced by CGF in LPS-stimulated hDPSCs at days 21 and 28. In vivo experiments: In CGF treated group, the results of radiograph, HE, and Masson trichrome staining showed a continuing developed tooth of the immature teeth in the beagle dogs (i.e., the ingrowth of soft tissues into the root canal, the thickened internal root dentin walls, and the closed apex), which resembled the normal tooth development in the positive control group. The immunohistochemical staining showed that VEGF and Nestin were both moderately expressed in the regenerated pulp-like tissues which indicating the vascularization and innervation. Conclusions CGF has a positive effect on the proliferation, migration, and differentiation of hDPSCs exposed to LPS in vitro, and it can also promote the regeneration of dentine-pulp complex of the immature teeth in the beagle dogs in vivo. Therefore, CGF could be a promising alternative biomaterial in regenerative endodontics.
Collapse
Affiliation(s)
- Fangfang Xu
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Lu Qiao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yumei Zhao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Weiting Chen
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Shebing Hong
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Jing Pan
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Beizhan Jiang
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China.
| |
Collapse
|
48
|
Yuan H, Zhao H, Wang J, Zhang H, Hong L, Li H, Che H, Zhang Z. MicroRNA let-7c-5p promotes osteogenic differentiation of dental pulp stem cells by inhibiting lipopolysaccharide-induced inflammation via HMGA2/PI3K/Akt signal blockade. Clin Exp Pharmacol Physiol 2019; 46:389-397. [PMID: 30575977 DOI: 10.1111/1440-1681.13059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Pulpitis suppressed the level of let-7c-5p that promotes osteogenesis and bone formation by repressing HMGA2. In the current study, the function of let-7c-5p in the inflammation and osteogenesis in dental pulp stem cells (DPSCs) was explored. The level of let-7c-5p in DPSCs was up-regulated, and the cells were subjected to lipopolysaccharide (LPS) to induce inflammation. The effect of let-7c-5p on cell proliferation potential, osteogenic differentiation potential, and activity of HMGA2/PI3K/Akt pathway was detected. The administration of LPS suppressed the cell proliferation of DPSCs and suppressed calcium deposition, activity of alkaline phosphatase (ALP), and levels of OCN, OPN, OSX, MSX2, and RUNX2 in inflamed DPSCs. The impaired osteogenic differentiation of inflamed DPSCs was associated with the increased levels of HMGA2, p-PI3K, and p-Akt. In let-7c-5p-overexpressed inflamed DPSCs, the proliferation and osteogenic differentiation potential of DPSCs were restored, and the activation of HMGA2/PI3K/Akt signalling was inhibited. In rat pulpitis models, the injection of let-7c-5p agomir restored the osteogenic differentiation potential of dental pulp cells and inhibited HMGA2/PI3K/Akt signalling. The findings demonstrated the anti-inflammation and pro-osteogenesis effect of let-7c-5p during the attack of pulpitis, which depended on the inhibition of HMGA2/PI3K/Akt signalling.
Collapse
Affiliation(s)
- Hao Yuan
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, China
| | - Hongyan Zhao
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, China
| | - Jiafeng Wang
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, China
| | - Hong Zhang
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, China
| | - Lihua Hong
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, China
| | - He Li
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, China
| | - Hongze Che
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, China
| | - Zhimin Zhang
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
49
|
The immunoregulatory activities of astragalus polysaccharide liposome on macrophages and dendritic cells. Int J Biol Macromol 2017; 105:852-861. [DOI: 10.1016/j.ijbiomac.2017.07.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
|