1
|
Kosho MXF, Ciurli A, Giera M, Neefjes J, Loos BG. Metabolomic Profiles of Oral Rinse Samples to Distinguish Severe Periodontitis Patients From Non-Periodontitis Controls. J Periodontal Res 2025. [PMID: 40083241 DOI: 10.1111/jre.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 03/16/2025]
Abstract
AIMS To explore the potential of metabolomic profiles of oral rinse samples to distinguish between patients with severe periodontitis (stage III/IV) and non-periodontitis controls. This is coupled to an analysis of differences in metabolomic profiles between individuals without periodontitis, patients with localized periodontitis, and patients with generalized periodontitis. METHODS Periodontitis patients and controls were recruited, all aged ≥ 40 years. Study participants were asked to rinse vigorously for 30 s with 10 mL phosphate buffered saline. Metabolites were identified using a semi-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) platform. RESULTS In total, 38 periodontitis patients (18 localized, 20 generalized stage III/IV periodontitis patients) and 16 controls were included. Metabolomic profiles of oral rinse samples were able to distinguish patients with severe periodontitis (stage III/IV) from non-periodontitis controls. Among various variables for the severity of periodontitis, we found that the number of sites with deep pockets (PPD) ≥ 6 mm explained best the differences in metabolomic profiles between controls and patients with severe periodontitis. Subjects with a high number of sites with PPD ≥ 6 mm were characterized by a higher level of phosphorylated nucleotides, amino acids, peptides, and dicarboxylic acids. Metabolomic profiles were also significantly different between controls vs. generalized periodontitis and between localized periodontitis vs. generalized periodontitis (p < 0.05). CONCLUSION Our study demonstrates that simply collected oral rinse samples are suitable for LC-MS/MS based metabolomic analysis. We show that a metabolomic profile with a substantial number of metabolites can distinguish severe periodontitis patients from non-periodontitis controls. These observations can be a basis for further studies into screening to identify subjects with the risk of having severe periodontitis.
Collapse
Affiliation(s)
- Madeline X F Kosho
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alessio Ciurli
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Bruno G Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Albahri J, Allison H, Whitehead KA, Muhamadali H. The role of salivary metabolomics in chronic periodontitis: bridging oral and systemic diseases. Metabolomics 2025; 21:24. [PMID: 39920480 PMCID: PMC11805826 DOI: 10.1007/s11306-024-02220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Chronic periodontitis is a condition impacting approximately 50% of the world's population. As chronic periodontitis progresses, the bacteria in the oral cavity change resulting in new microbial interactions which in turn influence metabolite production. Chronic periodontitis manifests with inflammation of the periodontal tissues, which is progressively developed due to bacterial infection and prolonged bacterial interaction with the host immune response. The bi-directional relationship between periodontitis and systemic diseases has been reported in many previous studies. Traditional diagnostic methods for chronic periodontitis and systemic diseases such as chronic kidney diseases (CKD) have limitations due to their invasiveness, requiring practised individuals for sample collection, frequent blood collection, and long waiting times for the results. More rapid methods are required to detect such systemic diseases, however, the metabolic profiles of the oral cavity first need to be determined. AIM OF REVIEW In this review, we explored metabolomics studies that have investigated salivary metabolic profiles associated with chronic periodontitis and systemic illnesses including CKD, oral cancer, Alzheimer's disease, Parkinsons's disease, and diabetes to highlight the most recent methodologies that have been applied in this field. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Of the rapid, high throughput techniques for metabolite profiling, Nuclear magnetic resonance (NMR) spectroscopy was the most applied technique, followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Furthermore, Raman spectroscopy was the most used vibrational spectroscopic technique for comparison of the saliva from periodontitis patients to healthy individuals, whilst Fourier Transform Infra-Red Spectroscopy (FT-IR) was not utilised as much in this field. A recommendation for cultivating periodontal bacteria in a synthetic medium designed to replicate the conditions and composition of saliva in the oral environment is suggested to facilitate the identification of their metabolites. This approach is instrumental in assessing the potential of these metabolites as biomarkers for systemic illnesses.
Collapse
Affiliation(s)
- Jawaher Albahri
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Heather Allison
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kathryn A Whitehead
- Microbiology at Interfaces, Department of Life Sciences, Manchester Metropolitan University, Chester St, Manchester, M1 5GD, UK.
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
3
|
Furukawa MV, Oliveira MF, da Silva RA, Máximo PM, Dionizio A, Ventura TMO, Cortelli SC, Corelli JR, Buzalaf MAR, Rovai ES. Salivary proteomic analysis in patients with type 2 diabetes mellitus and periodontitis. Clin Oral Investig 2025; 29:77. [PMID: 39847108 DOI: 10.1007/s00784-025-06171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVE This study aimed to compare the salivary protein profile in individuals with Type 2 Diabetes Mellitus (DM2) and periodontitis and their respective controls. METHODS Eighty participants were included in the study. The four groups were formed by individuals with DM2 and periodontitis (DM2 + P, n = 20), DM2 without periodontitis (DM2, n = 20), periodontitis without DM2 (P, n = 20) and individuals without periodontitis and without DM2 (H, n = 20). Periodontal clinical examinations were performed and unstimulated saliva was collected. Proteomic analysis was performed by shotgun mass spectrometry. The results were obtained by searching the Homo sapiens database of the UniProt catalog. RESULTS A total of 220 proteins were identified in saliva samples. In the comparison between DM2 + P and DM2 groups, 27 proteins were up-regulated [e.g. S100-A8 was 6 times up-regulated (humoral immune response pathway)]. The DM2 + P and P groups had 26 up-regulated proteins [e.g. Immunoglobulin lambda constant 7 more than 2 times up-regulated (complement activation pathway)]. The non-DM2 groups (P and H) presented 22 up-regulated proteins [e.g. Glyceraldehyde-3-phosphate dehydrogenase more than 2 times up-regulated (Peptidyl-cysteine S-nitrosylation pathway)]. The groups without periodontitis (DM2 and H) showed 23 were up-regulated proteins [e.g. Hemoglobin subunit alpha that was more than 10 times up-regulated (cellular oxidant detoxification pathway)]. CONCLUSION The presence of DM2 and periodontitis significantly impacts the salivary proteome. Our proteomic analysis demonstrated that changes in the S100 family proteins (S100A8 and S100 A9) are highly related to the presence of DM2 and periodontitis. CLINICAL RELEVANCE Diabetes Mellitus (DM) and periodontitis are highly prevalent chronic diseases that present a wide variety of signs and symptoms. They present a bidirectional relationship, where patients with DM have a higher prevalence and severity of periodontitis, and patients with periodontitis have a higher prevalence of DM, worse glycemic control, and more diabetic complications. Diagnosing periodontitis requires specific clinical examinations, which require a highly trained operator. In this study, we used high throughput proteomics in order to evaluate non-invasive biomarkers for periodontitis in type 2 DM subjects. The results can contribute to earlier, more accurate, and less costly diagnosis of periodontitis in diabetic subjects, enabling better diabetes control.
Collapse
Affiliation(s)
- Monique Vieira Furukawa
- Departament of Dentistry, Periodontics Research Division, University of Taubaté, São Paulo, Brazil
| | | | - Rodrigo Augusto da Silva
- Departament of Dentistry, Periodontics Research Division, University of Taubaté, São Paulo, Brazil
| | - Priscila Macedo Máximo
- Department of Biological Sciences, University of São Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, University of São Paulo, Bauru School of Dentistry, Bauru, Brazil
| | | | - Sheila Cavalca Cortelli
- Departament of Dentistry, Periodontics Research Division, University of Taubaté, São Paulo, Brazil
| | - José Roberto Corelli
- Departament of Dentistry, Periodontics Research Division, University of Taubaté, São Paulo, Brazil
| | | | - Emanuel Silva Rovai
- Institute of Science and Technology, Division of Periodontics, São Paulo State University (Unesp), Av. Eng. Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil.
| |
Collapse
|
4
|
Garcia PN, de Souza MM, Izidoro MA, Juliano L, Lourenço SV, Camillo CMC. Saliva metabolomics: concepts and applications in oral disorders. Clin Oral Investig 2024; 28:579. [PMID: 39377832 DOI: 10.1007/s00784-024-05990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
OBJECTIVES The purpose of this review was to present the basic concepts of metabolomics methodology and the use of saliva for diagnostic, prognostic, and predictive strategies. MATERIAL AND METHODS This review followed the focus in: "saliva metabolomics" and "oral diseases". The authors searched studies on PubMed database. The inclusion criteria were original studies and reviews that assessed metabolomics techniques. A descriptive analysis was performed considering the study design, approach system, clinical steps, and tools for the determination of profile or biomarkers metabolites, and the advantages and disadvantages. RESULTS Metabolomic analyses use a combination of analytical instrumentation and informatic tools to provide information on metabolite characteristics. In this review we described different technologies applied and the advantages and limitations of each technique. Furthermore, in the literature search, we retrieved 25 studies that investigated saliva metabolites in oral diseases: 8 studies used targeted analysis and 17 untargeted metabolomics approaches. Most studies included patients with periodontal diseases, oral squamous cell carcinoma, and Sjögren Syndrome. The most frequently reported metabolites were glycine, leucine, phenylalanine, dipeptides, linoleic acid, arachidonic acid, tyrosine, choline, taurine, lactate, valine, and proline. CONCLUSIONS Metabolomics analysis has emerged as a powerful tool for tumor diagnosis and to enhance tumor classification, including salivary gland tumors (SGTs). It also holds promise for developing personalized treatment plans and defining more precise prognostic categories. CLINICAL RELEVANCE Metabolomics is the most functional and comprehensive technique for monitoring and understanding gene functions and identifying the biochemical state of an organism in response to genetic and environmental changes.
Collapse
Affiliation(s)
- Pedro Nunes Garcia
- International Research Center, Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| | - Milena Monteiro de Souza
- International Research Center, Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil.
| | | | - Luiz Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | - Cláudia Malheiros Coutinho Camillo
- International Research Center, Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| |
Collapse
|
5
|
Baima G, Ferrocino I, Del Lupo V, Colonna E, Thumbigere-Math V, Caviglia GP, Franciosa I, Mariani GM, Romandini M, Ribaldone DG, Romano F, Aimetti M. Effect of Periodontitis and Periodontal Therapy on Oral and Gut Microbiota. J Dent Res 2024; 103:359-368. [PMID: 38362600 DOI: 10.1177/00220345231222800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Mounting evidence indicates that periodontitis-related oral bacteria may contribute to gut microbial dysbiosis. This clinical study aimed to explore the oral-gut microbial signatures associated with periodontitis and to longitudinally evaluate the effect of periodontal treatment on the oral and gut microbial composition. Stool and saliva samples from generalized stage III/IV periodontitis patients (n = 47) were collected and analyzed by 16S ribosomal RNA gene amplicon sequencing, before and 3 mo after steps I to II of periodontal therapy. Periodontally healthy matched subjects (n = 47) were used as controls. Principal component analysis was carried out to identify oral-gut microbial profiles between periodontitis patients at baseline and healthy subjects; periodontitis samples were longitudinally compared before and after treatment. β-Diversity of gut microbial profiles of periodontitis patients before treatment significantly differed from healthy controls (P < 0.001). Periodontal therapy was associated with a significant change in gut microbiota (P < 0.001), with post-treatment microbial profiles similar to healthy volunteers. A higher abundance of Bacteroides, Faecalibacterium, Fusobacterium, and Lachnospiraceae was noted in fecal samples of periodontitis patients at baseline compared to healthy controls. In contrast, Lactobacillus was the only genus more abundant in the latter. Additionally, periodontal therapy led to a parallel reduction in the salivary carriage of periodontal pathobionts, as well as gut Bacteroides, Lachnoclostridium, Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae, to levels similar to healthy controls. Collectively, discriminating oral-gut microbial signatures of periodontitis were found. Periodontal treatment both mitigated oral dysbiosis and altered gut microbial composition, signifying potential broader implications for gastrointestinal health and disease.
Collapse
Affiliation(s)
- G Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - I Ferrocino
- Department of Agricultural, Forestry and Food Science, University of Turin, Turin, Italy
| | - V Del Lupo
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - E Colonna
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - V Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - G P Caviglia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - I Franciosa
- Department of Agricultural, Forestry and Food Science, University of Turin, Turin, Italy
| | - G M Mariani
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - M Romandini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - D G Ribaldone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - F Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - M Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Ciurli A, Mohammed Y, Ammon C, Derks RJ, Olivier-Jimenez D, Ducarmon QR, Slingerland M, Neefjes J, Giera M. Spatially and temporally resolved metabolome of the human oral cavity. iScience 2024; 27:108884. [PMID: 38318352 PMCID: PMC10839270 DOI: 10.1016/j.isci.2024.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/03/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Saliva is a complex bodily fluid composed of secretions by major and minor salivary glands. Salivary glands and their secretions are known to be unevenly distributed in the human oral cavity. Moreover, saliva flow rate and composition vary across locations and time of the day. This remarkable heterogeneity of salivary secretions suggests that different subtypes of saliva fulfill different functions. By coupling a non-invasive and facile collection method with comprehensive metabolomic profiling, we investigated the spatial and temporal distributions of salivary components. We identified location-specific metabolite profiles, novel oscillating metabolites, and location-specific diurnal patterns. In summary, our study paves the way for a deeper and more comprehensive understanding of the complex dynamics and functionalities of the salivary metabolome and its integration in multi-omics studies related to oral and systemic (patho-)physiology.
Collapse
Affiliation(s)
- Alessio Ciurli
- Oncode Institute and Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Christine Ammon
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Rico J.E. Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Damien Olivier-Jimenez
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Quinten R. Ducarmon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Marije Slingerland
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jacques Neefjes
- Oncode Institute and Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
7
|
Alqahtani AA, Alhalabi F, Alam MK. Salivary elemental signature of dental caries: a systematic review and meta-analysis of ionomics studies. Odontology 2024; 112:27-50. [PMID: 37526792 DOI: 10.1007/s10266-023-00839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Trace- and macro-chemical elements are crucial for cellular physiological functioning, and their alterations in biological fluids might be associated with an underlying pathological state. Hence, this study aimed to examine and summarize the published literature concerning the application of salivary ionomics for caries diagnosis. An extensive search of studies was conducted using PubMed, EMBASE, Web of Science, and Scopus, without any language and year restriction for answering the following PECO question: "In subjects (i.e., children, adolescents, or adults) with good systematic health, are there any variations in the salivary concentrations of trace- or macro-elements between caries-free (CF) individuals and caries-active (CA) subjects?" A modified version of the QUADOMICS tool was used to assess the quality of the included studies. The Review Manager Version 5.4.1. was used for data analyses. The analysis of salivary chemical elements that significantly differed between CF and CA subjects was also performed. Thirty-four studies were included, involving 2299 CA and 1669 CF subjects, having an age range from 3 to 64 years in over 16 countries. The meta-analysis revealed a statistically significant difference (p < 0.05) in the salivary levels of calcium, phosphorus, chloride, magnesium, potassium, sodium, and zinc between CA and CF subjects, suggesting higher levels of calcium, phosphorus, potassium, and sodium in CF subjects while higher levels of chloride, magnesium, and zinc in CA patients. Half of the included studies (17/34) were considered high quality, while the remaining half were considered medium quality. Only zinc and chloride ions were found to be higher significantly and consistent in CF and CA subjects, respectively. Conflicting outcomes were observed for all other salivary chemical elements including aluminum, bromine, calcium, copper, fluoride, iron, potassium, magnesium, manganese, sodium, ammonia, nitrite, nitrate, phosphorus, lead, selenium, and sulfate ions.
Collapse
Affiliation(s)
- Abdullah Ali Alqahtani
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia.
| | - Feras Alhalabi
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - Mohammad Khursheed Alam
- Orthodontics, Department of Preventive Dental Science, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
8
|
Zhou Y, Liu Z. Saliva biomarkers in oral disease. Clin Chim Acta 2023; 548:117503. [PMID: 37536520 DOI: 10.1016/j.cca.2023.117503] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Saliva is a versatile biofluid that contains a wide variety of biomarkers reflecting both physiologic and pathophysiologic states. Saliva collection is noninvasive and highly applicable for tests requiring serial sampling. Furthermore, advances in test accuracy, sensitivity and precision for saliva has improved diagnostic performance as well as the identification of novel markers especially in oral disease processes. These include dental caries, periodontitis, oral squamous cell carcinoma (OSCC) and Sjögren's syndrome (SS). Numerous growth factors, enzymes, interleukins and cytokines have been identified and are the subject of much research investigation. This review highlights current procedures for successful determination of saliva biomarkers including preanalytical factors associated with sampling, storage and pretreatment as well as subsequent analysis. Moreover, it provides an overview of the diagnostic applications of these salivary biomarkers in common oral diseases.
Collapse
Affiliation(s)
- Yuehong Zhou
- Wenzhou Medical University Renji College, Wenzhou, China
| | - Zhenqi Liu
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Jun L, Yuanyuan L, Zhiqiang W, Manlin F, Chenrui H, Ouyang Z, Jiatong L, Xi H, Zhihua L. Multi-omics study of key genes, metabolites, and pathways of periodontitis. Arch Oral Biol 2023; 153:105720. [PMID: 37285682 DOI: 10.1016/j.archoralbio.2023.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE This study aimed to explore the key genes, metabolites, and pathways that influence periodontitis pathogenesis by integrating transcriptomic and metabolomic studies. DESIGN Gingival crevicular fluid samples from periodontitis patients and healthy controls were collected for liquid chromatography/tandem mass-based metabolomics. RNA-seq data for periodontitis and control samples were obtained from the GSE16134 dataset. Differential metabolites and differentially expressed genes (DEGs) between the two groups were then compared. Based on the protein-protein interaction (PPI) network module analysis, key module genes were selected from immune-related DEGs. Correlation and pathway enrichment analyses were performed for differential metabolites and key module genes. A multi-omics integrative analysis was performed using bioinformatic methods to construct a gene-metabolite-pathway network. RESULTS From the metabolomics study, 146 differential metabolites were identified, which were mainly enriched in the pathways of purine metabolism and Adenosine triphosphate binding cassette transporters (ABC transporters). The GSE16134 dataset revealed 102 immune-related DEGs (458 upregulated and 264 downregulated genes), 33 of which may play core roles in the key modules of the PPI network and are involved in cytokine-related regulatory pathways. Through a multi-omics integrative analysis, a gene-metabolite-pathway network was constructed, including 28 genes (such as platelet derived growth factor D (PDGFD), neurturin (NRTN), and interleukin 2 receptor, gamma (IL2RG)); 47 metabolites (such as deoxyinosine); and 8 pathways (such as ABC transporters). CONCLUSION PDGFD, NRTN, and IL2RG may be potential biomarkers of periodontitis and may affect disease progression by regulating deoxyinosine to participate in the ABC transporter pathway.
Collapse
Affiliation(s)
- Luo Jun
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Li Yuanyuan
- Pingxiang People's Hospital, Pingxiang, China
| | - Wan Zhiqiang
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Fan Manlin
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Hu Chenrui
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Zhiqiang Ouyang
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Liu Jiatong
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Hu Xi
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China; Pingxiang People's Hospital, Pingxiang, China
| | - Li Zhihua
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
10
|
Saliva Metabolomic Profile in Dental Medicine Research: A Narrative Review. Metabolites 2023; 13:metabo13030379. [PMID: 36984819 PMCID: PMC10052075 DOI: 10.3390/metabo13030379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Metabolomic research tends to increase in popularity over the years, leading to the identification of new biomarkers related to specific health disorders. Saliva is one of the most newly introduced and systematically developed biofluids in the human body that can serve as an informative substance in the metabolomic profiling armamentarium. This review aims to analyze the current knowledge regarding the human salivary metabolome, its alterations due to physiological, environmental and external factors, as well as the limitations and drawbacks presented in the most recent research conducted, focusing on pre—analytical and analytical workflows. Furthermore, the use of the saliva metabolomic profile as a promising biomarker for several oral pathologies, such as oral cancer and periodontitis will be investigated.
Collapse
|
11
|
Zinga MM, Abdel-Shafy E, Melak T, Vignoli A, Piazza S, Zerbini LF, Tenori L, Cacciatore S. KODAMA exploratory analysis in metabolic phenotyping. Front Mol Biosci 2023; 9:1070394. [PMID: 36733493 PMCID: PMC9887019 DOI: 10.3389/fmolb.2022.1070394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
KODAMA is a valuable tool in metabolomics research to perform exploratory analysis. The advanced analytical technologies commonly used for metabolic phenotyping, mass spectrometry, and nuclear magnetic resonance spectroscopy push out a bunch of high-dimensional data. These complex datasets necessitate tailored statistical analysis able to highlight potentially interesting patterns from a noisy background. Hence, the visualization of metabolomics data for exploratory analysis revolves around dimensionality reduction. KODAMA excels at revealing local structures in high-dimensional data, such as metabolomics data. KODAMA has a high capacity to detect different underlying relationships in experimental datasets and correlate extracted features with accompanying metadata. Here, we describe the main application of KODAMA exploratory analysis in metabolomics research.
Collapse
Affiliation(s)
- Maria Mgella Zinga
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Ebtesam Abdel-Shafy
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- National Research Centre, Cairo, Egypt
| | - Tadele Melak
- Computation Biology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of clinical chemistry, University of Gondar, Gondar, Ethiopia
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Silvano Piazza
- Computation Biology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Luiz Fernando Zerbini
- Cancer Genomics, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Stefano Cacciatore
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Foratori-Junior GA, Guennec AL, Fidalgo TKDS, Cleaver L, Buzalaf MAR, Carpenter GH, Sales-Peres SHDC. Metabolomic Profiles Associated with Obesity and Periodontitis during Pregnancy: Cross-Sectional Study with Proton Nuclear Magnetic Resonance ( 1H-NMR)-Based Analysis. Metabolites 2022; 12:metabo12111029. [PMID: 36355112 PMCID: PMC9694155 DOI: 10.3390/metabo12111029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 12/27/2022] Open
Abstract
This study aimed to elucidate the metabolomic signature associated with obesity and periodontitis during pregnancy in plasma and saliva biofluids. Ninety-eight pregnant women were divided into: with obesity and periodontitis (OP = 20), with obesity but without periodontitis (OWP = 27), with normal BMI but with periodontitis (NP = 21), with normal BMI and without periodontitis (NWP = 30). Saliva and plasma were analyzed by 1H-NMR for metabolites identification. Partial Least Squares-Discriminant Analysis (PLS-DA), Sparse PLS-DA (sPLS-DA), and Variable Importance of Projection (VIP) were performed. ANOVA and Pearson’s correlation were applied (p < 0.05). Plasmatic analysis indicated the levels of glucose (p = 0.041) and phenylalanine (p = 0.015) were positively correlated with periodontal parameters and BMI, respectively. In saliva, periodontitis was mainly associated with high levels of acetic acid (p = 0.024), isovaleric acid, butyric acid, leucine, valine, isoleucine, and propionic acid (p < 0.001). High salivary concentrations of glycine (p = 0.015), succinic acid (p = 0.015), and lactate (p = 0.026) were associated with obesity. Saliva demonstrated a more elucidative difference than plasma, indicating the glucose-alanine cycle, alanine metabolism, valine, leucine and isoleucine degradation, glutamate metabolism, and Warburg effect as the main metabolic pathways.
Collapse
Affiliation(s)
- Gerson Aparecido Foratori-Junior
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Correspondence: (G.A.F.-J.); (S.H.d.C.S.-P.)
| | - Adrien Le Guennec
- Nuclear Magnetic Resonance Facility, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tatiana Kelly da Silva Fidalgo
- Department of Preventive and Community Dentistry, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | | | - Guy Howard Carpenter
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Silvia Helena de Carvalho Sales-Peres
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
- Correspondence: (G.A.F.-J.); (S.H.d.C.S.-P.)
| |
Collapse
|
13
|
Brito F, Curcio HFQ, da Silva Fidalgo TK. Periodontal disease metabolomics signatures from different biofluids: a systematic review. Metabolomics 2022; 18:83. [PMID: 36282436 DOI: 10.1007/s11306-022-01940-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/28/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Periodontitis is resulted from a complex interaction between genetics and epigenetics, microbial factors, and the host response. Metabolomics analyses reflect both the steady-state physiological equilibrium of cells or organisms as well as their dynamic metabolic responses to environmental stimuli. AIM OF REVIEW This systematic review of the literature aimed to assess which low molecular weight metabolites are more often found in biological fluids of individuals with periodontitis compared to individuals with gingivitis or periodontal health. KEY SCIENTIFIC CONCEPTS OF REVIEW All the included studies employed untargeted analysis. One or more biological fluids were analyzed, including saliva (n = 14), gingival crevicular fluid (n = 6), mouthwash (n = 1), serum (n = 3) and plasma (n = 1). Fifty-six main metabolites related to periodontitis have been identified in at least two independent studies by NMR spectroscopy or MS-based metabolomics. Saliva was the main biological fluid sampled. It is noteworthy that 14 metabolites of the 56 detected were identified as main metabolites in all studies that sampled the saliva. The majority of metabolites found consistently among studies were amino acids, organic acids and derivates: acetate, alanine, butyrate, formate, GABA, lactate, propionate, phenylalanine and valine. They were either up- or down-regulated in the studies or this information was not mentioned. The main metabolic pathway was related to phenylalanine, tyrosine and tryptophan biosynthesis. Metabolites more frequently found in individuals with periodontitis were related to both the host and to microorganism responses. Future studies are needed, and they should follow some methodological standards to facilitate their comparison.
Collapse
Affiliation(s)
- Fernanda Brito
- Department of Periodontology, Dental School, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Departament of Periodontology, Dental School, Universidade do Estado do Rio de Janeiro, Boulevard 28 de Setembro, 157 - Vila Isabel, Rio de Janeiro, RJ, 20551-030, Brazil.
| | | | - Tatiana Kelly da Silva Fidalgo
- Department of Preventive and Community Dentistry, Dental School, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Systematic Review of NMR-Based Metabolomics Practices in Human Disease Research. Metabolites 2022; 12:metabo12100963. [PMID: 36295865 PMCID: PMC9609461 DOI: 10.3390/metabo12100963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the principal analytical techniques for metabolomics. It has the advantages of minimal sample preparation and high reproducibility, making it an ideal technique for generating large amounts of metabolomics data for biobanks and large-scale studies. Metabolomics is a popular “omics” technology and has established itself as a comprehensive exploratory biomarker tool; however, it has yet to reach its collaborative potential in data collation due to the lack of standardisation of the metabolomics workflow seen across small-scale studies. This systematic review compiles the different NMR metabolomics methods used for serum, plasma, and urine studies, from sample collection to data analysis, that were most popularly employed over a two-year period in 2019 and 2020. It also outlines how these methods influence the raw data and the downstream interpretations, and the importance of reporting for reproducibility and result validation. This review can act as a valuable summary of NMR metabolomic workflows that are actively used in human biofluid research and will help guide the workflow choice for future research.
Collapse
|
15
|
Wei Y, Shi M, Nie Y, Wang C, Sun F, Jiang W, Hu W, Wu X. Integrated analysis of the salivary microbiome and metabolome in chronic and aggressive periodontitis: A pilot study. Front Microbiol 2022; 13:959416. [PMID: 36225347 PMCID: PMC9549375 DOI: 10.3389/fmicb.2022.959416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
This pilot study was designed to identify the salivary microbial community and metabolic characteristics in patients with generalized periodontitis. A total of 36 saliva samples were collected from 13 patients with aggressive periodontitis (AgP), 13 patients with chronic periodontitis (ChP), and 10 subjects with periodontal health (PH). The microbiome was evaluated using 16S rRNA gene high-throughput sequencing, and the metabolome was accessed using gas chromatography-mass spectrometry. The correlation between microbiomes and metabolomics was analyzed by Spearman’s correlation method. Our results revealed that the salivary microbial community and metabolite composition differed significantly between patients with periodontitis and healthy controls. Striking differences were found in the composition of salivary metabolites between AgP and ChP. The genera Treponema, Peptococcus, Catonella, Desulfobulbus, Peptostreptococcaceae_[XI] ([G-2], [G-3] [G-4], [G-6], and [G-9]), Bacteroidetes_[G-5], TM7_[G-5], Dialister, Eikenella, Fretibacterium, and Filifactor were present in higher levels in patients with periodontitis than in the healthy participants. The biochemical pathways that were significantly different between ChP and AgP included pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; beta-alanine metabolism; citrate cycle; and arginine and proline metabolism. The differential metabolites between ChP and AgP groups, such as urea, beta-alanine, 3-aminoisobutyric acid, and thymine, showed the most significant correlations with the genera. These differential microorganisms and metabolites may be used as potential biomarkers to monitor the occurrence and development of periodontitis through the utilization of non-invasive and convenient saliva samples. This study reveals the integration of salivary microbial data and metabolomic data, which provides a foundation to further explore the potential mechanism of periodontitis.
Collapse
Affiliation(s)
- Yiping Wei
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Meng Shi
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Nie
- Laboratory of Environmental Microbiology, Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, China
| | - Cui Wang
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Fei Sun
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenting Jiang
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenjie Hu
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Wenjie Hu,
| | - Xiaolei Wu
- Laboratory of Environmental Microbiology, Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
16
|
Baima G, Massano A, Squillace E, Caviglia GP, Buduneli N, Ribaldone DG, Aimetti M. Shared microbiological and immunological patterns in periodontitis and IBD: A scoping review. Oral Dis 2022; 28:1029-1041. [PMID: 33690955 PMCID: PMC9291827 DOI: 10.1111/odi.13843] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To extract the microbiological and immunological evidence underpinning the association between periodontitis and inflammatory bowel disease (IBD). METHODS Relevant articles were sorted through a systematic search on PubMed, Embase, Scopus and Web of Science up to October 2020. Available evidence was grouped in three different clusters: (a) studies that examined oral microbial alterations in IBD patients; (b) studies that investigated intestinal dysbiosis in patients with periodontitis; and (c) evidence for a shared immunological pattern between the two conditions. RESULTS A total of 15 studies involving 1,171 patients were included. Oral microbiome, either subgingival or salivary, was consistently altered in patients with IBD compared to healthy subjects (a) Additionally, gut dysbiotic microbiota of IBD patients was colonized by pathobionts from oral origin, either via haematogenous or enteric route. Suffering from periodontitis is associated with lower alpha diversity in the gut microbiome (b) Lastly, both IBD and periodontitis are characterized by similar expression patterns of inflammatory cytokines at the gingival and gut levels that are exacerbated when both diseases are present (c). CONCLUSIONS Periodontitis and IBD share common dysbiotic and immunological traits. Well-designed preclinical models and longitudinal cohort studies are required to better explore the causal pathways between the two conditions (PROSPERO CRD42020194379).
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical SciencesC.I.R. Dental SchoolUniversity of TurinTurinItaly
| | | | - Erminia Squillace
- Department of Surgical SciencesC.I.R. Dental SchoolUniversity of TurinTurinItaly
| | | | - Nurcan Buduneli
- Department of PeriodontologySchool of DentistryEge UniversityİzmirTurkey
| | | | - Mario Aimetti
- Department of Surgical SciencesC.I.R. Dental SchoolUniversity of TurinTurinItaly
| |
Collapse
|
17
|
Meoni G, Tenori L, Schade S, Licari C, Pirazzini C, Bacalini MG, Garagnani P, Turano P, Trenkwalder C, Franceschi C, Mollenhauer B, Luchinat C. Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson's disease patients. NPJ Parkinsons Dis 2022; 8:14. [PMID: 35136088 PMCID: PMC8826921 DOI: 10.1038/s41531-021-00274-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress.
Collapse
Affiliation(s)
- Gaia Meoni
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino, Florence, Italy
| | - Sebastian Schade
- Department of Clinical Neurophysiology, University Medical Center Goettingen, Goettingen, Germany
| | - Cristina Licari
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino, Florence, Italy
| | | | - Claudia Trenkwalder
- University Medical Center Goettingen, Department of Neurology and Paracelsus-Elena-Klinik, Kassel, Germany
| | - Claudio Franceschi
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. .,Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Brit Mollenhauer
- University Medical Center Goettingen, Department of Neurology and Paracelsus-Elena-Klinik, Kassel, Germany.
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
18
|
Development of a method for dansylation of metabolites using organic solvent-compatible buffer systems for amine/phenol submetabolome analysis. Anal Chim Acta 2022; 1189:339218. [PMID: 34815039 DOI: 10.1016/j.aca.2021.339218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 11/21/2022]
Abstract
Metabolomics, which serves as a readout of biological processes and diseases monitoring, is an informative research area for disease biomarker discovery and systems biology studies. In particular, reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) has become a powerful and popular tool for metabolomics analysis, enabling the detection of most metabolites. Very polar and ionic metabolites, however, are less easily detected because of their poor retention in RP columns. Dansylation of metabolites simplifies the sub-metabolome analysis by reducing its complexity and increasing both hydrophobicity and ionization ability. However, the various metabolite concentrations in clinical samples have a wide dynamic range with highly individual variation in total metabolite amount, such as in saliva. The bicarbonate buffer typically used in dansylation labeling reactions induces solvent stratification, resulting in poor reproducibility, selective sample loss and an increase in false-determined metabolite peaks. In this study, we optimized the dansylation protocol for samples with wide concentration range of metabolites, utilizing diisopropylethylamine (DIPEA) or tri-ethylamine (TEA) in place of bicarbonate buffer, and presented the results of a systemic investigation of the influences of individual processes involved on the overall performance of the protocol. In addition to achieving high reproducibility, substitution of DIPEA or TEA buffer resulted in similar labeling efficiency of most metabolites and more efficient labeling of some metabolites with a higher pKa. With this improvement, compounds that are only present in samples in trace amounts can be detected, and more comprehensive metabolomics profiles can be acquired for biomarker discovery or pathway analysis, making it possible to analyze clinical samples with limited amounts of metabolites.
Collapse
|
19
|
NESTEROVA O, KRASILNIKOVA V, MARGARYAN E, LAZAREVA Y, NEMTYREVA L. Treatment of chronic generalized periodontitis in patients with underlying hypovitaminosis D: randomized comparative clinical trial. J Appl Oral Sci 2022. [DOI: 10.1590/1678-7757-2022-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Olga NESTEROVA
- I.M. Sechenov First Moscow State Medical University, Russian Federation
| | | | - Edita MARGARYAN
- I.M. Sechenov First Moscow State Medical University, Russian Federation
| | - Yuliya LAZAREVA
- I.M. Sechenov First Moscow State Medical University, Russian Federation
| | | |
Collapse
|
20
|
Baima G, Iaderosa G, Corana M, Romano F, Citterio F, Giacomino A, Berta GN, Aimetti M. Macro and trace elements signature of periodontitis in saliva: A systematic review with quality assessment of ionomics studies. J Periodontal Res 2021; 57:30-40. [PMID: 34837226 PMCID: PMC9298699 DOI: 10.1111/jre.12956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Objectives The present systematic review examined the available evidence on distinctive salivary ion profile in periodontitis compared to periodontal health and provided a qualitative assessment of the literature. Background Macro and trace elements are essential for cellular physiology, and their changes in biological fluids can be revelatory of an underlying pathological status. Methods Data from relevant studies identified from PubMed, Embase, and Scopus databases were retrieved to answer the following PECO question: “In systemically healthy individuals, are there any differences in any salivary macro or trace element concentration between periodontally healthy subjects (H) and patients with periodontitis (P)?” Quality of included studies was rated using a modified version of the QUADOMICS tool. A consistency analysis was performed to identify significantly discriminant chemical elements. Results After the screening of 873 titles, 13 studies were included reporting data on 22 different elements. Among them, levels of sodium and potassium were consistently and significantly higher in P compared to H. Conflicting results were found for all the other elements, despite concentration of calcium, copper, and manganese mostly increased in saliva of P. Levels of magnesium were found higher in P than in H in 2 studies but lower in 3. Zinc resulted significantly increased in saliva from H compared to P individuals in 2 studies, but one study reported opposite results. Four studies were considered as high quality, while reporting of operative protocols and statistical analysis was a major limitation for the others. Due to high methodologic heterogeneity, meta‐analysis was not performed. Conclusions Levels of macro or trace elements were differentially identified in saliva across diverse periodontal conditions, having a major potential for investigation of oral homeostasis and for high‐resolution periodontal diagnosis. Products of inflammatory physiologic cellular impairment, such as sodium and potassium, were the most consistently associated with periodontitis (PROSPERO CRD42021235744).
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giovanni Iaderosa
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Matteo Corana
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Filippo Citterio
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Agnese Giacomino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giovanni N Berta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Gómez-Cebrián N, Vázquez Ferreiro P, Carrera Hueso FJ, Poveda Andrés JL, Puchades-Carrasco L, Pineda-Lucena A. Pharmacometabolomics by NMR in Oncology: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:ph14101015. [PMID: 34681239 PMCID: PMC8539252 DOI: 10.3390/ph14101015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Pharmacometabolomics (PMx) studies aim to predict individual differences in treatment response and in the development of adverse effects associated with specific drug treatments. Overall, these studies inform us about how individuals will respond to a drug treatment based on their metabolic profiles obtained before, during, or after the therapeutic intervention. In the era of precision medicine, metabolic profiles hold great potential to guide patient selection and stratification in clinical trials, with a focus on improving drug efficacy and safety. Metabolomics is closely related to the phenotype as alterations in metabolism reflect changes in the preceding cascade of genomics, transcriptomics, and proteomics changes, thus providing a significant advance over other omics approaches. Nuclear Magnetic Resonance (NMR) is one of the most widely used analytical platforms in metabolomics studies. In fact, since the introduction of PMx studies in 2006, the number of NMR-based PMx studies has been continuously growing and has provided novel insights into the specific metabolic changes associated with different mechanisms of action and/or toxic effects. This review presents an up-to-date summary of NMR-based PMx studies performed over the last 10 years. Our main objective is to discuss the experimental approaches used for the characterization of the metabolic changes associated with specific therapeutic interventions, the most relevant results obtained so far, and some of the remaining challenges in this area.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | | | | | | | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Correspondence: (L.P.-C.); (A.P.-L.); Tel.: +34-963246713 (L.P.-C.)
| | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Navarra, Spain
- Correspondence: (L.P.-C.); (A.P.-L.); Tel.: +34-963246713 (L.P.-C.)
| |
Collapse
|
22
|
Chen ZY, Xu TT, Liang ZJ, Zhao L, Xiong XQ, Xie KK, Yu WX, Zeng XW, Gao J, Zhou YH, Luo G, Yu T. Untargeted and targeted gingival metabolome in rodents reveal metabolic links between high-fat diet-induced obesity and periodontitis. J Clin Periodontol 2021; 48:1137-1148. [PMID: 33998036 DOI: 10.1111/jcpe.13486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022]
Abstract
AIM To characterize gingival metabolome in high-fat diet (HFD)-induced obesity in mice with/without periodontitis. METHODS HFD-induced obesity mouse model was established by 16-week feeding, and a lean control group was fed with low-fat diet (n = 21/group). Both models were induced for periodontitis on the left sides by molar ligation for 10 days, whereas the right sides were used as controls. Gingival metabolome and arginine metabolism were analysed by non-targeted/targeted liquid chromatography-mass spectrometry. RESULTS Of 2247 reference features, presence of periodontitis altered 165 in lean versus 885 in HFD mice; and HFD altered 525 in absence versus 1435 in presence of periodontitis. Compared with healthy condition, periodontitis and HFD had distinct effects on gingival metabolome. Metabolomic impacts of periodontitis were generally greater in HFD mice versus lean controls. K-medoids clustering showed that HFD amplified the impacts of periodontitis on gingival metabolome in both intensity and extensity. Ten metabolic pathways were enriched, including 2 specific to periodontitis, 5 specific to HFD and 3 shared ones. Targeted validation on arginine metabolism confirmed the additive effects between HFD and periodontitis. CONCLUSION The obese population consuming excessive HFD display amplified metabolic response to periodontitis, presenting a metabolic susceptibility to exacerbated periodontal destruction.
Collapse
Affiliation(s)
- Zi-Yun Chen
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tian-Tian Xu
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhao-Jia Liang
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Zhao
- Department of Prosthodontics, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Qin Xiong
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kun-Ke Xie
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wan-Xin Yu
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Wen Zeng
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Gao
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ying-Hong Zhou
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Queensland University of Technology, Centre for Biomedical Technologies, Queensland, Australia
| | - Gang Luo
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Yu
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Vignoli A, Risi E, McCartney A, Migliaccio I, Moretti E, Malorni L, Luchinat C, Biganzoli L, Tenori L. Precision Oncology via NMR-Based Metabolomics: A Review on Breast Cancer. Int J Mol Sci 2021; 22:ijms22094687. [PMID: 33925233 PMCID: PMC8124948 DOI: 10.3390/ijms22094687] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
Precision oncology is an emerging approach in cancer care. It aims at selecting the optimal therapy for the right patient by considering each patient’s unique disease and individual health status. In the last years, it has become evident that breast cancer is an extremely heterogeneous disease, and therefore, patients need to be appropriately stratified to maximize survival and quality of life. Gene-expression tools have already positively assisted clinical decision making by estimating the risk of recurrence and the potential benefit from adjuvant chemotherapy. However, these approaches need refinement to further reduce the proportion of patients potentially exposed to unnecessary chemotherapy. Nuclear magnetic resonance (NMR) metabolomics has demonstrated to be an optimal approach for cancer research and has provided significant results in BC, in particular for prognostic and stratification purposes. In this review, we give an update on the status of NMR-based metabolomic studies for the biochemical characterization and stratification of breast cancer patients using different biospecimens (breast tissue, blood serum/plasma, and urine).
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Emanuela Risi
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Amelia McCartney
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
- School of Clinical Sciences, Monash University, Melbourne 3800, Australia
| | - Ilenia Migliaccio
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Erica Moretti
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Luca Malorni
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), 50019 Sesto Fiorentino, Italy
- Correspondence: ; Tel.: +39-055-457-4296
| | - Laura Biganzoli
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
24
|
Baima G, Corana M, Iaderosa G, Romano F, Citterio F, Meoni G, Tenori L, Aimetti M. Metabolomics of gingival crevicular fluid to identify biomarkers for periodontitis: A systematic review with meta-analysis. J Periodontal Res 2021; 56:633-645. [PMID: 33710624 DOI: 10.1111/jre.12872] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
The present systematic review aimed to examine periodontitis-specific biomarkers in the gingival crevicular fluid (GCF) that could have a diagnostic relevance, and to provide a qualitative assessment of the current literature. Metabolites are reliable indicators of pathophysiological statuses, and their quantification in the GCF can provide an outlook of the changes associated with periodontitis and have diagnostic value. Relevant studies identified from PubMed, Embase, Cochrane Library, and Scopus databases were examined to answer the following PECO question: "In systemically healthy individuals, can concentration of specific metabolites in the GCF be used to discriminate subjects with healthy periodontium (H) or gingivitis from patients with periodontitis (P) and which is the diagnostic accuracy?" Quality of included studies was rated using a modified version of the QUADOMICS tool. Meta-analysis was conducted whenever possible. After the screening of 1,554 titles, 15 studies were selected, with sample size ranging from 30 to 93 subjects. Eleven studies performed targeted metabolomics analysis and provided data for 10 metabolites. Among the most consistent markers, malondialdehyde levels were found higher in the P group compared with H group (SMD = 2.86; 95% CI: 1.64, 4.08). Also, a significant increase of 8-hydroxy-deoxyguanosine, 4-hydroxynonenal, and neopterin was detected in periodontally diseased sites, while glutathione showed an inverse trend. When considering data from untargeted metabolomic analysis in four studies, more than 40 metabolites were found significantly discriminant, mainly related to amino acids and lipids degradation pathways. Notably, only one study reported measures of diagnostic accuracy. Several metabolites were differentially expressed in GCF of subjects across different periodontal conditions, having a major potential for investigating periodontal pathophysiology and for site-specific diagnosis. Oxidative stress-related molecules, such as malondialdehyde and 8-hydroxy-deoxyguanosine, were the most consistently associated to periodontitis (PROSPERO CRD42020188482).
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Matteo Corana
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giovanni Iaderosa
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Filippo Citterio
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Gaia Meoni
- Giotto Biotech S.R.L, Sesto Fiorentino, Florence, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Florence, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
25
|
Baima G, Iaderosa G, Citterio F, Grossi S, Romano F, Berta GN, Buduneli N, Aimetti M. Salivary metabolomics for the diagnosis of periodontal diseases: a systematic review with methodological quality assessment. Metabolomics 2021; 17:1. [PMID: 33387070 DOI: 10.1007/s11306-020-01754-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Early diagnosis of periodontitis by means of a rapid, accurate and non-invasive method is highly desirable to reduce the individual and epidemiological burden of this largely prevalent disease. OBJECTIVES The aims of the present systematic review were to examine potential salivary metabolic biomarkers and pathways associated to periodontitis, and to assess the accuracy of salivary untargeted metabolomics for the diagnosis of periodontal diseases. METHODS Relevant studies identified from MEDLINE (PubMed), Embase and Scopus databases were systematically examined for analytical protocols, metabolic biomarkers and results from the multivariate analysis (MVA). Pathway analysis was performed using the MetaboAnalyst online software and quality assessment by means of a modified version of the QUADOMICS tool. RESULTS Twelve studies met the inclusion criteria, with sample sizes ranging from 19 to 130 subjects. Compared to periodontally healthy individuals, valine, phenylalanine, isoleucine, tyrosine and butyrate were found upregulated in periodontitis patients in most studies; while lactate, pyruvate and N-acetyl groups were the most significantly expressed in healthy individuals. Metabolic pathways that resulted dysregulated are mainly implicated in inflammation, oxidative stress, immune activation and bacterial energetic metabolism. The findings from MVA revealed that periodontitis is characterized by a specific metabolic signature in saliva, with coefficients of determination ranging from 0.52 to 0.99. CONCLUSIONS This systematic review summarizes candidate metabolic biomarkers and pathways related to periodontitis, which may provide opportunities for the validation of diagnostic or predictive models and the discovery of novel targets for monitoring and treating such a disease (PROSPERO CRD42020188482).
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy.
| | - Giovanni Iaderosa
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Filippo Citterio
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Silvia Grossi
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giovanni N Berta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Nurcan Buduneli
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Changes in the Salivary Metabolic Profile of Generalized Periodontitis Patients after Non-surgical Periodontal Therapy: A Metabolomic Analysis Using Nuclear Magnetic Resonance Spectroscopy. J Clin Med 2020; 9:jcm9123977. [PMID: 33302593 PMCID: PMC7763572 DOI: 10.3390/jcm9123977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Pattern analysis of the salivary metabolic profile has been proven accurate in discriminating between generalized periodontitis (GP) patients and healthy individuals (HI), as this disease modifies the salivary concentrations of specific metabolites. Due to the scarcity of data from previous studies, this study aimed to evaluate if non-surgical periodontal therapy (NST) could affect the metabolomic profile in GP patients’ saliva and if it compares to that of HI. Unstimulated salivary samples were collected from 11 HI and 12 GP patients before and 3 months after NST. Nuclear Magnetic Resonance (NMR) spectroscopy, followed by a supervised multivariate statistical approach on entire saliva spectra and partial least square (PLS) discriminant analysis, were performed to obtain metabolic profiles. In the GP group, periodontal treatment improved all clinical parameters, but not all the diseased sites were eradicated. PLS revealed an accuracy of 100% in distinguishing between metabolic profiles of GP patients before and after NST. Orthogonal projection to latent structure was able to discriminate between the three groups of subjects with an accuracy of 85.6%. However, the post-NST metabolic profile of GP patients could not be completely assimilated to that of HI. Although NST may produce significant changes in the metabolic profile, GP patients maintained a distinctive fingerprint compared to HI.
Collapse
|
27
|
Ghini V, Tenori L, Pane M, Amoruso A, Marroncini G, Squarzanti DF, Azzimonti B, Rolla R, Savoia P, Tarocchi M, Galli A, Luchinat C. Effects of Probiotics Administration on Human Metabolic Phenotype. Metabolites 2020; 10:396. [PMID: 33036487 PMCID: PMC7601401 DOI: 10.3390/metabo10100396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
The establishment of the beneficial interactions between the host and its microbiota is essential for the correct functioning of the organism, since microflora alterations can lead to many diseases. Probiotics improve balanced microbial communities, exerting substantial health-promoting effects. Here we monitored the molecular outcomes, obtained by gut microflora modulation through probiotic treatment, on human urine and serum metabolic profiles, with a metabolomic approach. Twenty-two subjects were enrolled in the study and administered with two different probiotic types, both singularly and in combination, for 8 weeks. Urine and serum samples were collected before and during the supplementation and were analyzed by nuclear magnetic resonance (NMR) spectroscopy and statistical analyses. After eight weeks of treatment, probiotics deeply influence the urinary metabolic profiles of the volunteers, without significantly altering their single phenotypes. Anyway, bacteria supplementation tends to reduce the differences in metabolic phenotypes among individuals. Overall, the effects are recipient-dependent, and in some individuals, robust effects are already well visible after four weeks. Modifications in metabolite levels, attributable to each type of probiotic administration, were also monitored. Metabolomic analysis of biofluids turns out to be a powerful technique to monitor the dynamic interactions between the microflora and the host, and the individual response to probiotic assumption.
Collapse
Affiliation(s)
- Veronica Ghini
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy;
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy;
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Pane
- Probiotical S.p.A., 28100 Novara, Italy; (M.P.); (A.A.)
| | | | - Giada Marroncini
- Department of Experimental and Clinical Biochemical Sciences “Mario Serio”, University of Florence, 50100 Firenze, Italy; (G.M.); (M.T.); (A.G.)
| | - Diletta Francesca Squarzanti
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (D.F.S.); (B.A.); (R.R.); (P.S.)
- Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), DiSS, UPO, Corso Trieste 15/A, 28100 Novara, Italy
| | - Barbara Azzimonti
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (D.F.S.); (B.A.); (R.R.); (P.S.)
- Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), DiSS, UPO, Corso Trieste 15/A, 28100 Novara, Italy
| | - Roberta Rolla
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (D.F.S.); (B.A.); (R.R.); (P.S.)
- Clinical Chemistry Unit, Azienda Ospedaliero Universitaria Maggiore della Carità, Corso Mazzini 18, 28100 Novara, Italy
| | - Paola Savoia
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (D.F.S.); (B.A.); (R.R.); (P.S.)
- SCDU Dermatology, AOU Maggiore della Carità, 28100 Novara, Italy
| | - Mirko Tarocchi
- Department of Experimental and Clinical Biochemical Sciences “Mario Serio”, University of Florence, 50100 Firenze, Italy; (G.M.); (M.T.); (A.G.)
| | - Andrea Galli
- Department of Experimental and Clinical Biochemical Sciences “Mario Serio”, University of Florence, 50100 Firenze, Italy; (G.M.); (M.T.); (A.G.)
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy;
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy;
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
28
|
Nguyen T, Sedghi L, Ganther S, Malone E, Kamarajan P, Kapila YL. Host-microbe interactions: Profiles in the transcriptome, the proteome, and the metabolome. Periodontol 2000 2020; 82:115-128. [PMID: 31850641 DOI: 10.1111/prd.12316] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontal studies using transcriptomics, proteomics, and metabolomics encompass the collection of mRNA transcripts, proteins, and small-molecule chemicals in the context of periodontal health and disease. The number of studies using these approaches has significantly increased in the last decade and they have provided new insight into the pathogenesis and host-microbe interactions that define periodontal diseases. This review provides an overview of current molecular findings using -omic approaches that underlie periodontal disease, including modulation of the host immune response, tissue homeostasis, and complex metabolic processes of the host and the oral microbiome. Integration of these -omic approaches will broaden our perspective of the molecular mechanisms involved in periodontal disease, advancing and improving the diagnosis and treatment of various stages and forms of periodontal disease.
Collapse
Affiliation(s)
- Trang Nguyen
- School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Lea Sedghi
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
29
|
DHA-Induced Perturbation of Human Serum Metabolome. Role of the Food Matrix and Co-Administration of Oat β-glucan and Anthocyanins. Nutrients 2019; 12:nu12010086. [PMID: 31892215 PMCID: PMC7019822 DOI: 10.3390/nu12010086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
Docosahexaenoic acid (DHA) has been reported to have a positive impact on many diet-related disease risks, including metabolic syndrome. Although many DHA-enriched foods have been marketed, the impact of different food matrices on the effect of DHA is unknown. As well, the possibility to enhance DHA effectiveness through the co-administration of other bioactives has seldom been considered. We evaluated DHA effects on the serum metabolome administered to volunteers at risk of metabolic syndrome as an ingredient of three different foods. Foods were enriched with DHA alone or in combination with oat beta-glucan or anthocyanins and were administered to volunteers for 4 weeks. Serum samples collected at the beginning and end of the trial were analysed by NMR-based metabolomics. Multivariate and univariate statistical analyses were used to characterize modifications in the serum metabolome and to evaluate bioactive-bioactive and bioactive-food matrix interactions. DHA administration induces metabolome perturbation that is influenced by the food matrix and the co-presence of other bioactives. In particular, when co-administered with oat beta-glucan, DHA induces a strong rearrangement in the lipoprotein profile of the subjects. The observed modifications are consistent with clinical results and indicate that metabolomics represents a possible strategy to choose the most appropriate food matrices for bioactive enrichment.
Collapse
|