1
|
Tak HJ, Moon JW, Kim JY, Kang SH, Lee SH. Transition of endochondral bone formation at the normal and botulinum-treated mandibular condyle of growing juvenile rat. Arch Oral Biol 2024; 164:105999. [PMID: 38815512 DOI: 10.1016/j.archoralbio.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE The aim of this study was to understand the temporal and spatial distribution of canonical endochondral ossification (CEO) and non-canonical endochondral ossification (NCEO) of the normal growing rat condyle, and to evaluate their histomorphological changes following the simultaneous hypotrophy of the unilateral masticatory closing muscles with botulinum toxin (BTX). DESIGN 46 rats at postnatal 4 weeks were used for the experiment and euthanized at postnatal 4, 8, and 16 weeks. The right masticatory muscles of rats in experimental group were injected with BTX, the left being injected with saline as a control. The samples were evaluated using 3D morphometric, histological, and immunohistochemical analysis with three-dimensional regional mapping of endochondral ossifications. RESULTS The results showed that condylar endochondral ossification changed from CEO to NCEO at the main articulating surface during the experimental period and that the BTX-treated condyle presented a retroclined smaller condyle with an anteriorly-shifted narrower articulating surface. This articulating region showed a thinner layer of the endochondral cells, and a compact distribution of flattened cells. These were related to the load concentration, decreased cellular proliferation with thin cellular layers, reduced extracellular matrix, increased cellular differentiation toward the osteoblastic bone formation, and accelerated transition of the ossification types from CEO to NCEO. CONCLUSION The results suggest that endochondral ossification under loading tended to show more NCEO, and that masticatory muscular hypofunction by BTX had deleterious effects on endochondral bone formation and changed the condylar growth vector, resulting in a retroclined, smaller, asymmetrical, and deformed condyle with thin cartilage.
Collapse
Affiliation(s)
- Hye-Jin Tak
- Oral Science Research Center, Yonsei University, College of Dentistry, Seoul, the Republic of Korea
| | - Joo-Won Moon
- Oral Science Research Center, Yonsei University, College of Dentistry, Seoul, the Republic of Korea
| | - Jae-Young Kim
- Dept. of Oral and Maxillofacial Surgery, Yonsei University, College of Dentistry, Seoul, the Republic of Korea
| | - Sang-Hoon Kang
- Dept. of Oral and Maxillofacial Surgery, National Health Insurance Service Ilsan Hospital, Goyang, the Republic of Korea
| | - Sang-Hwy Lee
- Oral Science Research Center, Yonsei University, College of Dentistry, Seoul, the Republic of Korea; Dept. of Oral and Maxillofacial Surgery, Yonsei University, College of Dentistry, Seoul, the Republic of Korea.
| |
Collapse
|
2
|
Chen Y, Luo M, Xie Y, Xing L, Han X, Tian Y. Periodontal ligament-associated protein-1 engages in teeth overeruption and periodontal fiber disorder following occlusal hypofunction. J Periodontal Res 2023; 58:131-142. [PMID: 36445954 DOI: 10.1111/jre.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND AND OBJECTIVE Teeth overeruption is a problem of clinical significance, but the underlying mechanism how changes in external occlusal force convert to the periodontium remodeling signals has been a largely under explored domain. And recently, periodontal ligament-associated protein-1 (PLAP-1)/asporin was found to play a pivotal role in maintaining periodontal homeostasis. The aim of this study was to explore the function of PLAP-1 in the periodontally hypofunctional tissue turnover. METHODS After extracting left maxillary molars in mice, the left and right mandibular molars were distributed into hypofunction group (HG) and control group (CG), respectively. Mice were sacrificed for radiographic, histological, and molecular biological analyses after 1, 4 and 12 weeks. In vitro, dynamic compression was applied using Flexcell FX-5000 Compression System to simulate intermittent occlusal force. The expression of PLAP1 in loaded and unloaded human periodontal ligament cells (hPDLCs) was compared, and its molecular biological effects were further explored by small interfering RNA (siRNA) targeting PLAP1. RESULTS In vivo, fiber disorder in periodontal ligament (PDL), bone apposition at furcation regions, and bone resorption in alveolar bone were illustrated in the HG compared with the CG. In addition, PLAP-1 positive area decreased significantly in PDL following occlusal unloading. In vitro, the loss of compressive loading relatively downregulated PLAP1 expression, which was essential to promote collagen I but inhibit osterix and osteocalcin expression in hPDLCs. CONCLUSIONS PLAP-1 presumably plays a pivotal role in occlusal force-regulated periodontal homeostasis by facilitating collagen fiber synthesis in hPDLCs and suppressing excessive osteoblast differentiation, further preventing teeth from overeruption. Further evidence in PLAP-1 conditional knockout mice is needed.
Collapse
Affiliation(s)
- Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengqi Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaxin Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Can Botulinum Toxin-A Contribute to Reconstructing the Physiological Homeostasis of the Masticatory Complex in Short-Faced Patients during Occlusal Therapy? A Prospective Pilot Study. Toxins (Basel) 2022; 14:toxins14060374. [PMID: 35737035 PMCID: PMC9227267 DOI: 10.3390/toxins14060374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
The physiological homeostasis of the masticatory complex in short-faced patients is too robust to be disintegrated and reconstructed due to the powerful masseter muscle. This study innovatively introduced the botulinum toxin-A (BTX-A) into the field of dental occlusal treatment, providing a novel and minimally invasive therapy perspective for the two major clinical problems in these patients (low treatment efficiency and high rates of complications). In total, 10 adult patients with skeletal low angle seeking occlusal treatment (age: 27.0 ± 6.1 years; 4 males and 6 females) were administered 30−50 U of BTX-A in each masseter muscle and evaluated before and 3 months after injection based on cone-beam computed tomography (CBCT). We found a significant reduction in the thickness of the masseter muscle (MMT) (p < 0.0001). With regards to occlusion, we found a significant increase in the height of the maxillary second molar (U7-PP) (p < 0.05) with significantly flattened occlusal curves (the curve of Spee [COS] (p < 0.01), and the curve of Wilson [COW] (p < 0.05)). Furthermore, the variations in the temporomandibular joint exhibited a significant reduction in the anterior joint space (AJS) (p < 0.05) and superior joint space (SJS) (p < 0.05). In addition, the correlation analysis of the masticatory complex provided the basis for the following multiple regression equation: MMT = 10.08 − 0.11 COW + 2.73 AJS. The findings from our pilot study indicate that BTX-A, as a new adjuvant treatment attempt of occlusal therapy for short-faced patients, can provide a more favorable muscular environment for subsequent occlusal therapy through the adjustment of the biting force and may contribute to the reconstruction of healthier homeostasis of the masticatory complex. However, further research is required to establish the reliability and validity of these findings.
Collapse
|
4
|
Yu JL, Tangutur A, Thuler E, Evans M, Dedhia RC. The role of craniofacial maldevelopment in the modern OSA epidemic: a scoping review. J Clin Sleep Med 2022; 18:1187-1202. [PMID: 34984972 PMCID: PMC8974375 DOI: 10.5664/jcsm.9866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES There is increasing recognition that environmental factors affect human craniofacial development and our risk for disease. A scoping review of the literature was performed looking at environmental influences on craniofacial development to better understand this relationship and investigate what further study is needed to determine how this relationship may impact obstructive sleep apnea. METHODS A comprehensive literature search was performed using the Ovid Medline database from inception to May 2020 with relevance to craniofacial development in 5 clinically oriented variables: diet, secular change, breastfeeding/nonnutritive sucking habits, nasal obstruction/mouth breathing, and masticatory muscle function. The Oxford Centre for Evidence-Based Medicine Levels of Evidence was used to assess studies based on study design. RESULTS We initially identified 18,196 articles, of which 260 studies were fully reviewed and 97 articles excluded. The remaining 163 articles were categorized as follows: secular change (n = 16), diet (n = 33), breastfeeding/nonnutritive sucking habits (n = 28), nasal obstruction/mouth breathing (n = 57), and masticatory muscle function (n = 35). Ninety-three percent of included studies reported a significant association between craniofacial morphology and environmental factors. The majority of studies were characterized as low-level-of-evidence studies, with 90% of studies being a level-of-evidence of 4 or 5. CONCLUSIONS The studies in this review suggest that environmental factors are associated with changes in craniofacial development. However, most studies were heterogeneous and low-level studies, making strong conclusions about these relationships difficult. Future rigorous studies are needed to further our understanding of environmental influences on craniofacial development and obstructive sleep apnea risk. CITATION Yu JL, Tangutur A, Thuler E, Evans M, Dedhia RC. The role of craniofacial maldevelopment in the modern OSA epidemic: a scoping review. J Clin Sleep Med. 2022;18(4):1187-1202.
Collapse
Affiliation(s)
- Jason L. Yu
- Division of Sleep Surgery, Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Akshay Tangutur
- Division of Sleep Surgery, Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric Thuler
- Division of Sleep Surgery, Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marianna Evans
- Division of Sleep Surgery, Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raj C. Dedhia
- Division of Sleep Surgery, Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Kusaba G, Matsunaga S, Kitamura K, Kasahara M, Shimoo Y, Abe S, Nakano T, Ishimoto T, Hikita A, Nojima K, Nishii Y. Micro/nanostructural Characteristic Changes in the Mandibles of Rats after Injection of Botulinum Neurotoxin. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gaku Kusaba
- Oral Health Science Center, Tokyo Dental College
- Department of Orthodontics, Tokyo Dental College
| | - Satoru Matsunaga
- Oral Health Science Center, Tokyo Dental College
- Department of Anatomy, Tokyo Dental College
| | - Kei Kitamura
- Department of Oral Ultrastructural Science, Tokyo Dental College
| | | | | | | | - Takayoshi Nakano
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University
| | - Takuya Ishimoto
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University
| | - Atsuhiko Hikita
- Department of Cell & Tissue Engineering (Fujisoft), Graduate School of Medicine, The University of Tokyo
| | | | | |
Collapse
|