1
|
Zhang N, Liao H, Lin Z, Tang Q. Insights into the Role of Glutathione Peroxidase 3 in Non-Neoplastic Diseases. Biomolecules 2024; 14:689. [PMID: 38927092 PMCID: PMC11202029 DOI: 10.3390/biom14060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROSs) are byproducts of normal cellular metabolism and play pivotal roles in various physiological processes. Disruptions in the balance between ROS levels and the body's antioxidant defenses can lead to the development of numerous diseases. Glutathione peroxidase 3 (GPX3), a key component of the body's antioxidant system, is an oxidoreductase enzyme. GPX3 mitigates oxidative damage by catalyzing the conversion of hydrogen peroxide into water. Beyond its antioxidant function, GPX3 is vital in regulating metabolism, modulating cell growth, inducing apoptosis and facilitating signal transduction. It also serves as a significant tumor suppressor in various cancers. Recent studies have revealed aberrant expression of GPX3 in several non-neoplastic diseases, associating it with multiple pathological processes. This review synthesizes the current understanding of GPX3 expression and regulation, highlighting its extensive roles in noncancerous diseases. Additionally, this paper evaluates the potential of GPX3 as a diagnostic biomarker and explores emerging therapeutic strategies targeting this enzyme, offering potential avenues for future clinical treatment of non-neoplastic conditions.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Haihan Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
2
|
Katsa ME, Kostopoulou E, Nomikos T, Ioannidis A, Sarris V, Papadogiannis S, Spiliotis BE, Rojas Gil AP. The Response of Antioxidant Enzymes and Antiapoptotic Markers to an Oral Glucose Tolerance Test (OGTT) in Children and Adolescents with Excess Body Weight. Int J Mol Sci 2023; 24:16517. [PMID: 38003707 PMCID: PMC10672007 DOI: 10.3390/ijms242216517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress and apoptosis are involved in the pathogenesis of obesity-related diseases. This observational study investigates the antioxidant and apoptotic markers response to an oral glucose tolerance test (OGTT) in a population of overweight children and adolescents, with normal (NGT) or impaired glucose tolerance (IGT). Glucose, insulin, and C-peptide concentrations, as well as oxidative stress (SOD, GPx3) and apoptotic markers (Apo1fas, cck18), were determined at T = 0, 30, 60, 90, 120, and 180 min after glucose intake during OGTT. The lipid profile, thyroid function, insulin-like growth factor1, leptin, ghrelin, and adiponectin were also measured at baseline. The 45 participants, with a mean age of 12.15 (±2.3) years old, were divided into two subcategories: those with NGΤ (n = 31) and those with IGT (n = 14). The area under the curve (AUC) of glucose, insulin, and C-peptide was greater in children with IGT; however, only glucose differences were statistically significant. SOD and GPx3 levels were higher at all time points in the IGT children. Apo1fas and cck18 levels were higher in the NGT children at most time points, whereas Adiponectin was lower in the IGT group. Glucose increased during an OGTT accompanied by a simultaneous increase in antioxidant factors, which may reflect a compensatory mechanism against the impending increase in oxidative stress in children with IGT.
Collapse
Affiliation(s)
- Maria Efthymia Katsa
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (M.E.K.); (A.I.); (V.S.); (S.P.)
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece;
| | - Eirini Kostopoulou
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Patras, 26504 Patras, Greece; (E.K.); (B.E.S.)
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece;
| | - Anastasios Ioannidis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (M.E.K.); (A.I.); (V.S.); (S.P.)
| | - Vasileios Sarris
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (M.E.K.); (A.I.); (V.S.); (S.P.)
| | - Spyridon Papadogiannis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (M.E.K.); (A.I.); (V.S.); (S.P.)
| | - Bessie E. Spiliotis
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Patras, 26504 Patras, Greece; (E.K.); (B.E.S.)
| | - Andrea Paola Rojas Gil
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (M.E.K.); (A.I.); (V.S.); (S.P.)
| |
Collapse
|
3
|
Moulder R, Välikangas T, Hirvonen MK, Suomi T, Brorsson CA, Lietzén N, Bruggraber SFA, Overbergh L, Dunger DB, Peakman M, Chmura PJ, Brunak S, Schulte AM, Mathieu C, Knip M, Elo LL, Lahesmaa R. Targeted serum proteomics of longitudinal samples from newly diagnosed youth with type 1 diabetes distinguishes markers of disease and C-peptide trajectory. Diabetologia 2023; 66:1983-1996. [PMID: 37537394 PMCID: PMC10542287 DOI: 10.1007/s00125-023-05974-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/06/2023] [Indexed: 08/05/2023]
Abstract
AIMS/HYPOTHESIS There is a growing need for markers that could help indicate the decline in beta cell function and recognise the need and efficacy of intervention in type 1 diabetes. Measurements of suitably selected serum markers could potentially provide a non-invasive and easily applicable solution to this challenge. Accordingly, we evaluated a broad panel of proteins previously associated with type 1 diabetes in serum from newly diagnosed individuals during the first year from diagnosis. To uncover associations with beta cell function, comparisons were made between these targeted proteomics measurements and changes in fasting C-peptide levels. To further distinguish proteins linked with the disease status, comparisons were made with measurements of the protein targets in age- and sex-matched autoantibody-negative unaffected family members (UFMs). METHODS Selected reaction monitoring (SRM) mass spectrometry analyses of serum, targeting 85 type 1 diabetes-associated proteins, were made. Sera from individuals diagnosed under 18 years (n=86) were drawn within 6 weeks of diagnosis and at 3, 6 and 12 months afterwards (288 samples in total). The SRM data were compared with fasting C-peptide/glucose data, which was interpreted as a measure of beta cell function. The protein data were further compared with cross-sectional SRM measurements from UFMs (n=194). RESULTS Eleven proteins had statistically significant associations with fasting C-peptide/glucose. Of these, apolipoprotein L1 and glutathione peroxidase 3 (GPX3) displayed the strongest positive and inverse associations, respectively. Changes in GPX3 levels during the first year after diagnosis indicated future fasting C-peptide/glucose levels. In addition, differences in the levels of 13 proteins were observed between the individuals with type 1 diabetes and the matched UFMs. These included GPX3, transthyretin, prothrombin, apolipoprotein C1 and members of the IGF family. CONCLUSIONS/INTERPRETATION The association of several targeted proteins with fasting C-peptide/glucose levels in the first year after diagnosis suggests their connection with the underlying changes accompanying alterations in beta cell function in type 1 diabetes. Moreover, the direction of change in GPX3 during the first year was indicative of subsequent fasting C-peptide/glucose levels, and supports further investigation of this and other serum protein measurements in future studies of beta cell function in type 1 diabetes.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - M Karoliina Hirvonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Caroline A Brorsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Boston, MA, USA
| | - Piotr J Chmura
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Chantal Mathieu
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Mikael Knip
- Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
4
|
Lubkowska A, Dudzińska W, Pluta W. Antioxidant Enzyme Activity and Serum HSP70 Concentrations in Relation to Insulin Resistance and Lipid Profile in Lean and Overweight Young Men. Antioxidants (Basel) 2023; 12:antiox12030655. [PMID: 36978903 PMCID: PMC10044875 DOI: 10.3390/antiox12030655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Oxidants are generated by all cells during normal oxidative respiration, and as long as they are under the control of appropriate mechanisms, they act as intracellular signaling molecules participating in complex functions. Oxidative stress can also affect insulin levels in the body. The production of reactive oxygen species by-products can lead to insulin resistance. Heat shock proteins (70 kDa) protect cells from the damaging effects of heat shock but also oxidative stress. The aim of the study was to investigate the serum concentration of HSP70 in young, non-obese but overweight men (BMI ≤ 30 kg/m2) and to assess its association with the insulin resistance, lipid profile and antioxidant system of red blood cells. Fifty-seven young men were examined and divided into two groups: lean men (n = 30) and men overweight (n = 27). A statistically significant difference was observed in the BMI (p < 0.007), HSP70 concentration (p < 0.000), serum insulin concentration (p < 0.000), HOMA-IR (p < 0.0001), superoxide dismutase (p < 0.02) and glutathione peroxidase (p < 0.05) between the studied groups. There was a negative correlation between the concentration of HSP70 with the insulin level (r = −0.50; p < 0.0004) and with the HOMA-IR (r = −0.50; p < 0.0004). These changes were associated with an increase in the activity of antioxidant enzymes. Our findings suggest that measuring the extracellular concentration of HSP70 can be an important indicator in disorders of glucose homeostasis.
Collapse
Affiliation(s)
- Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland
- Correspondence:
| | - Wioleta Dudzińska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Waldemar Pluta
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland
| |
Collapse
|
5
|
Campione E, Mazzilli S, Di Prete M, Dattola A, Cosio T, Lettieri Barbato D, Costanza G, Lanna C, Manfreda V, Gaeta Schumak R, Prignano F, Coniglione F, Ciprani F, Aquilano K, Bianchi L. The Role of Glutathione-S Transferase in Psoriasis and Associated Comorbidities and the Effect of Dimethyl Fumarate in This Pathway. Front Med (Lausanne) 2022; 9:760852. [PMID: 35211489 PMCID: PMC8863102 DOI: 10.3389/fmed.2022.760852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Psoriasis vulgaris is a chronic inflammatory skin disease characterized by well-demarcated scaly plaques. Oxidative stress plays a crucial role in the psoriasis pathogenesis and is associated with the disease severity. Dimethyl fumarate modulates the activity of the pro-inflammatory transcription factors. This is responsible for the downregulation of inflammatory cytokines and an overall shift from a pro-inflammatory to an anti-inflammatory/regulatory response. Both steps are necessary for the amelioration of psoriatic inflammation, although additional mechanisms have been proposed. Several studies reported a long-term effectiveness and safety of dimethyl fumarate monotherapy in patients with moderate-to-severe psoriasis. Furthermore, psoriasis is a chronic disease often associated to metabolic comorbidities, as obesity, diabetes, and cardiovascular diseases, in which glutathione-S transferase deregulation is present. Glutathione-S transferase is involved in the antioxidant system. An increase of its activity in psoriatic epidermis in comparison with the uninvolved and normal epidermal biopsies has been reported. Dimethyl fumarate depletes glutathione-S transferase by formation of covalently linked conjugates. This review investigates the anti-inflammatory role of dimethyl fumarate in oxidative stress and its effect by reducing oxidative stress. The glutathione-S transferase regulation is helpful in treating psoriasis, with an anti-inflammatory effect on the keratinocytes hyperproliferation, and in modulation of metabolic comorbidities.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, University of Rome Tor Vergata, Rome, Italy
| | - Sara Mazzilli
- Italy State Police Health Service Department, Ministry of Interior, Rome, Italy
| | - Monia Di Prete
- Anatomic Pathology Unit, University of Rome Tor Vergata, Rome, Italy.,Anatomic Pathology, Santa Maria di Ca' Foncello Hospital, Treviso, Italy
| | | | - Terenzio Cosio
- Dermatology Unit, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | | | - Caterina Lanna
- Dermatology Unit, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Francesca Prignano
- Unit of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Filadelfo Coniglione
- Department of Surgical Sciences, University Nostra Signora del Buon Consiglio, Tirana, Albania
| | - Fabrizio Ciprani
- Italy State Police Health Service Department, Ministry of Interior, Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Redox Regulation of Lipid Mobilization in Adipose Tissues. Antioxidants (Basel) 2021; 10:antiox10071090. [PMID: 34356323 PMCID: PMC8301038 DOI: 10.3390/antiox10071090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid mobilization in adipose tissues, which includes lipogenesis and lipolysis, is a paramount process in regulating systemic energy metabolism. Reactive oxygen and nitrogen species (ROS and RNS) are byproducts of cellular metabolism that exert signaling functions in several cellular processes, including lipolysis and lipogenesis. During lipolysis, the adipose tissue generates ROS and RNS and thus requires a robust antioxidant response to maintain tight regulation of redox signaling. This review will discuss the production of ROS and RNS within the adipose tissue, their role in regulating lipolysis and lipogenesis, and the implications of antioxidants on lipid mobilization.
Collapse
|
7
|
Gusti AMT, Qusti SY, Alshammari EM, Toraih EA, Fawzy MS. Antioxidants-Related Superoxide Dismutase ( SOD), Catalase ( CAT), Glutathione Peroxidase ( GPX), Glutathione-S-Transferase ( GST), and Nitric Oxide Synthase ( NOS) Gene Variants Analysis in an Obese Population: A Preliminary Case-Control Study. Antioxidants (Basel) 2021; 10:595. [PMID: 33924357 PMCID: PMC8070436 DOI: 10.3390/antiox10040595] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress and antioxidants play an important role in obesity etiopathology. Genetic variants, including single nucleotide polymorphisms (SNPs) of the antioxidant-related genes, may impact disease risk in several populations. This preliminary study aimed to explore the association of 12 SNPs related to superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) genes with obesity susceptibility in a Saudi population. A total of 384 unrelated participants, including 154 (40.1%) obese individuals, were enrolled. TaqMan OpenArray Genotyping assays were used. Six SNPs were significantly more prevalent in obese cohorts: (1) GSTM1 rs1056806*C/T; (2) SOD1 rs2234694*A; (3) SOD2 rs4880*G; (4) SOD3 rs2536512*A; (5) GPX1 rs1800668*A; (6) NOS3 rs1799983*G. Four SNPs were associated with higher obesity risk under heterozygote and dominant models for GSTM1 rs1056806 (C/T), homozygote model for SOD2 rs4880 (A/G), and homozygote and recessive models for GPX1 rs1800668 (A/G). In contrast, SOD3 rs2536512 (A/G) were less likely to be obese under heterozygote and dominant models. The CGAG, CAAA, TGGG, and CGAG combined genotypes showed a higher risk of obesity. In conclusion, the present results suggest that oxidative-stress-related genetic determinants could significantly associate with obesity risk in the study population.
Collapse
Affiliation(s)
- Amani M. T. Gusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.T.G.); (S.Y.Q.)
- Department of Medical Laboratory, Biochemistry, King Fahad Armed Forces Hospital, Jeddah 21159, Saudi Arabia
| | - Safaa Y. Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.T.G.); (S.Y.Q.)
| | - Eida M. Alshammari
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Eman A. Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| |
Collapse
|
8
|
Ling P, Shan W, Zhai G, Qiu C, Liu Y, Xu Y, Yang X. Association between glutathione peroxidase-3 activity and carotid atherosclerosis in patients with type 2 diabetes mellitus. Brain Behav 2020; 10:e01773. [PMID: 32862561 PMCID: PMC7559603 DOI: 10.1002/brb3.1773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Deficiency of glutathione peroxidase 3 (GPx3) has been recognized as an independent risk factor for cardiovascular events. However, little is known regarding the role of GPx3 in carotid atherosclerosis, which is ubiquitously observed in type 2 diabetes mellitus (T2DM). This study aimed to investigate the relationship between GPx3 activity and carotid atherosclerosis among patients with T2DM. METHODS From January 2018 to December 2018, 245 consecutive patients with T2DM were enrolled in this observational study. Assessment of serum GPx3 activity was performed after admission. We also used carotid ultrasound to measure the mean carotid intima-media thickness (CIMT) and to assess the presence of carotid plaque. RESULTS Of the 245 patients, the median serum GPx3 activity was 22.5 U/ml (interquartile range, 12.4-35.9 U/ml). Carotid plaque was observed in 113 (46.1%) patients, and mean CIMT was 0.8 ± 0.1 mm. Univariate analysis showed that age, smoking, previous coronary heart disease, carotid plaque, and level of mean CIMT and hypersensitive C-reactive protein were significantly associated with decreasing tertile of GPx3. Furthermore, after adjusting for all potential confounders by multivariable logistic regression analysis, PGx3 activity was significantly and independently associated with the mean CIMT (β = -.406, p = .002) and carotid plaque (first tertile of GPx3, odds ratio, 1.870, 95% confidence intervals, 1.124-3.669, p = .024). CONCLUSIONS This study demonstrated that serum GPx3 activity was inversely associated with mean CIMT and carotid plaque, suggesting that lower GPx3 activity may be an independent predictor for carotid atherosclerosis in T2DM.
Collapse
Affiliation(s)
- Ping Ling
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, China
| | - Wanying Shan
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, China
| | - Guojie Zhai
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, China
| | - Chunfang Qiu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, China
| | - Yuan Liu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, China
| | - Xiuyan Yang
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, China
| |
Collapse
|
9
|
Chang C, Worley BL, Phaëton R, Hempel N. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer. Cancers (Basel) 2020; 12:cancers12082197. [PMID: 32781581 PMCID: PMC7464599 DOI: 10.3390/cancers12082197] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells possess a multifaceted antioxidant enzyme system, which includes superoxide dismutases, catalase, the peroxiredoxin/thioredoxin and the glutathione peroxidase systems. The dichotomous role of reactive oxygen species and antioxidant enzymes in tumorigenesis and cancer progression complicates the use of small molecule antioxidants, pro-oxidants, and targeting of antioxidant enzymes as therapeutic approaches for cancer treatment. It also highlights the need for additional studies to investigate the role and regulation of these antioxidant enzymes in cancer. The focus of this review is on glutathione peroxidase 3 (GPx3), a selenoprotein, and the only extracellular GPx of a family of oxidoreductases that catalyze the detoxification of hydro- and soluble lipid hydroperoxides by reduced glutathione. In addition to summarizing the biochemical function, regulation, and disease associations of GPx3, we specifically discuss the role and regulation of systemic and tumor cell expressed GPx3 in cancer. From this it is evident that GPx3 has a dichotomous role in different tumor types, acting as both a tumor suppressor and pro-survival protein. Further studies are needed to examine how loss or gain of GPx3 specifically affects oxidant scavenging and redox signaling in the extracellular tumor microenvironment, and how GPx3 might be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Caroline Chang
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Beth L. Worley
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Rébécca Phaëton
- Department of Obstetrics & Gynecology & Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Nadine Hempel
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
- Correspondence: ; Tel.: +1-717-531-4037
| |
Collapse
|
10
|
Antioxidant Enzymes Haplotypes and Polymorphisms Associated with Obesity in Mexican Children. Antioxidants (Basel) 2020; 9:antiox9080684. [PMID: 32752212 PMCID: PMC7464274 DOI: 10.3390/antiox9080684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is a major health problem worldwide and constitutes a sanitary emergency in Mexico, especially childhood obesity. Several studies have proved the relationship between obesity and oxidative stress and the influence of genetic predisposition. This work was aimed to analyze the association of antioxidant enzyme polymorphisms with overweight and obesity in Mexican children and adolescents. A case-control study was performed in 585 children and adolescents aged 3 to 17 years, using two criteria to classify obesity: body mass index (BMI) and body fat percentage (BFP). Anthropometric and biochemical measurements were carried out, and malondialdehyde serum levels were determined. Genotyping was done with the Axiom Genome-Wide LAT microarray, including 68 single nucleotide polymorphisms (SNPs) of the glutathione peroxidase (GPX) and paraoxonase (PON) families. We found six haplotypes associated with obesity—two of them (one in GPX3 and the other in GPX5 and GPX6) in a protective direction when obesity was classified by BMI. The other four haplotypes were associated with obesity when classification was based on BFP—one of them in GPX3 in a protective direction and the others in PON genes conferring obesity risk. In addition, two SNPs, GPX3 rs922429 and GPX4 rs2074451 showed protection against obesity classified by BFP. This study showed genetic susceptibility to oxidative stress in relation to obesity in Mexican children and opens up the possibility that some genetic loci related to obesity are not identified when weight classification is based on BMI.
Collapse
|
11
|
Zhao Z, Kim J, Lei XG. High Dietary Fat and Selenium Concentrations Exert Tissue- and Glutathione Peroxidase 1-Dependent Impacts on Lipid Metabolism of Young-Adult Mice. J Nutr 2020; 150:1738-1748. [PMID: 32386229 PMCID: PMC7330460 DOI: 10.1093/jn/nxaa130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Excessive dietary selenium (Se; 3 mg/kg) or fat (>25%) intakes and overproduction of glutathione peroxidase 1 (GPX1) adversely affect body lipid metabolism. OBJECTIVE The objective was to reveal impacts and mechanisms of a moderately high Se and a high fat intake on lipid metabolism in Gpx1 knockout (KO) and wild-type (WT) mice. METHODS The KO and WT mice (males, 12-wk-old, body weight = 24.8 ± 0.703 g) were allotted to 4 groups each (n = 5) and fed a sucrose-torula yeast basal diet (5% corn oil) supplemented with 0.3 or 1.0 mg (+Se) Se/kg (as sodium selenite) and 0% or 25% [high-fat (HF)] lard for 6 wk. Multiple physiological and molecular biomarkers (68) related to lipid metabolism and selenogenome expression in plasma, liver, and/or adipose tissue were analyzed by 2-way (+Se by HF) ANOVA. RESULTS Compared with the control diet, the +Se diet decreased (P < 0.05) body-weight gain and plasma and liver concentrations of lipids (22-66%) but elevated (≤1.5-fold, P < 0.05) adipose tissue concentrations of lipids in the WT mice. The +Se diet up- and downregulated (P < 0.05) mRNA and/or protein concentrations of factors related to lipogenesis, selenogenome, and transcription, stress, and cell cycle in the liver (26% to 176-fold) and adipose tissues (14% to 1-fold), respectively, compared with the control diet in the WT mice. Many of these +Se diet effects were different (P < 0.05) from those of the HF diet and were eliminated or altered (P < 0.05) by the KO. CONCLUSIONS The +Se and HF diets exerted tissue-specific and GPX1 expression-dependent impacts on lipid metabolism and related gene expression in the young-adult mice. Our findings will help reveal metabolic potential and underlying mechanisms of supplementing moderately high Se to subjects with HF intakes.
Collapse
Affiliation(s)
- Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Jonggun Kim
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
12
|
Selenium and Selenoproteins in Adipose Tissue Physiology and Obesity. Biomolecules 2020; 10:biom10040658. [PMID: 32344656 PMCID: PMC7225961 DOI: 10.3390/biom10040658] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Selenium (Se) homeostasis is tightly related to carbohydrate and lipid metabolism, but its possible roles in obesity development and in adipocyte metabolism are unclear. The objective of the present study is to review the current data on Se status in obesity and to discuss the interference between Se and selenoprotein metabolism in adipocyte physiology and obesity pathogenesis. The overview and meta-analysis of the studies on blood Se and selenoprotein P (SELENOP) levels, as well as glutathione peroxidase (GPX) activity in obese subjects, have yielded heterogenous and even conflicting results. Laboratory studies demonstrate that Se may modulate preadipocyte proliferation and adipogenic differentiation, and also interfere with insulin signaling, and regulate lipolysis. Knockout models have demonstrated that the selenoprotein machinery, including endoplasmic reticulum-resident selenoproteins together with GPXs and thioredoxin reductases (TXNRDs), are tightly related to adipocyte development and functioning. In conclusion, Se and selenoproteins appear to play an essential role in adipose tissue physiology, although human data are inconsistent. Taken together, these findings do not support the utility of Se supplementation to prevent or alleviate obesity in humans. Further human and laboratory studies are required to elucidate associations between Se metabolism and obesity.
Collapse
|
13
|
Vitamin D Supplementation Is Associated with Increased Glutathione Peroxidase-1 Levels in Arab Adults with Prediabetes. Antioxidants (Basel) 2020; 9:antiox9020118. [PMID: 32013162 PMCID: PMC7070325 DOI: 10.3390/antiox9020118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D supplementation may be used to lower oxidative stress. This interventional study aimed to investigate the effects of vitamin D supplementation on glutathione peroxidase 1 (GPx1) levels and other parameters in Arab adults with prediabetes. A total of 203 Saudi adults with prediabetes and vitamin D deficiency [intervention group, N = 146 (53 males and 93 females); control group, N = 57 (25 males and 32 females)] were included in this non-randomized, six-month intervention study. The intervention group received 50,000 international units (IU) cholecalciferol tablets once a week for two months, then twice a month for the next two months, followed by 1000 IU daily for the last two months. The control group received no supplementation. Serum 25(OH)D, lipid profile, glucose, C-reactive protein (CRP) and GPx1 were measured at baseline and after six months. Post-intervention, GPx1 concentrations increased significantly in the intervention group [17.3 (11.5–59.0) vs 26.7 (11.4–59.9) p < 0.01] while no changes were observed in the control group (p = 0.15). This significant increase in 25(OH)D and GPx1 levels persisted after adjusting for age and BMI. Stratification according to sex revealed that this favourable increase in GPx1 was true only for males (p = 0.002). In all groups, baseline GPx1 was inversely correlated with low density lipoprotein (LDL)-cholesterol (r = −0.26, p < 0.01) and body mass index (BMI) (r = −0.20, p < 0.05), while positively correlated with age (r = 0.18, p < 0.05) and systolic blood pressure (r = 0.19, p < 0.05). In conclusion, vitamin D supplementation favourably enhanced GPx1 levels in adult Arabs with prediabetes, particularly in males.
Collapse
|
14
|
Matoušková P, Hanousková B, Skálová L. MicroRNAs as Potential Regulators of Glutathione Peroxidases Expression and Their Role in Obesity and Related Pathologies. Int J Mol Sci 2018; 19:ijms19041199. [PMID: 29662007 PMCID: PMC5979329 DOI: 10.3390/ijms19041199] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Glutathione peroxidases (GPxs) belong to the eight-member family of phylogenetically related enzymes with different cellular localization, but distinct antioxidant function. Several GPxs are important selenoproteins. Dysregulated GPx expression is connected with severe pathologies, including obesity and diabetes. We performed a comprehensive bioinformatic analysis using the programs miRDB, miRanda, TargetScan, and Diana in the search for hypothetical microRNAs targeting 3′untranslated regions (3´UTR) of GPxs. We cross-referenced the literature for possible intersections between our results and available reports on identified microRNAs, with a special focus on the microRNAs related to oxidative stress, obesity, and related pathologies. We identified many microRNAs with an association with oxidative stress and obesity as putative regulators of GPxs. In particular, miR-185-5p was predicted by a larger number of programs to target six GPxs and thus could play the role as their master regulator. This microRNA was altered by selenium deficiency and can play a role as a feedback control of selenoproteins’ expression. Through the bioinformatics analysis we revealed the potential connection of microRNAs, GPxs, obesity, and other redox imbalance related diseases.
Collapse
Affiliation(s)
- Petra Matoušková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Barbora Hanousková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
15
|
Piórkowska K, Żukowski K, Ropka-Molik K, Tyra M, Gurgul A. A comprehensive transcriptome analysis of skeletal muscles in two Polish pig breeds differing in fat and meat quality traits. Genet Mol Biol 2018; 41:125-136. [PMID: 29658965 PMCID: PMC5901489 DOI: 10.1590/1678-4685-gmb-2016-0101] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
Pork is the most popular meat in the world. Unfortunately, the selection pressure
focused on high meat content led to a reduction in pork quality. The present
study used RNA-seq technology to identify metabolic process genes related to
pork quality traits and fat deposition. Differentially expressed genes (DEGs)
were identified between pigs of Pulawska and Polish Landrace breeds for two the
most important muscles (semimembranosus and longissimus
dorsi). A total of 71 significant DEGs were reported: 15 for
longissimus dorsi and 56 for
semimembranosus muscles. The genes overexpressed in
Pulawska pigs were involved in lipid metabolism (APOD,
LXRA, LIPE, AP2B1, ENSSSCG00000028753 and
OAS2) and proteolysis (CST6, CTSD, ISG15
and UCHL1). In Polish Landrace pigs, genes playing a role in
biological adhesion (KIT, VCAN, HES1, SFRP2, CDH11, SSX2IP and
PCDH17), actin cytoskeletal organisation (FRMD6,
LIMK1, KIF23 and CNN1) and calcium ion binding
(PVALB, CIB2, PCDH17, VCAN and CDH11) were
transcriptionally more active. The present study allows for better understanding
of the physiological processes associated with lipid metabolism and muscle fiber
organization. This information could be helpful in further research aiming to
estimate the genetic markers.
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Mirosław Tyra
- Department of Pig Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Artur Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
16
|
Langhardt J, Flehmig G, Klöting N, Lehmann S, Ebert T, Kern M, Schön MR, Gärtner D, Lohmann T, Dressler M, Fasshauer M, Kovacs P, Stumvoll M, Dietrich A, Blüher M. Effects of Weight Loss on Glutathione Peroxidase 3 Serum Concentrations and Adipose Tissue Expression in Human Obesity. Obes Facts 2018; 11:475-490. [PMID: 30537708 PMCID: PMC6341324 DOI: 10.1159/000494295] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS Altered expression and circulating levels of glutathione peroxidase 3 (GPX3) have been observed in obesity and type 2 diabetes (T2D) across species. Here, we investigate whether GPX3 serum concentrations and adipose tissue (AT) GPX3 mRNA expression are related to obesity and weight loss. METHODS GPX3 serum concentration was measured in 630 individuals, including a subgroup (n = 293) for which omental and subcutaneous (SC) GPX3 mRNA expression has been analyzed. GPX3 analyses include three interventions: 6 months after bariatric surgery (n = 80) or combined exercise/hypocaloric diet (n = 20) or two-step bariatric surgery (n = 24) studies. RESULTS Bariatric surgery-induced weight loss (-25.8 ± 8.4%), but not a moderate weight reduction of -8.8 ± 6.5% was associated with significantly reduced GPX3 serum concentrations. GPX3 mRNA is significantly higher expressed in AT from individuals with normal glucose metabolism compared to T2D patients. SC AT GPX3 expression is significantly higher in lean compared to obese as well as in insulin-sensitive compared insulin-resistant individuals with obesity. Weight loss after bariatric surgery causes a significant increase in SC AT GPX3 expression. AT GPX3 expression significantly correlates with age, BMI, fat distribution, insulin sensitivity (only SC AT), but not with circulating GPX3. CONCLUSION Our data support the notion that SC AT GPX3 expression is associated with obesity, fat distribution and related to whole body insulin resistance.
Collapse
Affiliation(s)
- Julia Langhardt
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Gesine Flehmig
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- IFB ObesityDiseases, Junior Research Group Animal Models, University of Leipzig, Leipzig, Germany
| | | | - Thomas Ebert
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Matthias Kern
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael R Schön
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe, Germany
| | - Daniel Gärtner
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe, Germany
| | | | | | | | - Peter Kovacs
- IFB ObesityDiseases, University of Leipzig, Leipzig, Germany
| | | | - Arne Dietrich
- Department of Surgery, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany,
| |
Collapse
|
17
|
Wongchitrat P, Klosen P, Pannengpetch S, Kitidee K, Govitrapong P, Isarankura-Na-Ayudhya C. High-fat diet-induced plasma protein and liver changes in obese rats can be attenuated by melatonin supplementation. Nutr Res 2017. [PMID: 28633871 DOI: 10.1016/j.nutres.2017.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Obesity triggers changes in protein expression in various organs that might participate in the pathogenesis of obesity. Melatonin has been reported to prevent or attenuate such pathological protein changes in several chronic diseases. However, such melatonin effects on plasma proteins have not yet been studied in an obesity model. Using a proteomic approach, we investigated the effect of melatonin on plasma protein profiles after rats were fed a high-fat diet (HFD) to induce obesity. We hypothesized that melatonin would attenuate abnormal protein expression in obese rats. After 10weeks of the HFD, animals displayed increased body weight and fat accumulation as well as increased glucose levels, indicating an obesity-induced prediabetes mellitus-like state. Two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry revealed 12 proteins whose expression was altered in response to the HFD and the melatonin treatment. The altered proteins are related to the development of liver pathology, such as cirrhosis (α1-antiproteinase), thrombosis (fibrinogen, plasminogen), and inflammation (mannose-binding protein A, complement C4, complement factor B), contributing to liver steatosis or hepatic cell death. Melatonin treatment most probably reduced the severity of the HFD-induced obesity by reducing the amplitude of HFD-induced plasma protein changes. In conclusion, we identified several potential biomarkers associated with the progression of obesity and its complications, such as liver damage. Furthermore, our findings reveal melatonin's beneficial effect of attenuating plasma protein changes and liver pathogenesis in obese rats.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Rd, Nakhonpathom 73170, Thailand.
| | - Paul Klosen
- Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, Strasbourg 67084, France; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Rd, Nakhonpathom 73170, Thailand
| | - Supitcha Pannengpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Rd, Nakhonpathom 73170, Thailand
| | - Kuntida Kitidee
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Rd, Nakhonpathom 73170, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Rd, Nakhonpathom 73170, Thailand; Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Rd, Lak Si, Bangkok 10210, Thailand
| | - Chartchalerm Isarankura-Na-Ayudhya
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Rd, Nakhonpathom 73170, Thailand
| |
Collapse
|
18
|
Plasma Markers of Oxidative Stress in Patients with Gestational Diabetes Mellitus in the Second and Third Trimester. Obstet Gynecol Int 2016; 2016:3865454. [PMID: 27803713 PMCID: PMC5075618 DOI: 10.1155/2016/3865454] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 12/02/2022] Open
Abstract
Objective. To determine plasma markers of oxidative stress during the second and third trimester of pregnancy in patients with gestational diabetes mellitus (GDM). Study Design. We conducted a prospective nested case-control study involving 400 pregnant women, 22 of whom developed GDM. As control group, 30 normal pregnant women were chosen randomly. Plasma samples were analyzed for 8-iso-prostaglandin F2α (8-iso-PGF2α), advanced oxidative protein products (AOPPs), protein carbonyl (PCO), glutathione peroxidase-3 (GPX-3), and paraoxonase-1 (PON1) at 16–20 weeks, 24–28 weeks, and 32–36 weeks of gestation. Results. Compared to control subjects, the plasma levels of PCO, AOPPs, and 8-iso-PGF2α were elevated at 16–20 weeks' and 32–36 weeks' gestation in GDM. There was no significant difference in PCO and 8-iso-PGF2α at 24–28 weeks in GDM. GPX-3 was statistically significantly increased at 16–20 weeks and 32–36 weeks in GDM. PON1 reduced in patients with GDM. No significant differences were found at 24–28 and 32–36 weeks between the GDM and control groups. In GDM, PCO, AOPPs, and 8-iso-PGF2α levels were higher and GPX-3 and PON1 levels were lower in the second than the third trimester. Conclusion. Oxidation status increased in GDM, especially protein oxidation, which may contribute to the pathogenesis of GDM.
Collapse
|
19
|
Glutathionyl systems and metabolic dysfunction in obesity. Nutr Rev 2015; 73:858-68. [DOI: 10.1093/nutrit/nuv042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 04/18/2015] [Indexed: 12/18/2022] Open
|
20
|
Baez-Duarte BG, Mendoza-Carrera F, García-Zapién A, Flores-Martínez SE, Sánchez-Corona J, Zamora-Ginez I, Torres-Rasgado E, León-Chávez BA, Pérez-Fuentes R. Glutathione Peroxidase 3 Serum Levels and GPX3 Gene Polymorphisms in Subjects with Metabolic Syndrome. Arch Med Res 2014; 45:375-82. [DOI: 10.1016/j.arcmed.2014.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/28/2014] [Indexed: 12/01/2022]
|