1
|
Shi M, Ma G, Yang X. Artesunate: A Review of Its Potential Therapeutic Effects and Mechanisms in Digestive Diseases. Pharmaceutics 2025; 17:299. [PMID: 40142963 PMCID: PMC11945051 DOI: 10.3390/pharmaceutics17030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Artesunate (ART), an artemisinin-derived semi-synthetic sesquiterpene lactone distinguished by its unique endoperoxide group, has become a cornerstone of clinical antimalarial therapy. Recent research has demonstrated its broad pharmacological profile, including its potent antimalarial, anti-inflammatory, anti-tumor, antidiabetic, immunomodulatory, and anti-fibrotic properties. These discoveries have significantly broadened the therapeutic scope of ART and offer new perspectives for its potential use in treating gastrointestinal disorders. Mechanistically, ART exerts significant therapeutic effects against diverse gastrointestinal pathologies-such as gastric ulcers, ulcerative colitis (UC), hepatic fibrosis (HF), gastric cancer, hepatocellular carcinoma, and colorectal cancer-via multimodal mechanisms, including cell cycle modulation, apoptosis induction, the suppression of tumor cell invasion and migration, proliferation inhibition, ferroptosis activation, and immune regulation. This review evaluates existing evidence on ART's therapeutic applications and molecular mechanisms in digestive diseases, intending to elucidate its clinical translation potential. ART emerges as a promising multi-target agent with significant prospects for improving the management of gastrointestinal disorders.
Collapse
Affiliation(s)
| | | | - Xiulan Yang
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.S.)
| |
Collapse
|
2
|
Zhang Q, Li X, He C, Zhou R, Wang J, Liu L. Artesunate promotes cervical cancer cell apoptosis by regulating Bcl2 family molecules and reducing the mitochondrial membrane potential. Oncol Lett 2024; 28:315. [PMID: 38807670 PMCID: PMC11130610 DOI: 10.3892/ol.2024.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/03/2024] [Indexed: 05/30/2024] Open
Abstract
Artesunate (ART), an antimalarial drug, has a broad spectrum of antitumour effects in cancer types such as esophageal and gastric cancer. However, evidence demonstrating the role of ART in cervical cancer cells is limited. In the present study, the inhibitory effect of ART on the growth of cervical cancer cells through the modulation of the cell cycle and apoptosis was investigated. The growth-inhibitory effect of ART on a cervical cancer cell line (SiHa) was detected using a Cell Counting Kit-8 assay after treatment with ART for 24 h, after which the half-maximal inhibitory concentration (IC50) was calculated. Using flow cytometry assays, apoptosis, the cell cycle, the levels of reactive oxygen species (ROS) and calcium (Ca2+) ions, as well as the mitochondrial membrane potential were evaluated in SiHa cells following treatment with ART for 24 and 48 h. The mRNA expression levels of Bcl2, Bcl-xl, (myeloid cell leukaemia 1) Mcl-1, Bcl2-like protein 11 (BIM), (Bcl2-related ovarian killer protein) Bok, Bax and (Bcl2 homologous antagonist/killer) Bak in SiHa cells were detected using reverse transcription-quantitative PCR. ART inhibited the growth of SiHa cells in a dose-dependent manner. The IC50 of ART in SiHa cells was 26.32 µg/ml. According to the IC50 value, 15, 30 and 100 µg/ml ART were selected for further experiments, and normal saline (0 µg/ml ART) was used as the control group. The results indicated that treatment with 15, 30 and 100 µg/ml ART for 24 and 48 h induced apoptosis, increased the levels of ROS, the levels of Ca2+ and the mRNA expression levels of BIM, Bok, Bax and Bak, but decreased the cell proliferation indices, the mitochondrial membrane potential and the mRNA expression levels of Bcl2, Bcl-xl and Mcl-1 in a dose- and time-dependent manner. In conclusion, ART inhibited the growth of SiHa cells and induced apoptosis via a mechanism associated with the regulation of Bcl2 family member expression, which was associated with the increase of the levels of ROS and Ca2+ and the reduction of the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Qianying Zhang
- Department of Gynaecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xing Li
- Department of Flow Cytometry, Tumour Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Caiyi He
- Department of Flow Cytometry, Tumour Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Rongmiao Zhou
- Department of Molecular Biology, Tumour Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jing Wang
- Department of Flow Cytometry, Tumour Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liang Liu
- Department of Flow Cytometry, Tumour Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
3
|
Leite M, Seruca R, Gonçalves JM. Drug Repurposing in Gastric Cancer: Current Status and Future Perspectives. HEREDITARY GASTRIC AND BREAST CANCER SYNDROME 2023:281-320. [DOI: 10.1007/978-3-031-21317-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Navashenaq JG, Shabgah AG, Banach M, Jamialahmadi T, Penson PE, Johnston TP, Sahebkar A. The interaction of Helicobacter pylori with cancer immunomodulatory stromal cells: New insight into gastric cancer pathogenesis. Semin Cancer Biol 2022; 86:951-959. [PMID: 34600095 DOI: 10.1016/j.semcancer.2021.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 01/27/2023]
Abstract
Gastric cancer is the fourth most common cause of cancer-linked deaths in the world. Gastric tumor cells have biological characteristics such as rapid proliferation, high invasiveness, and drug resistance, which result in recurrence and poor survival. Helicobacter pylori (H. pylori) has been proposed as a first-class carcinogen for gastric cancer according to the 1994 world health organization (WHO) classification. One of the important mechanisms by which H. pylori affects the gastric environment and promotes carcinogenesis is triggering inflammation. H. pylori induces an inflammatory response and a plethora of different signal transduction processes, leading to gastric mucosal disturbance, chronic gastritis, and a multi-step complex pathway that initiates carcinogenesis. It seems undeniable that the interaction between various cell types, including immune cells, gastric epithelium, glands, and stem cells, is vital for the progression and development of carcinogenesis concerning H. pylori. The interactions of H. pylori with surrounding cells play a key role in cancer progression. In this review, we discuss the interplay between H. pylori and tumor-supportive cells, including mesenchymal stem cells (MSCs), cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid derived-suppressor cells (MDSCs) in gastric cancer. It is hoped that clarifying the specific mechanisms for 'cross-talk' between H. pylori and these cells will provide promising strategies for developing new treatments.
Collapse
Affiliation(s)
| | | | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Zhou H, Li F, Li Y. Anti-Cancer Activity of Gedunin by Induction of Apoptosis in Human Gastric Cancer AGS Cells. Appl Biochem Biotechnol 2022; 194:5322-5332. [PMID: 35759172 DOI: 10.1007/s12010-022-04001-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Currently, gastric cancer is considered one of the major causes of high mortality and morbidity worldwide. Recent advances in therapeutics, clinical treatment, staging procedures, and imaging techniques are high, yet the prevalence of gastric cancer has not been reduced. Usage of the synthetic drug has many side effects that can lead to other ailments. Gedunin, a phytochemical derived from Azadirachta indica (neem tree), exhibits several pharmacological activities including antitumor, anti-inflammatory, antiulcer, antipyretics, antibacterial, antifungal, anti-diabetic, and antimalarial properties. In the current investigation, the effect of gedunin on the cell viability; reactive oxygen species (ROS) generation by DCFH-DA staining; mitochondrial membrane potential (MMP) by Rh-123 staining; apoptosis by AO/EtBr staining; cell migration and wound healing ability by wound scratch assay; and Bcl-2, Bax, caspase-3, and caspase-9 by ELISA techniques were analyzed in the AGS cells. The treatment with gedunin effectively inhibited the cell viability with IC50 = 20µM, increased the ROS generation, and triggered the apoptosis in AGS cells. The gedunin-treated AGS cells also demonstrated a decreased MMP status. The increment in the ROS generation leads to oxidative stress which in turn induce the apoptosis. The activity of Bax gene was upregulated and the activity of Bcl-2 gene was down-regulated in the AGS cells after the treatment with gedunin. In the AGS cells treated with gedunin, the caspase-3 and caspase-9 activities were increased. In overall, these findings suggested that gedunin can be used as a potent chemotherapeutic agent in the future to treat gastric cancer.
Collapse
Affiliation(s)
- Heying Zhou
- Department of General Surgery, Jiyang District People's Hospital, No. 17, Xinyuan Road, Jiyang District, 251400, Ji Nan City, China
| | - Fengxia Li
- College of Health, Binzhou Polytechnic, No. 919, Huanghe 12th Road, 256603, Binzhou City, China
| | - Yanli Li
- College of Health, Binzhou Polytechnic, No. 919, Huanghe 12th Road, 256603, Binzhou City, China.
| |
Collapse
|
6
|
Huang X, Zhang S, Wang W. Artesunate restrains the malignant progression of human cutaneous squamous cell carcinoma cells via the suppression of the PI3K/AKT pathway. Tissue Cell 2022; 76:101789. [DOI: 10.1016/j.tice.2022.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
7
|
Song Q, Peng S, Che F, Zhu X. Artesunate induces ferroptosis via modulation of p38 and ERK signaling pathway in glioblastoma cells. J Pharmacol Sci 2022; 148:300-306. [DOI: 10.1016/j.jphs.2022.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/25/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
|
8
|
Wang Q, Tang Y, Pan Z, Yuan Y, Zou Y, Zhang H, Guo X, Guo W, Huang X, Wu Z, Li C, Xu Q, Song J, Deng C. RNA-seq-based transcriptome analysis of the anti-inflammatory effect of artesunate in the early treatment of the mouse cerebral malaria model. Mol Omics 2022; 18:716-730. [DOI: 10.1039/d1mo00491c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study provides new insights into the molecular mechanisms by which artesunate improves prognosis in cerebral malaria, in particular inhibition of host cytokine storm.
Collapse
Affiliation(s)
- Qi Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- Institute of Pulmonary Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, P. R. China
| | - Yexiao Tang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Ziyi Pan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Yueming Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Yuanyuan Zou
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Hongying Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Xueying Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Wenfeng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Zhibin Wu
- Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Changqing Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
9
|
Farmanpour-Kalalagh K, Beyraghdar Kashkooli A, Babaei A, Rezaei A, van der Krol AR. Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. FRONTIERS IN PLANT SCIENCE 2022; 13:780257. [PMID: 35197994 PMCID: PMC8859114 DOI: 10.3389/fpls.2022.780257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.
Collapse
Affiliation(s)
- Karim Farmanpour-Kalalagh
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Arman Beyraghdar Kashkooli
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Arman Beyraghdar Kashkooli,
| | - Alireza Babaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Rezaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
10
|
Yang X, Zheng Y, Liu L, Huang J, Wang F, Zhang J. Progress on the study of the anticancer effects of artesunate. Oncol Lett 2021; 22:750. [PMID: 34539854 PMCID: PMC8436334 DOI: 10.3892/ol.2021.13011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
Artesunate (ART) is a derivative of artemisinin that is extracted from the wormwood plant Artemisia annua. ART is an antimalarial drug that has been shown to be safe and effective for clinical use. In addition to its antimalarial properties, ART has been attracting attention over recent years due to its reported inhibitory effects on cancer cell proliferation, invasion and migration. Therefore, ART has a wider range of potential clinical applications than first hypothesized. The aim of the present review was to summarize the latest research progress on the possible anticancer effects of ART, in order to lay a theoretical foundation for the further development of ART as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Xiulan Yang
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yudong Zheng
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lian Liu
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jiangrong Huang
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Fei Wang
- Center of Experiment and Training, Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| | - Jie Zhang
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
11
|
Meng Y, Ma N, Lyu H, Wong YK, Zhang X, Zhu Y, Gao P, Sun P, Song Y, Lin L, Wang J. Recent pharmacological advances in the repurposing of artemisinin drugs. Med Res Rev 2021; 41:3156-3181. [PMID: 34148245 DOI: 10.1002/med.21837] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Artemisinins are a family of sesquiterpene lactones originally derived from the sweet wormwood (Artemisia annua). Beyond their well-characterized role as frontline antimalarial drugs, artemisinins have also received increased attention for other potential pharmaceutical effects, which include antiviral, antiparsitic, antifungal, anti-inflammatory, and anticancer activities. With concerted efforts in further preclinical and clinical studies, artemisinin-based drugs have the potential to be viable treatments for a great variety of human diseases. Here, we provide a comprehensive update on recent reports of pharmacological actions and applications of artemisinins outside of their better-known antimalarial role and highlight their potential therapeutic viability for various diseases.
Collapse
Affiliation(s)
- Yuqing Meng
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Ma
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haining Lyu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xing Zhang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongping Zhu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Gao
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Sun
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal And Child Health Care Hospital, Southern Medical University, Dongguan, China
| | - Lizhu Lin
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jigang Wang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
12
|
Luo J, Zhang Y, Wang Y, Liu Q, Li J, He H, Luo Y, Huang S, Guo X. Artesunate and Dihydroartemisinin Inhibit Rabies Virus Replication. Virol Sin 2021; 36:721-729. [PMID: 33661488 PMCID: PMC7930525 DOI: 10.1007/s12250-021-00349-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
Rabies is caused by infection of rabies virus (RABV) and remains a serious threat to the global public health. Except for the requirement for cold chain and high cost of human rabies immune globulin, no small molecule drugs are currently available for clinical treatment of rabies. So, it is of great importance to identify novel compounds that can effectively inhibit RABV infection. Artesunate (ART) and dihydroartemisinin (DHA), two derivatives of artemisinin, are widely used for treatment of malaria in adults and children, showing high safety. In this study, we found that both ART and DHA were able to inhibit RABV replication in host cells at a low concentration (0.1 μmol/L). The antiviral effects of ART and DHA were independent of viral strains and cell lines. Pre-treatment with ART or DHA for 2 h in vitro did not affect the viral replication in host cells, implying that ART and DHA neither reduced the viability of RABV directly nor inhibited the binding and entrance of the virus to host cells. Further studies revealed that ART and DHA inhibited RABV genomic RNA synthesis and viral gene transcription. Treatment with ART or DHA (5 mg/kg) by intramuscular injection improved, to some extent, the survival rate of RABV-challenged mice. Combination treatment with derivatives of artemisinin and mannitol significantly improved the survival rate of RABV-challenged mice. The results suggest that ART and DHA have a great potential to be explored as new anti-rabies agents for treatment of rabies.
Collapse
Affiliation(s)
- Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiesen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA. .,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Zhou Z, Hou J, Li Q. Artesunate attenuates traumatic brain injury-induced impairments in rats. Transl Neurosci 2020; 11:309-318. [PMID: 33335770 PMCID: PMC7712024 DOI: 10.1515/tnsci-2020-0136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/26/2022] Open
Abstract
Background Blood–brain barrier (BBB) dysfunction and neuroinflammation induced by traumatic brain injuries (TBIs) cause a succession of secondary brain damage events and finally lead to a massive and progressive cerebral neuronal destruction. Artesunate, a semisynthetic artemisinin derivative, is a potential candidate for the management of cerebral damage induced by TBI due to its protective function to BBB and cerebral neurons. Methods To demonstrate the effect of artesunate to TBI-induced BBB dysfunction and neural damage, TBI rat model was constructed by cortical impact injury. Behavioral experiments were used to estimate the impact of the combined treatment on rats. Western blotting was performed to demonstrate the protein levels in the brain tissues of rats. Quantitative real-time PCRs were utilized to investigate the alteration in the expression of various RNA levels. The chemokine levels were estimated by ELISA. Results Artesunate treatment attenuated the impact caused by TBI on rat brain and improved the long-term neurological recover. Artesunate treatment protected the integrity of BBB and inhibited neuroinflammation. Artesunate treatment promoted the phosphorylation of Akt and inhibited the phosphorylation of glycogen synthase kinase (GSK)-3β in TBI rat model. Conclusion Artesunate protected rats from TBI-induced impairments of BBB and improved longer-term neurological outcomes.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Dermatology, Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao 266001, Shandong, China
| | - Jun Hou
- Department of Dermatology, Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao 266001, Shandong, China
| | - Qinghua Li
- Department of Dermatology, Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao 266001, Shandong, China
| |
Collapse
|
14
|
Zhao F, Vakhrusheva O, Markowitsch SD, Slade KS, Tsaur I, Cinatl J, Michaelis M, Efferth T, Haferkamp A, Juengel E. Artesunate Impairs Growth in Cisplatin-Resistant Bladder Cancer Cells by Cell Cycle Arrest, Apoptosis and Autophagy Induction. Cells 2020; 9:E2643. [PMID: 33316936 PMCID: PMC7763932 DOI: 10.3390/cells9122643] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023] Open
Abstract
Cisplatin, which induces DNA damage, is standard chemotherapy for advanced bladder cancer (BCa). However, efficacy is limited due to resistance development. Since artesunate (ART), a derivative of artemisinin originating from Traditional Chinese Medicine, has been shown to exhibit anti-tumor activity, and to inhibit DNA damage repair, the impact of artesunate on cisplatin-resistant BCa was evaluated. Cisplatin-sensitive (parental) and cisplatin-resistant BCa cells, RT4, RT112, T24, and TCCSup, were treated with ART (1-100 µM). Cell growth, proliferation, and cell cycle phases were investigated, as were apoptosis, necrosis, ferroptosis, autophagy, metabolic activity, and protein expression. Exposure to ART induced a time- and dose-dependent significant inhibition of tumor cell growth and proliferation of parental and cisplatin-resistant BCa cells. This inhibition was accompanied by a G0/G1 phase arrest and modulation of cell cycle regulating proteins. ART induced apoptos is by enhancing DNA damage, especially in the resistant cells. ART did not induce ferroptosis, but led to a disturbance of mitochondrial respiration and ATP generation. This impairment correlated with autophagy accompanied by a decrease in LC3B-I and an increase in LC3B-II. Since ART significantly inhibits proliferative and metabolic aspects of cisplatin-sensitive and cisplatin-resistant BCa cells, it may hold potential in treating advanced and therapy-resistant BCa.
Collapse
Affiliation(s)
- Fuguang Zhao
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Kimberly S. Slade
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt am Main, Germany;
| | - Martin Michaelis
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| |
Collapse
|
15
|
Xu YR, Jia Z, Liu YJ, Wang XZ. Novel dibenzoxanthenes compounds inhibit human gastric cancer SGC-7901 cell growth by apoptosis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Pu S, Liu Y, Liang S, Liu P, Qian H, Wu Q, Wang Y. The Metabolic Changes of Artesunate and Ursolic Acid on Syrian Golden Hamsters Fed with the High-Fat Diet. Molecules 2020; 25:E1392. [PMID: 32197531 PMCID: PMC7144559 DOI: 10.3390/molecules25061392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
Artesunate was well known as an antimalarial drug. Our previous research found that it has hypolipidemia effects in rabbits fed with a high-fat diet, especially combined with ursolic acid. In this study, we reconfirmed the lipid-lowering effect of artesunate and ursolic acid in hamsters and analyzed the metabolic changes using gas chromatography time-of-flight mass spectrometry (GC/TOF MS). Compared with the model group, a variety of different metabolites of artesunate and ursolic acid, alone or in combination, were found and confirmed. These differential metabolites, including fatty acids, lipids, and amino acids, were involved in lipid metabolism, energy metabolism, and amino acid metabolism. It indicated that two agents of artesunate and ursolic acid could attenuate or normalize the metabolic transformation on these metabolic pathways.
Collapse
Affiliation(s)
- Shichen Pu
- Plant Biotechnology Research Center, Fudan-SJTUNottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.P.); (S.L.); (P.L.); (H.Q.)
| | - Yumin Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Shan Liang
- Plant Biotechnology Research Center, Fudan-SJTUNottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.P.); (S.L.); (P.L.); (H.Q.)
| | - Pin Liu
- Plant Biotechnology Research Center, Fudan-SJTUNottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.P.); (S.L.); (P.L.); (H.Q.)
| | - Hongmei Qian
- Plant Biotechnology Research Center, Fudan-SJTUNottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.P.); (S.L.); (P.L.); (H.Q.)
| | - Qian Wu
- Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, Shanghai 201203, China;
| | - Yuliang Wang
- Plant Biotechnology Research Center, Fudan-SJTUNottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.P.); (S.L.); (P.L.); (H.Q.)
| |
Collapse
|
17
|
Zhou YH, Cui YH, Wang T, Luo Y. Long non-coding RNA HOTAIR in cervical cancer: Molecular marker, mechanistic insight, and therapeutic target. Adv Clin Chem 2020; 97:117-140. [PMID: 32448431 DOI: 10.1016/bs.acc.2019.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cervical cancer is a common gynecologic malignant tumor with high mortality. HOX transcript antisense RNA (HOTAIR), a trans-acting long non-coding RNA (lncRNA) containing six exons in humans, is transcribed from the antisense strand of homeobox gene C cluster. This lncRNA serves as a modular scaffold for gene silencing and protein ubiquitination. In patients with cervical cancer, elevated HOTAIR levels are significantly associated with poor prognosis. HOTAIR plays an oncogenic role in cervical cancer by promoting cell proliferation, migration, invasion and autophagy, inhibiting cell apoptosis, stimulating angiogenesis, accelerating cell cycle progression, and inducing epithelial-mesenchymal transition. Moreover, blockade of HOTAIR by artesunate or propofol shows promise for further development of this lncRNA as a potential therapeutic target in cervical cancer. In this review, we summarized the latest advances regarding the role of HOTAIR in cervical cancer with an emphasis on its diagnostic and prognostic values.
Collapse
Affiliation(s)
- Yan-Hui Zhou
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ting Wang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yang Luo
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Old wine in new bottles: Drug repurposing in oncology. Eur J Pharmacol 2020; 866:172784. [DOI: 10.1016/j.ejphar.2019.172784] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
|
19
|
Jung JH, Hwang J, Kim JH, Sim DY, Im E, Park JE, Park WY, Shim BS, Kim B, Kim SH. Phyotochemical candidates repurposing for cancer therapy and their molecular mechanisms. Semin Cancer Biol 2019; 68:164-174. [PMID: 31883914 DOI: 10.1016/j.semcancer.2019.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/18/2019] [Accepted: 12/15/2019] [Indexed: 12/24/2022]
Abstract
Though limited success through chemotherapy, radiotherapy and surgery has been obtained for efficient cancer therapy for modern decades, cancers are still considered high burden to human health worldwide to date. Recently repurposing drugs are attractive with lower cost and shorter time compared to classical drug discovery, just as Metformin from Galega officinalis, originally approved for treating Type 2 diabetes by FDA, is globally valued at millions of US dollars for cancer therapy. As most previous reviews focused on FDA approved drugs and synthetic agents, current review discussed the anticancer potential of phytochemicals originally approved for treatment of cardiovascular diseases, diabetes, infectious diarrhea, depression and malaria with their molecular mechanisms and efficacies and suggested future research perspectives.
Collapse
Affiliation(s)
- Ji Hoon Jung
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Ju-Ha Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Deok Yong Sim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Eunji Im
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Ji Eon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Woon Yi Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Bum-Sang Shim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea.
| |
Collapse
|
20
|
Yang Y, Wu N, Wu Y, Chen H, Qiu J, Qian X, Zeng J, Chiu K, Gao Q, Zhuang J. Artesunate induces mitochondria-mediated apoptosis of human retinoblastoma cells by upregulating Kruppel-like factor 6. Cell Death Dis 2019; 10:862. [PMID: 31723124 PMCID: PMC6853908 DOI: 10.1038/s41419-019-2084-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/29/2019] [Accepted: 10/17/2019] [Indexed: 01/28/2023]
Abstract
Retinoblastoma (RB) is the most common primary intraocular malignancy in children. Intravitreal chemotherapy achieves favorable clinical outcomes in controlling RB vitreous seeds, which are a common reason for treatment failure. Thus, a novel, effective and safe intravitreal chemotherapeutic drug is urgently required. The malaria drug artesunate (ART) recently demonstrated remarkable anticancer effects with mild side effects. The purpose of this study is to investigate the anti-RB efficacy, the underlying mechanism and the intraocular safety of ART. Herein, we verified that ART inhibits RB cell viability and induces cell apoptosis in a dose- and time-dependent manner. Microarray analysis revealed that Kruppel-like factor 6 (KLF6) was upregulated after ART treatment, and this was further confirmed by real-time PCR and western blot assays. Silencing of KLF6 expression significantly reversed ART-induced RB cell growth inhibition and apoptosis. Furthermore, ART activated mitochondria-mediated apoptosis of RB cells, while silencing KLF6 expression significantly inhibited this effect. In murine xenotransplantation models of RB, we further confirmed that ART inhibits RB tumor growth, induces tumor cell apoptosis and upregulates KLF6 expression. In addition, KLF6 silencing attenuates ART-mediated inhibition of tumor growth in vivo. Furthermore, we proved that intravitreal injection of ART in Sprague-Dawley (SD) rats is safe, with no obvious retinal function damage or structural disorders observed by electrophysiology (ERG), fundal photographs, fundus fluorescein angiography (FFA) or optical coherence tomography (OCT) examinations. Collectively, our study revealed that ART induces mitochondrial apoptosis of RB cells via upregulating KLF6, and our results may extend the application of ART to the clinic as an effective and safe intravitreal chemotherapeutic drug to treat RB, especially RB with vitreous seeds.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Nandan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Yihui Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Haoting Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Xiaobing Qian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Kin Chiu
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Qianying Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China. .,Department of Ophthalmology, The 2nd Affiliate Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China.
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
| |
Collapse
|
21
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
22
|
Luo J, Zhang Y, He H, Liu Q, Huang S, Guo X. Artesunate enhances the immune response of rabies vaccine as an adjuvant. Vaccine 2019; 37:7478-7481. [PMID: 31582270 DOI: 10.1016/j.vaccine.2019.09.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
Rabies is an ancient zoonosis that continues to be an important health problem worldwide. Vaccination with rabies vaccine is the most important strategy to prevent rabies. Adjuvants contribute to the immune response of viral vaccine. The aim of this study was to investigate whether artemisinin derivatives artesunate and dihydroartemisinin could enhance the immunogenicity of inactivated rabies virus in mice. Administration of artesunate or dihydroartemisinin by intramuscular injection at a dose of 5 mg/kg did not cause body weight loss and unusual symptoms in mice. Mice were immunized with inactivated CVS-11 or inactivated rHEP-dG together with either artesunate or dihydroartemisinin through intramuscular injection. Blood samples were collected to investigate the virus-neutralizing antibody (VNA) titers, and challenge assays were then conducted. The results showed that the rabies VNA titers in mice co-treated with artesunate rather than dihydroartemisinin were significantly higher than in the control animals treated with the phosphate buffered saline (PBS). In addition, mice co-treated with artesunate survived from lethal rabies virus challenge compared with those treated with PBS. In contrast, co-treatment with dihydroartemisinin did not improve the survival rate of the challenged mice. The findings indicate that artesunate could be used as a new candidate adjuvant for rabies vaccination.
Collapse
Affiliation(s)
- Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|