1
|
Shi K, Wang XY, Huang LD, Guo Q, Yuan W, Lv Y, Li D. Biological functions and molecular mechanisms of LINC01116 in cancer. Heliyon 2024; 10:e38490. [PMID: 39512466 PMCID: PMC11539247 DOI: 10.1016/j.heliyon.2024.e38490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
LINC01116, a long non-coding RNA (lncRNA), serves as an important regulator in the progression of cancer cells and has attracted increased attention in biological fields. It is overexpressed in various cancer cells and is significantly correlated with cancer development and poor prognosis in cancer patients. Moreover, LINC01116 regulates the gene expression of various cancers through intricate pathways, such as sponging the microRNAs or other non-genic manners. These signaling pathways greatly affect the cancer's biological functions, including cell growth, migration, invasion, and chemoresistance. Hence, LINC01116 may serve as a prognostic biomarker and therapeutic target for human cancer. This paper summarizes the current evidence regarding the biological functions and molecular mechanisms of LINC01116 in the progression of cancer, providing theoretical references for LINC01116-related cancer treatment in the future.
Collapse
Affiliation(s)
- Ke Shi
- Department of Thoracic Surgery, Beilun District People's Hospital of Ningbo, Ningbo City, China
| | - Xue-Ying Wang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei Medical University, Shiyan City, China
- Department of Basic Medicine, Hubei University of Medicine, Shiyan City, China
| | - Li-De Huang
- Department of Pain management, People's Hospital of Shiyan City, Hubei Medical University, Shiyan City, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei Medical University, Shiyan City, China
| | - Wei Yuan
- Department of Basic Medicine, Hubei University of Medicine, Shiyan City, China
| | - Yan Lv
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Li
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
2
|
Ma K, Chu J, Liu Y, Sun L, Zhou S, Li X, Ji C, Zhang N, Guo X, Liang S, Cui T, Hu Q, Wang J, Liu Y, Liu L. Hepatocellular Carcinoma LINC01116 Outcompetes T Cells for Linoleic Acid and Accelerates Tumor Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400676. [PMID: 38460179 PMCID: PMC11151013 DOI: 10.1002/advs.202400676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 03/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with a highly immunosuppressive tumor microenvironment and a typical pattern of disturbances in hepatic lipid metabolism. Long non-coding RNAs are shown to play an important role in the regulation of gene expression, but much remains unknown between tumor microenvironment and lipid metabolism as a bridging molecule. Here, long intergenic nonprotein coding RNA 01116 (LINC01116) acts as this molecular which is frequently upregulated in HCC patients and associated with HCC progression in vitro and in vivo is identified. Mechanistically, LINC01116 stabilizes EWS RNA-binding protein 1 (EWSR1) by preventing RAD18 E3 Ubiquitin Protein Ligase (RAD18) -mediated ubiquitination. The enhanced EWSR1 protein upregulates peroxisome proliferator activated receptor alpha (PPARA) and fatty acid binding protein1 (FABP1) expression, a long-chain fatty acid (LCFA) transporter, and thus cancer cells outcompete T cells for LCFAs, especially linoleic acid, for seeding their own growth, leading to T cell malfunction and HCC malignant progression. In a preclinical animal model, the blockade of LINC01116 leads to enhanced efficacy of anti-PD1 treatment accompanied by increased cytotoxic T cell and decreased exhausted T cell infiltration. Collectively, LINC01116 is an immunometabolic lncRNA and the LINC01116-EWSR1-PPARA-FABP1 axis may be targetable for cancer immunotherapy.
Collapse
Affiliation(s)
- Kun Ma
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Junhui Chu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Yufeng Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Linmao Sun
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Shuo Zhou
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Xianying Li
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Changyong Ji
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Ning Zhang
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Xinyu Guo
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Shuhang Liang
- Department of Gastrointestinal SurgeryAnhui Province Key Laboratory of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Tianming Cui
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Qingsong Hu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Jiabei Wang
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Yao Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Lianxin Liu
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| |
Collapse
|
3
|
Zhang M, Wang Z, Wu Y, Chen M, Li J, Liu G. Hypoxia-induced factor-1α promotes radioresistance of esophageal cancer cells by transcriptionally activating LINC01116 and suppressing miR-3612 under hypoxia. J Biochem Mol Toxicol 2024; 38:e23551. [PMID: 37983895 DOI: 10.1002/jbt.23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Esophageal cancer (EC) is a challenging tumor to treat with radiotherapy, often exhibiting resistance to this treatment modality. To explore the factors influencing radioresistance, we focused on the role of hypoxia-induced factor-1α (HIF-1α), and its interaction with the long noncoding RNA long intergenic nonprotein coding RNA 1116 (LINC01116). We analyzed the LINC01116 expression in EC and EC cell lines/human normal esophageal epithelial cell line (Het-1A). LINC01116 was silenced/overexpressed in EC109/KYSE30 cells under hypoxia, followed by radioresistance assessment. We measured HIF-1α levels in hypoxic EC cells and further validated the binding of HIF-1α with LINC01116, analyzing their interaction in EC cells. We then performed experiments in EC109 cells by transfection them with sh-HIF-1α/oe-LINC01116 to verify the effects. Additonally, we analyzed the localization of LINC01116 and its binding with miR-3612, followed by a combined experiment performed to validate the results. Our findings indicated that LINC01116 was highly expressed in EC and further elevated in hypoxic EC cells. LINC01116 was expressed at a high level in EC, which was further elevated in EC cells under hypoxic conditions. Knockdown of LINC01116 triggered EC cell apoptosis, thus suppressing radioresistance. Further investigation revealed that HIF-1α transcriptionally activated LINC01116 expression under hypoxia, and silencing HIF-1α lowered EC cell radioresistance by downregulating LINC01116. Under hypoxic conditions, LINC01116 could function as a sponge for miR-3612 and inhibit its expression. This interaction between LINC01116 and miR-3612 played a crucial role in mediating radioresistance in EC cells. Briefly, under hypoxic conditions, HIF-1α facilitates radioresistance of EC cells by transcriptionally activating LINC01116 expression and downregulating miR-3612.
Collapse
Affiliation(s)
- Mengyan Zhang
- Oncology Department, Guangzhou No.1 People's Hospital, Guangzhou City, Guangdong Province, P.R. China
- Thoracic Radiotherapy Department, Fujian Medical University Cancer Hospital Fujian Cancer Hospital, Fuzhou City, Fujian Province, P.R. China
| | - Zhiping Wang
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Yahua Wu
- Thoracic Radiotherapy Department, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, P.R. China
| | - Mingqiu Chen
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Jiancheng Li
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Guolong Liu
- Oncology Department, Guangzhou No.1 People's Hospital, Guangzhou City, Guangdong Province, P.R. China
| |
Collapse
|
4
|
Shao Y, Liu T, Wen X, Zhang R, Liu X, Xing D. The regulatory effect of growth differentiation factor 11 on different cells. Front Immunol 2023; 14:1323670. [PMID: 38143761 PMCID: PMC10739301 DOI: 10.3389/fimmu.2023.1323670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Growth differentiation factor 11 (GDF11) is one of the important factors in the pathophysiological process of animals. It is widely expressed in many tissues and organs of animals, showing its wide biological activity and potential application value. Previous research has demonstrated that GDF11 has a therapeutic effect on various diseases, such as anti-myocardial aging and anti-tumor. This has not only sparked intense interest and enthusiasm among academics but also spurred some for-profit businesses to attempt to develop GDF11 as a medication for regenerative medicine or anti-aging application. Currently, Sotatercept, a GDF11 antibody drug, is in the marketing application stage, and HS-235 and rGDF11 are in the preclinical research stage. Therefore, we believe that figuring out which cells GDF11 acts on and its current problems should be an important issue in the scientific and commercial communities. Only through extensive, comprehensive research and discussion can we better understand the role and potential of GDF11, while avoiding unnecessary risks and misinformation. In this review, we aimed to summarize the role of GDF11 in different cells and its current controversies and challenges, providing an important reference for us to deeply understand the function of GDF11 and formulate more effective treatment strategies in the future.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Ting Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Król W, Machelak W, Zielińska M. GDF11 as a friend or an enemy in the cancer biology? Biochim Biophys Acta Rev Cancer 2023; 1878:188944. [PMID: 37356738 DOI: 10.1016/j.bbcan.2023.188944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The Growth and Differential Factor 11 (GDF11) is a recently discovered representative of Transforming Growth Factor β superfamily. The highest expression of GDF11 is detected in the nervous system, bladder, seminal vesicles and muscles whereas the lowest in the testis, liver or breast. GDF11 role in physiology is still not clear. GDF11 is a crucial factor in embryogenesis, cell cycle control and apoptosis, inasmuch it mainly targets cell retain stemness features, managing to the cell differentiation and the maturation. GDF11 is entangled in lipid metabolism, inflammatory processes and aging. GDF11 is strongly related to carcinogenesis and its expression in tumors is intruded. GDF11 can promote cancer growth in the colon or inhibit the cell proliferation in breast cancer. The aberrated expression is probably allied with the impaired maturation. In this article we summarized an impact of GDF11 on the tumor cells and review the all attitudes connecting GDF11 with carcinogenesis.
Collapse
Affiliation(s)
- Wojciech Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
6
|
Shao Y, Wang Y, Xu J, Yuan Y, Xing D. Growth differentiation factor 11: A new hope for the treatment of cardiovascular diseases. Cytokine Growth Factor Rev 2023; 71-72:82-93. [PMID: 37414617 DOI: 10.1016/j.cytogfr.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β superfamily that has garnered significant attention due to its anti-cardiac aging properties. Many studies have revealed that GDF11 plays an indispensable role in the onset of cardiovascular diseases (CVDs). Consequently, it has emerged as a potential target and novel therapeutic agent for CVD treatment. However, currently, no literature reviews comprehensively summarize the research on GDF11 in the context of CVDs. Therefore, herein, we comprehensively described GDF11's structure, function, and signaling in various tissues. Furthermore, we focused on the latest findings concerning its involvement in CVD development and its potential for clinical translation as a CVD treatment. We aim to provide a theoretical basis for the prospects and future research directions of the GDF11 application regarding CVDs.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yang Yuan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Zhang W, Zhang Q, Cui Q, Xu Y. MiR-3612 targeting THBS1 suppresses nasopharyngeal carcinoma progression by PI3K/AKT signaling pathway. Hum Exp Toxicol 2023; 42:9603271221150248. [PMID: 36607163 DOI: 10.1177/09603271221150248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND MicroRNA-3612 (miR-3612) is considered a tumor suppressor in different cancers. Nonetheless, its function in nasopharyngeal carcinoma (NPC) has yet to be uncovered. METHODS NPC cells and tissues were tested by means of reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis and western blotting to quantify the expressions of miR-3612 and Thrombospondin 1 (THBS1). Cell Counting Kit-8 (CCK-8) and scratch experiments were carried out to evaluate the migration and proliferation of NPC cells. NPC cell adhesion was also assessed. The predicted interaction of miR-3612 with THBS1 was verified by means of a luciferase reporter assay. In vivo experiments were also conducted to examine how miR-3612 overexpression affects in vivo tumorigenicity. Lastly, phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway status was assessed via western blotting. RESULTS MiR-3612 was downregulated in NPC cells and tissues, whereas THBS1 expression showed an opposite trend. The MiR-3612 mimic inhibited the NPC cell proliferation, adhesion, and migration and also inactivated the PI3K/AKT signaling pathway. Furthermore, miR-3612 mimic also hampered NPC tumorigenesis in vivo. MiR-3612 targeted THBS1 and downregulated THBS1 expression. THBS1 offset the miR-3612-overexpression-induced repression of the migration, adhesion, and proliferation of NPC cells via the activation of the PI3K/AKT pathway. CONCLUSION MiR-3612 retarded NPC cell migration, adhesion, and proliferation by targeting THBS1 and inactivating the PI3K/AKT signaling pathway. This provides a novel therapeutic approach for NPC intervention.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhang
- Department of Otorhinolaryngology, 593237Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Qianbo Cui
- Department of Otorhinolaryngology Head and Neck Surgery, 577528The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Molecular Diagnosis of Hubei Province, 577528The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Liu F, Li S. Non-coding RNAs in skin cancers:Biological roles and molecular mechanisms. Front Pharmacol 2022; 13:934396. [PMID: 36034860 PMCID: PMC9399465 DOI: 10.3389/fphar.2022.934396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous malignancies, including basal cell carcinoma, cutaneous squamous cell carcinoma, and cutaneous melanoma, are common human tumors. The incidence of cutaneous malignancies is increasing worldwide, and the leading cause of death is malignant invasion and metastasis. The molecular biology of oncogenes has drawn researchers’ attention because of the potential for targeted therapies. Noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, have been studied extensively in recent years. This review summarizes the aspects of noncoding RNAs related to the metastasis mechanism of skin malignancies. Continuous research may facilitate the identification of new therapeutic targets and help elucidate the mechanism of tumor metastasis, thus providing new opportunities to improve the survival rate of patients with skin malignancies.
Collapse
|