1
|
Purnomo SP, Rejeki PS, Argarini R, Halim S, Rachmayanti DA, Permataputri CDA, Singgih IK. Regulation of Metabolic Aging Through Adenosine Mono Phosphate-Activated Protein Kinase and Mammalian Target of Rapamycin: A Comparative Study of Intermittent Fasting Variations in Obese Young Women. Nutrients 2025; 17:1695. [PMID: 40431436 PMCID: PMC12114083 DOI: 10.3390/nu17101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Obesity accelerates metabolic aging through oxidative stress, inflammation, and mitochondrial dysfunction. AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are nutrient-sensing pathways regulating metabolism. AMPK promotes energy metabolism and autophagy, while excessive mTOR activity contributes to aging. Intermittent fasting (IF), including time-restricted feeding (TRF)-limiting food intake to a 6 h window (18:6)-and alternate-day modified fasting (ADMF)-alternating 24 h fasting (≤25% daily caloric intake) with unrestricted feeding-may improve metabolic regulation. However, their effects on AMPK, mTOR, and metabolic age remain unclear. Methods: This quasi-experimental pre-test-post-test control group study compared the TRF and ADMF on metabolic age, AMPK, and mTOR in young obese women. Twenty-four participants (mean age: 21.29 ± 1.76 years; body fat: 36.92 ± 3.18%; BMI: 29.68 ± 3.70 kg/m2) were initially matched by BMI and assigned to Control, TRF, and ADMF groups. A total of 4 participants (1 Control, 3 ADMF) were excluded due to outlier values, yielding final group sizes: Control (n = 7), TRF (n = 8), and ADMF (n = 5). The intervention lasted 20 days. Results: A significant decrease in AMPK levels was observed in the ADMF group (p = 0.043), while changes in the TRF and Control groups were not significant. mTOR levels showed a decreasing trend but were not statistically significant. No significant changes were found in metabolic age. Conclusions: Twenty days of intermittent fasting intervention did not significantly affect AMPK, mTOR, or metabolic age in young obese women. TRF may more effectively enhance AMPK and reduce mTOR, while ADMF may better reduce metabolic age.
Collapse
Affiliation(s)
- Sheeny Priska Purnomo
- Master Program of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia or (S.P.P.); (D.A.R.); (C.D.A.P.)
- Faculty of Medicine, Petra Christian University, Surabaya 60236, East Java, Indonesia
| | - Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia;
| | - Raden Argarini
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia;
| | - Shariff Halim
- Faculty of Health Sciences, University Technology MARA (UiTM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Pulau Pinang, Malaysia;
| | - Dian Aristia Rachmayanti
- Master Program of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia or (S.P.P.); (D.A.R.); (C.D.A.P.)
| | - Chy’as Diuranil Astrid Permataputri
- Master Program of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia or (S.P.P.); (D.A.R.); (C.D.A.P.)
| | - Ivan Kristianto Singgih
- Study Program of Industrial Engineering, University of Surabaya, Surabaya 60293, East Java, Indonesia;
| |
Collapse
|
2
|
Ng JCM, Schooling CM. Sex-specific Mendelian randomization phenome-wide association study of basal metabolic rate. Sci Rep 2025; 15:14368. [PMID: 40274879 PMCID: PMC12022104 DOI: 10.1038/s41598-025-98017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Observationally, higher basal metabolic rate (BMR) is associated with metabolism-related disorders, cancer, aging, and mortality. In this Mendelian randomization (MR) phenome-wide association study, using two-sample MR methods, we systematically and comprehensively investigated the health effects of genetically predicted BMR across the phenome sex-specifically. We obtained sex-specific genetic variants strongly (p < 5 × 10- 8) and independently (r2 < 0.001) predicting BMR from the UK Biobank and applied them to over 1,000 phenotypes within the same study. We combined genetic variant-specific Wald estimates using inverse-variance weighting, supplemented by sensitivity analysis. We used a false-discovery rate correction to allow for multiple comparisons as well as multivariable MR adjusted for body mass index and testosterone to investigate the independent effects of BMR on phenotypes with significant univariable associations. We obtained 217/219 genetic variants predicting BMR and applied them to 1,150/1,242 phenotypes in men/women, respectively. BMR was associated with 190/270 phenotypes in univariable analysis and 122/123 phenotypes in multivariable analysis in men/women. Examples of robust associations in multivariable analysis included those with neoplasms, diseases of the circulatory system, and growth and reproductive investment. In conclusion, BMR might affect a wide range of health-related outcomes. The underlying mechanisms and interactions between phenotypes warrant further study, as BMR is modifiable.
Collapse
Affiliation(s)
- Jack C M Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region, China.
- Graduate School of Public Health and Health Policy, The City University of New York, 55 West 125th St, New York, NY, 10027, USA.
| |
Collapse
|
3
|
Alfahl SO. Evaluation of the effectiveness of intermittent fasting versus caloric restriction in weight loss and improving cardiometabolic health: A systematic review and meta-analysis. J Taibah Univ Med Sci 2025; 20:159-168. [PMID: 40130017 PMCID: PMC11930668 DOI: 10.1016/j.jtumed.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Background Dietary interventions, particularly intermittent fasting (IF) and energy restriction (ER), have emerged as effective strategies for managing weight. Objective We aimed to conduct a systematic review and meta-analysis exploring the effects of IF and ER on body weight and cardiometabolic factors. Methods PRISMA compliant methods were used, and PubMed and the Cochrane CENTRAL Library were systematically searched for relevant randomized controlled trials (RCTs) from database inception to September 27, 2023. A bibliographic and gray literature search was also performed to identify unpublished literature. Effect sizes were pooled with random effects models in the R package "meta" and are reported as mean differences with 95 % confidence intervals. The quality of the included studies was assessed with The Cochrane Risk of Bias assessment tool. Results A total of 2931 records were identified through a database search. The study included 17 publications: 16 RCTs identified after two stages of screening and an additional publication identified from a bibliographic search. All trials were published between 2011 and 2022, and included a total of 1258 participants (24-209 per study). Pooled analysis revealed that IF led to a more significant decrease in BMI than ER (-0.44 [-0.88 to -0.01]; p < 0.01). Additionally, IF resulted in a slightly greater, but statistically nonsignificant, decrease in weight, triglyceride levels, fasting plasma glucose, and diastolic blood pressure than ER. However, similar decreases in SBP, LDL, and HDL levels were observed between IF and ER, which showed no major differences. The ER group experienced a higher frequency of headaches than the IF group, whereas the IF group reported a greater occurrence of dizziness than the ER group. Conclusion IF appears to be slightly advantageous over ER in terms of body weight, cardiometabolic factors, and plasma glucose levels.
Collapse
Affiliation(s)
- Samah O. Alfahl
- Department of Family and Community Medicine and Medical Education, Medical College, Taibah University, Saudi Arabia
| |
Collapse
|
4
|
Coperchini F, Greco A, Teliti M, Croce L, Chytiris S, Magri F, Gaetano C, Rotondi M. Inflamm-ageing: How cytokines and nutrition shape the trajectory of ageing. Cytokine Growth Factor Rev 2025; 82:31-42. [PMID: 39237438 DOI: 10.1016/j.cytogfr.2024.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Population ageing is increasing in prevalence in most developed countries. Ageing is the decline of functional properties at the cellular, tissue, and organ level. Biochemical changes that occur in all organisms that experience biological ageing are referred to as the "Hallmarks of ageing". Inflammation is a common denominator of the hallmarks of ageing, being mechanistically involved in most age-related health consequences. Inflamm-ageing refers to age-related changes in the inflammatory and immune systems which somehow drive the ageing process towards healthy or unhealthy ageing. Current evidences, support that, reversing the age-related pro-inflammatory status of inflamm-ageing, is able to modulate most hallmarks of ageing. Inflamm-ageing is associated with increased levels of pro-inflammatory molecules (e.g. cytokines, chemokines), ultimately producing a chronic low-grade inflammatory state typically observed in older individuals. It is commonly accepted that, the balance between pro- and anti-inflammatory cytokines/chemokines is one of the factors determining whether healthy or unhealthy ageing occurs. Malnutrition and nutritional imbalances, are highly prevalent in the elderly, playing a role in driving the balance of pro- and anti-inflammatory immunoactive molecules. In particular, malnutrition is a major risk factor for sarcopenia, a phenomenon characterized by loss of muscle mass, which is often referred to as the biological basis for frailty. Given the close relationship between malnutrition and sarcopenia, there is also evidence for a link between malnutrition and frailty. Indeed, changes in cytokine/chemokine levels in elderly patients with malnutrition were demonstrated. The demonstration that specific cytokines play a role in modulating appetite and nutrient sensing and taste reception, provided further evidence for the existence of a link between inflamm-ageing, nutrition and cytokines in shaping the trajectory of ageing. The present review will overview current evidence supporting the role of specific circulating cytokines and chemokines in the relationship between ageing, inflammation, and malnutrition.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Spyridon Chytiris
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy.
| |
Collapse
|
5
|
Alshaebi F, Sciortino A, Kayed R. The Role of Glial Cell Senescence in Alzheimer's Disease. J Neurochem 2025; 169:e70051. [PMID: 40130281 PMCID: PMC11934031 DOI: 10.1111/jnc.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025]
Abstract
Glial cell senescence, characterized by the irreversible arrest of cell division and a pro-inflammatory secretory phenotype, has emerged as a critical player in the pathogenesis of Alzheimer's disease (ad). While much attention has been devoted to the role of neurons in ad, growing evidence suggests that glial cells, including astrocytes, microglia, and oligodendrocytes, contribute significantly to disease progression through senescence. In this review, we explore the molecular mechanisms underlying glial cell senescence in ad, focusing on the cellular signaling pathways, including DNA damage response and the accumulation of senescence-associated secretory phenotypes (SASP). We also examine how senescent glial cells exacerbate neuroinflammation, disrupt synaptic function, and promote neuronal death in ad. Moreover, we discuss emerging therapeutic strategies aimed at targeting glial cell senescence to mitigate the neurodegenerative processes in ad. By providing a comprehensive overview of current research on glial cell senescence in Alzheimer's disease, this review highlights its potential as a novel therapeutic target in the fight against ad.
Collapse
Affiliation(s)
- Fadhl Alshaebi
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Alessia Sciortino
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
6
|
Trisal A, Singh AK. Mechanisms and early efficacy data of caloric restriction and caloric restriction mimetics in neurodegenerative disease. Neuroscience 2025; 567:235-248. [PMID: 39761825 DOI: 10.1016/j.neuroscience.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Neurodegenerative disorders (NDDs) have been prevalent for more than a decade, and the number of individuals affected per year has increased exponentially. Among these NDDs, Alzheimer's disease, which causes extreme cognitive impairment, and Parkinson's disease, characterized by impairments in motor activity, are the most prevalent. While few treatments are available for clinical practice, they have minimal effects on reversing the neurodegeneration associated with these debilitating diseases. Lifestyle modifications and dietary choices are emerging and promising approaches to combat these disorders. Of the lifestyle changes that one could adopt, a major habit is caloric restriction. Caloric restriction (CR) is a lifestyle modification in which the amount of calories ingested is reduced to a significant amount without resulting in malnutrition. However, maintaining such a lifestyle is challenging. As alternatives, certain compounds have been recognized to mimic the effects produced by CR. These compounds are called caloric restriction mimetics (CRMs). Among these compounds, some have been designated established CRMs, namely, resveratrol, metformin, and rapamycin, whereas several other candidates are termed potential CRMs because of a lack of conclusive evidence of their effects. The potential CRMs discussed in this review are quercetin, chrysin, astragalin, apigenin, curcumin, epigallocatechin-3-gallate, and NAD+ precursors. This review aims to provide an overview of these CRMs' effectiveness in preventing neurodegenerative disorders associated with aging. Moreover, we highlight the clinical relevance of these compounds by discussing in detail the results of clinical trials on them.
Collapse
Affiliation(s)
- Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India; Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India; Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
7
|
Alves I, Araújo EMQ, Dalgaard LT, Singh S, Børsheim E, Carvalho E. Protective Effects of Sulforaphane Preventing Inflammation and Oxidative Stress to Enhance Metabolic Health: A Narrative Review. Nutrients 2025; 17:428. [PMID: 39940284 PMCID: PMC11821257 DOI: 10.3390/nu17030428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/14/2025] Open
Abstract
The worldwide obesity epidemic has led to a drastic increase in diabetes and cardiovascular disease in younger generations. Further, maintaining metabolic health during aging is frequently a challenge due to poor diets and decreased mobility. In this setting, bioactive nutrients that are naturally occurring antioxidants, such as sulforaphane (SFN), are of high nutritional interest. SFN, a bioactive compound that is present in cruciferous vegetables, is a molecule that protects cells from cytotoxic damage and mitigates oxidative stress, protecting against disease. It exerts its action through the activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Many studies have been performed in animals and humans to evaluate its effects on cancer, brain health, and neurodegenerative disorders. However, fewer clinical studies have been performed to evaluate its effects on insulin resistance and the development of type 2 diabetes mellitus (T2DM) across the lifespan. Given that, in some parts of the world, particularly in Europe, the population is growing older at a significant rate, it is crucial to promote healthy habits (healthy foods, dietary pattern, precision nutrition, and physical activity) from an early stage in life and across the lifespan to avoid debilitating health conditions occurring during adulthood and aging. Thus, in this narrative review, we discuss the protective effects of SFN supplementation on inflammatory and oxidative stress pathways and relate them to metabolic disease.
Collapse
Affiliation(s)
- Inês Alves
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal;
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA;
| | - Edilene Maria Queiroz Araújo
- Nutritional Genomics and Metabolic Dysfunctions Research and Extension Center, Department of Life Sciences, State University of Bahia, Salvador 41195001, BA, Brazil;
| | - Louise T. Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark;
| | - Sharda Singh
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Medical Sciences Center, Lubbock, TX 79430, USA;
| | - Elisabet Børsheim
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA;
- Department of Pediatrics & Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Eugenia Carvalho
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinar Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
8
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
9
|
Martinović A, Mantovani M, Trpchevska N, Novak E, Milev NB, Bode L, Ewald CY, Bischof E, Reichmuth T, Lapides R, Navarini A, Saravi B, Roider E. Climbing the longevity pyramid: overview of evidence-driven healthcare prevention strategies for human longevity. FRONTIERS IN AGING 2024; 5:1495029. [PMID: 39659760 PMCID: PMC11628525 DOI: 10.3389/fragi.2024.1495029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Longevity medicine is an emerging and iterative healthcare discipline focusing on early detection, preventive measures, and personalized approaches that aim to extend healthy lifespan and promote healthy aging. This comprehensive review introduces the innovative concept of the "Longevity Pyramid." This conceptual framework delineates progressive intervention levels, providing a structured approach to understanding the diverse strategies available in longevity medicine. At the base of the Longevity Pyramid lies the level of prevention, emphasizing early detection strategies and advanced diagnostics or timely identification of potential health issues. Moving upwards, the next step involves lifestyle modifications, health-promoting behaviors, and proactive measures to delay the onset of age-related conditions. The Longevity Pyramid further explores the vast range of personalized interventions, highlighting the importance of tailoring medical approaches based on genetic predispositions, lifestyle factors, and unique health profiles, thereby optimizing interventions for maximal efficacy. These interventions aim to extend lifespan and reduce the impact and severity of age-related conditions, ensuring that additional years are characterized by vitality and wellbeing. By outlining these progressive levels of intervention, this review offers valuable insights into the evolving field of longevity medicine. This structured framework guides researchers and practitioners toward a nuanced strategic approach to advancing the science and practice of healthy aging.
Collapse
Affiliation(s)
- Anđela Martinović
- Maximon AG, Zug, Switzerland
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | | | | | | | | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Evelyne Bischof
- Shanghai University of Medicine and Health Sciences, Shanghai, China
- Sheba Longevity Center, Sheba Medical Center Tel Aviv, Ramat Gan, Israel
| | | | - Rebecca Lapides
- The Robert Larner, M.D., College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Alexander Navarini
- Department of Dermatology, University Hospital Basel, Basel, Switzerland
| | - Babak Saravi
- Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elisabeth Roider
- Maximon AG, Zug, Switzerland
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
10
|
Loo J, Gunasekaran G, Tan JK, Goon JA. Elucidating the effective age for dietary restriction and the key metabolites involved. Exp Gerontol 2024; 197:112601. [PMID: 39362416 DOI: 10.1016/j.exger.2024.112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Dietary restriction (DR) extends lifespan in various species, but its effect at different ages, especially when started later, is unclear. This study used Caenorhabditis elegans to explore the impact of DR at different ages. Worms were divided into control and DR groups, with daily survival monitored. To confirm the occurrence of DR, the expression of DR-sensitive genes namely acdh-1, pyk-1, pck-2 and cts-1 were determined using RT-qPCR. Liquid chromatography mass spectrometry (LC-MS) was employed to observe the changes in metabolites affected by DR. The results indicated that young worms subjected to mild DR displayed the longest lifespan, highlighting the effectiveness of initiating DR at a young age. Increased expression of acdh-1 and pck-2 suggests activation of beta-oxidation and gluconeogenesis, while decreased cts-1 expression indicates a reduced citric acid cycle, further supporting the observed effects of DR in these worms. Metabolomic results indicated that DR decreased the activity of mechanistic Target of Rapamycin (mTOR) and the synthesis of amino acids namely leucine, tyrosine and tryptophan to conserve energy for cell repair and survival. DR also decreased levels of N-acetyl-L-methionine and S-adenosyl-methionine (SAM) in methionine metabolism, thereby promoting autophagy, reducing inflammation, and facilitating the removal of damaged cells and proteins. In conclusion, initiating dietary restriction early in life extends the lifespan by modulating amino acid metabolism and enhancing the autophagy pathway, thereby maintaining cellular wellbeing.
Collapse
Affiliation(s)
- Jazween Loo
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Geetha Gunasekaran
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
D'Ávila M, Hall S, Horvath TL. GLP-1, GIP, and Glucagon Agonists for Obesity Treatment: A Hunger Perspective. Endocrinology 2024; 165:bqae128. [PMID: 39301751 DOI: 10.1210/endocr/bqae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
For centuries, increasingly sophisticated methods and approaches have been brought to bear to promote weight loss. Second only to the Holy Grail of research on aging, the idea of finding a single and simple way to lose weight has long preoccupied the minds of laymen and scientists alike. The effects of obesity are far-reaching and not to be minimized; the need for more effective treatments is obvious. Is there a single silver bullet that addresses this issue without effort on the part of the individual? The answer to this question has been one of the most elusive and sought-after in modern history. Now and then, a miraculous discovery propagates the illusion that a simple solution is possible. Now there are designer drugs that seem to accomplish the task: we can lose weight without effort using mono, dual, and triple agonists of receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon. There are, however, fundamental biological principles that raise intriguing questions about these therapies beyond the currently reported side-effects. This perspective reflects upon these issues from the angle of complex goal-oriented behaviors, and systemic and cellular metabolism associated with satiety and hunger.
Collapse
Affiliation(s)
- Mateus D'Ávila
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Samantha Hall
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Erta G, Gersone G, Jurka A, Tretjakovs P. The Link between Salivary Amylase Activity, Overweight, and Glucose Homeostasis. Int J Mol Sci 2024; 25:9956. [PMID: 39337444 PMCID: PMC11432655 DOI: 10.3390/ijms25189956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Butyrate, a short-chain fatty acid (SCFA) produced by the fermentation of dietary fibers in the colon, plays a pivotal role in regulating metabolic health, particularly by enhancing insulin sensitivity. Given the rising incidence of metabolic disorders, understanding the factors that influence butyrate production is of significant interest. This study explores the link between salivary amylase activity and butyrate levels in overweight women of reproductive age. Participants were categorized into low (LSA) and high (HSA) salivary amylase activity groups and further divided into two subgroups: one followed a low-starch diet (LS), and the other underwent caloric restriction (CR). We assessed salivary amylase activity and measured serum butyrate concentrations to examine their associations. Our findings showed a significant, though weak, positive correlation (ρ = 0.0486, p < 0.05), suggesting a link between salivary amylase activity and butyrate levels. The statistical significance, despite the weak correlation, implies that this relationship is not random. Moreover, higher baseline butyrate levels were observed in women with elevated salivary amylase activity. Also, women with low salivary amylase activity on a low-starch diet experienced a more pronounced increase in butyrate levels compared to those on caloric restriction. These results suggest that salivary amylase activity and dietary intake interact to influence butyrate production, with potential implications for improving insulin sensitivity and metabolic health. The study underscores the potential of butyrate in enhancing insulin sensitivity and promoting overall metabolic well-being. Further research is necessary to clarify the mechanisms involved and to understand the long-term effects of butyrate on metabolic health across different populations.
Collapse
Affiliation(s)
- Gita Erta
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Gita Gersone
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Antra Jurka
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Pēteris Tretjakovs
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
13
|
Thimm C, Adjaye J. Untangling the Uncertain Role of Overactivation of the Renin-Angiotensin-Aldosterone System with the Aging Process Based on Sodium Wasting Human Models. Int J Mol Sci 2024; 25:9332. [PMID: 39273282 PMCID: PMC11394713 DOI: 10.3390/ijms25179332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Every individual at some point encounters the progressive biological process of aging, which is considered one of the major risk factors for common diseases. The main drivers of aging are oxidative stress, senescence, and reactive oxygen species (ROS). The renin-angiotensin-aldosterone system (RAAS) includes several systematic processes for the regulation of blood pressure, which is caused by an imbalance of electrolytes. During activation of the RAAS, binding of angiotensin II (ANG II) to angiotensin II type 1 receptor (AGTR1) activates intracellular nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate superoxide anions and promote uncoupling of endothelial nitric oxide (NO) synthase, which in turn decreases NO availability and increases ROS production. Promoting oxidative stress and DNA damage mediated by ANG II is tightly regulated. Individuals with sodium deficiency-associated diseases such as Gitelman syndrome (GS) and Bartter syndrome (BS) show downregulation of inflammation-related processes and have reduced oxidative stress and ROS. Additionally, the histone deacetylase sirtuin-1 (SIRT1) has a significant impact on the aging process, with reduced activity with age. However, GS/BS patients generally sustain higher levels of sirtuin-1 (SIRT1) activity than age-matched healthy individuals. SIRT1 expression in GS/BS patients tends to be higher than in healthy age-matched individuals; therefore, it can be assumed that there will be a trend towards healthy aging in these patients. In this review, we highlight the importance of the hallmarks of aging, inflammation, and the RAAS system in GS/BS patients and how this might impact healthy aging. We further propose future research directions for studying the etiology of GS/BS at the molecular level using patient-derived renal stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Zayed Centre for Research into Rare Diseases in Children (ZCR), EGA Institute for Women’s Health, University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
14
|
Vo N, Zhang Q, Sung HK. From fasting to fat reshaping: exploring the molecular pathways of intermittent fasting-induced adipose tissue remodeling. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13062. [PMID: 39104461 PMCID: PMC11298356 DOI: 10.3389/jpps.2024.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Obesity, characterised by excessive fat accumulation, is a complex chronic condition that results from dysfunctional adipose tissue expansion due to prolonged calorie surplus. This leads to rapid adipocyte enlargement that exceeds the support capacity of the surrounding neurovascular network, resulting in increased hypoxia, inflammation, and insulin resistance. Intermittent fasting (IF), a dietary regimen that cycles between periods of fasting and eating, has emerged as an effective strategy to combat obesity and improve metabolic homeostasis by promoting healthy adipose tissue remodeling. However, the precise molecular and cellular mechanisms behind the metabolic improvements and remodeling of white adipose tissue (WAT) driven by IF remain elusive. This review aims to summarise and discuss the relationship between IF and adipose tissue remodeling and explore the potential mechanisms through which IF induces alterations in WAT. This includes several key structural changes, including angiogenesis and sympathetic innervation of WAT. We will also discuss the involvement of key signalling pathways, such as PI3K, SIRT, mTOR, and AMPK, which potentially play a crucial role in IF-mediated metabolic adaptations.
Collapse
Affiliation(s)
- Nathaniel Vo
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qiwei Zhang
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Son DS, Done KA, Son J, Izban MG, Virgous C, Lee ES, Adunyah SE. Intermittent Fasting Attenuates Obesity-Induced Triple-Negative Breast Cancer Progression by Disrupting Cell Cycle, Epithelial-Mesenchymal Transition, Immune Contexture, and Proinflammatory Signature. Nutrients 2024; 16:2101. [PMID: 38999849 PMCID: PMC11243652 DOI: 10.3390/nu16132101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is associated with one-fifth of cancer deaths, and breast cancer is one of the obesity-related cancers. Triple-negative breast cancer (TNBC) lacks estrogen and progesterone receptors and human epidermal growth factor receptor 2, leading to the absence of these therapeutic targets, followed by poor overall survival. We investigated if obesity could hasten TNBC progression and intermittent fasting (IF) could attenuate the progression of obesity-related TNBC. Our meta-analysis of the TNBC outcomes literature showed that obesity led to poorer overall survival in TNBC patients. Fasting-mimicking media reduced cell proliferation disrupted the cell cycle, and decreased cell migration and invasion. IF decreased body weight in obese mice but no change in normal mice. Obese mice exhibited elevated plasma glucose and cholesterol levels, increased tumor volume and weight, and enhanced macrophage accumulation in tumors. The obesity-exacerbated TNBC progression was attenuated after IF, which decreased cyclin B1 and vimentin levels and reduced the proinflammatory signature in the obesity-associated tumor microenvironment. IF attenuated obesity-induced TNBC progression through reduced obesity and tumor burdens in cell and animal experiments, supporting the potential of a cost-effective adjuvant IF therapy for TNBC through lifestyle change. Further evidence is needed of these IF benefits in TNBC, including from human clinical trials.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Kaitlyn A. Done
- Biochemistry Program, College of Arts and Sciences, Spelman College, Atlanta, GA 30314, USA
| | - Jubin Son
- Neuroscience Program, College of Arts and Sciences, The University of Tennessee, Knoxville, TN 37996, USA
| | - Michael G. Izban
- Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Carlos Virgous
- Animal Core Facility, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
16
|
de Cavanagh EMV, Inserra F, Ferder L. Renin-angiotensin system inhibitors positively impact on multiple aging regulatory pathways: Could they be used to protect against human aging? Physiol Rep 2024; 12:e16094. [PMID: 38924381 PMCID: PMC11200104 DOI: 10.14814/phy2.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The renin-angiotensin system (RAS)-a classical blood pressure regulator-largely contributes to healthy organ development and function. Besides, RAS activation promotes age-related changes and age-associated diseases, which are attenuated/abolished by RAS-blockade in several mammalian species. RAS-blockers also increase rodent lifespan. In previous work, we discussed how RAS-blockade downregulates mTOR and growth hormone/IGF-1 signaling, and stimulates AMPK activity (together with klotho, sirtuin, and vitamin D-receptor upregulation), and proposed that at least some of RAS-blockade's aging benefits are mediated through regulation of these intermediaries and their signaling to mitochondria. Here, we included RAS-blockade's impact on other aging regulatory pathways, that is, TGF-ß, NF-kB, PI3K, MAPK, PKC, Notch, and Wnt, all of which affect mitochondria. No direct evidence is available on RAS/RAS-blockade-aging regulatory pathway-mitochondria interactions. However, existing results allow to conjecture that RAS-blockers neutralize mitochondrial dysfunction by acting on the discussed pathways. The reviewed evidence led us to propose that the foundation is laid for conducting clinical trials aimed at testing whether angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB)-even at subclinical doses-offer the possibility to live longer and in better health. As ACEi and ARB are low cost and well-tolerated anti-hypertension therapies in use for over 35 years, investigating their administration to attenuate/prevent aging effects seems simple to implement.
Collapse
Affiliation(s)
| | - Felipe Inserra
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
- Master of Vascular Mechanics and Arterial Hypertension, Postgraduate DepartmentAustral UniversityPilarArgentina
| | - León Ferder
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
| |
Collapse
|
17
|
Murata S, Ebeling M, Meyer AC, Schmidt-Mende K, Hammar N, Modig K. Blood biomarker profiles and exceptional longevity: comparison of centenarians and non-centenarians in a 35-year follow-up of the Swedish AMORIS cohort. GeroScience 2024; 46:1693-1702. [PMID: 37726432 PMCID: PMC10828184 DOI: 10.1007/s11357-023-00936-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Comparing biomarker profiles measured at similar ages, but earlier in life, among exceptionally long-lived individuals and their shorter-lived peers can improve our understanding of aging processes. This study aimed to (i) describe and compare biomarker profiles at similar ages between 64 and 99 among individuals eventually becoming centenarians and their shorter-lived peers, (ii) investigate the association between specific biomarker values and the chance of reaching age 100, and (iii) examine to what extent centenarians have homogenous biomarker profiles earlier in life. Participants in the population-based AMORIS cohort with information on blood-based biomarkers measured during 1985-1996 were followed in Swedish register data for up to 35 years. We examined biomarkers of metabolism, inflammation, liver, renal, anemia, and nutritional status using descriptive statistics, logistic regression, and cluster analysis. In total, 1224 participants (84.6% females) lived to their 100th birthday. Higher levels of total cholesterol and iron and lower levels of glucose, creatinine, uric acid, aspartate aminotransferase, gamma-glutamyl transferase, alkaline phosphatase, lactate dehydrogenase, and total iron-binding capacity were associated with reaching 100 years. Centenarians overall displayed rather homogenous biomarker profiles. Already from age 65 and onwards, centenarians displayed more favorable biomarker values in commonly available biomarkers than individuals dying before age 100. The differences in biomarker values between centenarians and non-centenarians more than one decade prior death suggest that genetic and/or possibly modifiable lifestyle factors reflected in these biomarker levels may play an important role for exceptional longevity.
Collapse
Affiliation(s)
- Shunsuke Murata
- Unit of epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Marcus Ebeling
- Unit of epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
- Laboratory of Population Health, Max Planck Institute for Demographic Research, Rostock, Germany
| | - Anna C Meyer
- Unit of epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Katharina Schmidt-Mende
- Academic Primary Health Care Centre, Stockholm Region, Stockholm, Sweden
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Niklas Hammar
- Unit of epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Karin Modig
- Unit of epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| |
Collapse
|
18
|
Li M, Macro J, Meadows K, Mishra D, Martin D, Olson S, Huggins BJ, Graveley BR, Li JYH, Rogina B. Late-life shift in caloric intake affects fly metabolism and longevity. Proc Natl Acad Sci U S A 2023; 120:e2311019120. [PMID: 38064506 PMCID: PMC10723134 DOI: 10.1073/pnas.2311019120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/05/2023] [Indexed: 12/17/2023] Open
Abstract
The prevalence of obesity is increasing in older adults and contributes to age-related decline. Caloric restriction (CR) alleviates obesity phenotypes and delays the onset of age-related changes. However, how late in life organisms benefit from switching from a high-(H) to a low-calorie (L) diet is unclear. We transferred male flies from a H to a L (HL) diet or vice versa (LH) at different times during life. Both shifts immediately change fly rate of aging even when applied late in life. HL shift rapidly reduces fly mortality rate to briefly lower rate than in flies on a constant L diet, and extends lifespan. Transcriptomic analysis uncovers that flies aged on H diet have acquired increased stress response, which may have temporal advantage over flies aged on L diet and leads to rapid decrease in mortality rate after HL switch. Conversely, a LH shift increases mortality rate, which is temporarily higher than in flies aged on a H diet, and shortens lifespan. Unexpectedly, more abundant transcriptomic changes accompanied LH shift, including increase in ribosome biogenesis, stress response and growth. These changes reflect protection from sudden release of ROS, energy storage, and use of energy to growth, which all likely contribute to higher mortality rate. As the beneficial effects of CR on physiology and lifespan are conserved across many organisms, our study provides framework to study underlying mechanisms of CR interventions that counteract the detrimental effects of H diets and reduce rate of aging even when initiated later in life.
Collapse
Affiliation(s)
- Michael Li
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Jacob Macro
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Kali Meadows
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Dushyant Mishra
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Dominique Martin
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Sara Olson
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - Billy Joe Huggins
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Brenton R. Graveley
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - James Y. H. Li
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - Blanka Rogina
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| |
Collapse
|
19
|
Pantiya P, Thonusin C, Chunchai T, Pintana H, Ongnok B, Nawara W, Arunsak B, Kongkaew A, Chattipakorn N, Chattipakorn SC. Long-term lifestyle intervention is superior to transient modification for neuroprotection in D-galactose-induced aging rats. Life Sci 2023; 334:122248. [PMID: 37940069 DOI: 10.1016/j.lfs.2023.122248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
AIMS To investigate whether transient dietary restriction or aerobic exercise in young adulthood exert long-lasting protection against brain aging later in life. MAIN METHODS Seven-week-old male Wistar rats were divided into 2 groups and given either normal saline as a vehicle (n = 8) or 150 mg/kg/day of D-galactose (n = 40) for 28 weeks, the D-galactose being used to induce aging. At week 13 of the experiment, D-galactose-treated rats were further divided into 5 groups, 1) no intervention, 2) transient dietary restriction for 6 weeks (week 13-18), 3) transient exercise for 6 weeks (week 13-18), 4) long-term dietary restriction for 16 weeks (week 13-28), and 5) long-term exercise for 16 weeks (week 13-28). At the end of week 28, cognitive function was examined, followed by molecular studies in the hippocampus. KEY FINDINGS Our results showed that either long-term dietary restriction or aerobic exercise effectively attenuated cognitive function in D-galactose-treated rats via the attenuation of oxidative stress, cellular senescence, Alzheimer's-like pathology, neuroinflammation, and improvements in mitochondria, brain metabolism, adult neurogenesis, and synaptic integrity. Although transient interventions provided benefits in some brain parameters in D-galactose-treated rats, an improvement in cognitive function was not observed. SIGNIFICANCE Our findings suggested that transient lifestyle interventions failed to exert a long-lasting protective effect against brain aging. Hence, novel drugs mimicking the neuroprotective effect of long-term dietary restriction or exercise and the combination of the two since young age appear to be more appropriate treatments for the elderly who are unable to engage in long-term dietary restriction or exercise.
Collapse
Affiliation(s)
- Patcharapong Pantiya
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Hiranya Pintana
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
20
|
Navarro-Hortal MD, Romero-Márquez JM, Jiménez-Trigo V, Xiao J, Giampieri F, Forbes-Hernández TY, Grosso G, Battino M, Sánchez-González C, Quiles JL. Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise. Crit Rev Food Sci Nutr 2023; 63:11967-11986. [PMID: 35816321 DOI: 10.1080/10408398.2022.2098244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the number of older people has grown in recent decades, the search for new approaches to manage or delay aging is also growing. Among the modifiable factors, diet plays a crucial role in healthy aging and in the prevention of age-related diseases. Thus, the interest in the use of foods, which are rich in bioactive compounds such as functional foods with anti-aging effects is a growing market. This review summarizes the current knowledge about the molecular mechanisms of action of foods considered as functional foods in aging, namely berries, curcumin, and virgin olive oil. Moreover, honey is also analyzed as a food with well-known healthy benefits, but which has not been deeply evaluated from the point of view of aging. The effects of these foods on aging are analyzed from the point of view of molecular mechanisms including oxidative stress, mitochondrial dysfunction, inflammation, genomic stability, telomere attrition, cellular senescence, and deregulated nutrient-sensing. A comprehensive study of the scientific literature shows that the aforementioned foods have demonstrated positive effects on certain aspects of aging, which might justify their use as functional foods in elderly. However, more research is needed, especially in humans, designed to understand in depth the mechanisms of action through which they act.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jose M Romero-Márquez
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Victoria Jiménez-Trigo
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Tamara Y Forbes-Hernández
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cristina Sánchez-González
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| |
Collapse
|
21
|
Boccardi V, Pigliautile M, Guazzarini AG, Mecocci P. The Potential of Fasting-Mimicking Diet as a Preventive and Curative Strategy for Alzheimer's Disease. Biomolecules 2023; 13:1133. [PMID: 37509169 PMCID: PMC10377404 DOI: 10.3390/biom13071133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This review examines the potential of fasting-mimicking diets (FMDs) in preventing and treating Alzheimer's disease (AD). FMDs are low-calorie diets that mimic the physiological and metabolic effects of fasting, including the activation of cellular stress response pathways and autophagy. Recent studies have shown that FMDs can reduce amyloid-beta accumulation, tau phosphorylation, and inflammation, as well as improve cognitive function in animal models of AD. Human studies have also reported improvements in AD biomarkers, cognitive functions, and subjective well-being measures following FMDs. However, the optimal duration and frequency of FMDs and their long-term safety and efficacy remain to be determined. Despite these uncertainties, FMDs hold promise as a non-pharmacological approach to AD prevention and treatment, and further research in this area is warranted.
Collapse
Affiliation(s)
- Virginia Boccardi
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Martina Pigliautile
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Anna Giulia Guazzarini
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Patrizia Mecocci
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
22
|
Rajado AT, ALFA Score Consortium, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023. [DOI: https:/doi.org/10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | | | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
23
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P, ALFA Score Consortium. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023; 15:3191-3217. [PMID: 37086262 PMCID: PMC10188329 DOI: 10.18632/aging.204668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 04/23/2023]
Abstract
The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended "healthspan" or healthy longevity are urgently needed. The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic phenomena are modifiable in response to an individual's environmental exposures, and therefore link an individual's environment to their gene expression pattern. Epigenetic studies demonstrate that aging is associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which promotes the accumulation of errors. In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in DNA methylation at promoters has been observed, which represses transcription of previously active genes, in parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to the transcription of previously repressed genes. Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed chromatin, fewer PTMs and greater regulation by ncRNAs.
Collapse
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
24
|
Vitek L, Hinds TD, Stec DE, Tiribelli C. The physiology of bilirubin: health and disease equilibrium. Trends Mol Med 2023; 29:315-328. [PMID: 36828710 PMCID: PMC10023336 DOI: 10.1016/j.molmed.2023.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Bilirubin has several physiological functions, both beneficial and harmful. In addition to reactive oxygen species-scavenging activities, bilirubin has potent immunosuppressive effects associated with long-term pathophysiological sequelae. It has been recently recognized as a hormone with endocrine actions and interconnected effects on various cellular signaling pathways. Current studies show that bilirubin also decreases adiposity and prevents metabolic and cardiovascular diseases. All in all, the physiological importance of bilirubin is only now coming to light, and strategies for increasing plasma bilirubin levels to combat chronic diseases are starting to be considered. This review discusses the beneficial effects of increasing plasma bilirubin, incorporates emerging areas of bilirubin biology, and provides key concepts to advance the field.
Collapse
Affiliation(s)
- Libor Vitek
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague, Czech Republic
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
25
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
26
|
Waziry R, Ryan CP, Corcoran DL, Huffman KM, Kobor MS, Kothari M, Graf GH, Kraus VB, Kraus WE, Lin DTS, Pieper CF, Ramaker ME, Bhapkar M, Das SK, Ferrucci L, Hastings WJ, Kebbe M, Parker DC, Racette SB, Shalev I, Schilling B, Belsky DW. Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial. NATURE AGING 2023; 3:248-257. [PMID: 37118425 PMCID: PMC10148951 DOI: 10.1038/s43587-022-00357-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/22/2022] [Indexed: 04/30/2023]
Abstract
The geroscience hypothesis proposes that therapy to slow or reverse molecular changes that occur with aging can delay or prevent multiple chronic diseases and extend healthy lifespan1-3. Caloric restriction (CR), defined as lessening caloric intake without depriving essential nutrients4, results in changes in molecular processes that have been associated with aging, including DNA methylation (DNAm)5-7, and is established to increase healthy lifespan in multiple species8,9. Here we report the results of a post hoc analysis of the influence of CR on DNAm measures of aging in blood samples from the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) trial, a randomized controlled trial in which n = 220 adults without obesity were randomized to 25% CR or ad libitum control diet for 2 yr (ref. 10). We found that CALERIE intervention slowed the pace of aging, as measured by the DunedinPACE DNAm algorithm, but did not lead to significant changes in biological age estimates measured by various DNAm clocks including PhenoAge and GrimAge. Treatment effect sizes were small. Nevertheless, modest slowing of the pace of aging can have profound effects on population health11-13. The finding that CR modified DunedinPACE in a randomized controlled trial supports the geroscience hypothesis, building on evidence from small and uncontrolled studies14-16 and contrasting with reports that biological aging may not be modifiable17. Ultimately, a conclusive test of the geroscience hypothesis will require trials with long-term follow-up to establish effects of intervention on primary healthy-aging endpoints, including incidence of chronic disease and mortality18-20.
Collapse
Affiliation(s)
- R Waziry
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - C P Ryan
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - D L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - K M Huffman
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - M S Kobor
- Department of Medical Genetics, Edwin S.H. Leong Healthy Aging Program, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Kothari
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - G H Graf
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - V B Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - W E Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - D T S Lin
- Department of Medical Genetics, Edwin S.H. Leong Healthy Aging Program, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - C F Pieper
- Center on Aging and Development, Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - M E Ramaker
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - M Bhapkar
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - S K Das
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - L Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - W J Hastings
- Department of Biobehavioral Health, Pennsylvania State University, State College, PA, USA
| | - M Kebbe
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - D C Parker
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - S B Racette
- Program in Physical Therapy and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - I Shalev
- Department of Biobehavioral Health, Pennsylvania State University, State College, PA, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, CA, USA
| | - D W Belsky
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
27
|
Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022; 15:nu15010047. [PMID: 36615705 PMCID: PMC9824801 DOI: 10.3390/nu15010047] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND An increasing number of studies suggest that diet plays an important role in regulating aging processes and modulates the development of the most important age-related diseases. OBJECTIVE The aim of this review is to provide an overview of the relationship between nutrition and critical age-associated diseases. METHODS A literature review was conducted to survey recent pre-clinical and clinical findings related to the role of nutritional factors in modulation of fundamental cellular and molecular mechanisms of aging and their role in prevention of the genesis of the diseases of aging. RESULTS Studies show that the development of cardiovascular and cerebrovascular diseases, neurodegenerative diseases, cognitive impairment and dementia can be slowed down or prevented by certain diets with anti-aging action. The protective effects of diets, at least in part, may be mediated by their beneficial macro- (protein, fat, carbohydrate) and micronutrient (vitamins, minerals) composition. CONCLUSIONS Certain diets, such as the Mediterranean diet, may play a significant role in healthy aging by preventing the onset of certain diseases and by improving the aging process itself. This latter can be strengthened by incorporating fasting elements into the diet. As dietary recommendations change with age, this should be taken into consideration as well, when developing a diet tailored to the needs of elderly individuals. Future and ongoing clinical studies on complex anti-aging dietary interventions translating the results of preclinical investigations are expected to lead to novel nutritional guidelines for older adults in the near future.
Collapse
|
28
|
Zhu Y, Liu Y, Escames G, Yang Z, Zhao H, Qian L, Xue C, Xu D, Acuña-Castroviejo D, Yang Y. Deciphering clock genes as emerging targets against aging. Ageing Res Rev 2022; 81:101725. [PMID: 36029999 DOI: 10.1016/j.arr.2022.101725] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
The old people often suffer from circadian rhythm disturbances, which in turn accelerate aging. Many aging-related degenerative diseases such as Alzheimer's disease, Parkinson's disease, and osteoarthritis have an inextricable connection with circadian rhythm. In light of the predominant effects of clock genes on regulating circadian rhythm, we systematically present the elaborate network of roles that clock genes play in aging in this review. First, we briefly introduce the basic background regarding clock genes. Second, we systemically summarize the roles of clock genes in aging and aging-related degenerative diseases. Third, we discuss the relationship between clock genes polymorphisms and aging. In summary, this review is intended to clarify the indispensable roles of clock genes in aging and sheds light on developing clock genes as anti-aging targets.
Collapse
Affiliation(s)
- Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chengxu Xue
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Danni Xu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
29
|
Anti-inflammatory effect of exercise training through reducing inflammasome activation-related inflammatory cytokine levels in overweight/obese populations: A systematic review and meta-analysis. Complement Ther Clin Pract 2022; 49:101656. [DOI: 10.1016/j.ctcp.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 06/07/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
|
30
|
Wang Z, Cui Y, Wen L, Yu H, Feng J, Yuan W, He X. Dietary Restriction against Parkinson's Disease: What We Know So Far. Nutrients 2022; 14:nu14194108. [PMID: 36235760 PMCID: PMC9571011 DOI: 10.3390/nu14194108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary restriction (DR) is defined as a moderate reduction in food intake while avoiding malnutrition. The beneficial effects of DR are being increasingly acknowledged in aging and in a series of age-related neurodegenerative disorders, for example, Parkinson's disease (PD). To date, the pathogenesis of PD remains elusive and there is no cure for it in spite of intensive research over decades. In this review, we summarize the current knowledge on the efficacy of DR on PD, focusing on the underlying mechanisms involving general metabolism, neuroendocrinolgy, neuroinflammation, gut microbiome, and so on. We anticipate that this review will provide future perspectives for PD prevention and treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| |
Collapse
|
31
|
Miller N, Joubert E. Critical Assessment of In Vitro Screening of α-Glucosidase Inhibitors from Plants with Acarbose as a Reference Standard. PLANTA MEDICA 2022; 88:1078-1091. [PMID: 34662924 DOI: 10.1055/a-1557-7379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Postprandial hyperglycemia is treated with the oral antidiabetic drug acarbose, an intestinal α-glucosidase inhibitor. Side effects of acarbose motivated a growing number of screening studies to identify novel α-glucosidase inhibitors derived from plant extracts and other natural sources. As "gold standard", acarbose is frequently included as the reference standard to assess the potency of these candidate α-glucosidase inhibitors, with many outperforming acarbose by several orders of magnitude. The results are subsequently used to identify suitable compounds/products with strong potential for in vivo efficacy. However, most α-glucosidase inhibitor screening studies use enzyme preparations obtained from nonmammalian sources (typically Saccharomyces cerevisiae), despite strong evidence that inhibition data obtained using nonmammalian α-glucosidase may hold limited value in terms of identifying α-glucosidase inhibitors with actual in vivo hypoglycemic potential. The aim was to critically discuss the screening of novel α-glucosidase inhibitors from plant sources, emphasizing inconsistencies and pitfalls, specifically where acarbose was included as the reference standard. An assessment of the available literature emphasized the cruciality of stating the biological source of α-glucosidase in such screening studies to allow for unambiguous and rational interpretation of the data. The review also highlights the lack of a universally adopted screening assay for novel α-glucosidase inhibitors and the commercial availability of a standardized preparation of mammalian α-glucosidase.
Collapse
Affiliation(s)
- Neil Miller
- Department of Food Science, Stellenbosch University, South Africa
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Elizabeth Joubert
- Department of Food Science, Stellenbosch University, South Africa
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| |
Collapse
|
32
|
Kosenko A, Salame TM, Friedlander G, Barash I. Macrophage-Secreted CSF1 Transmits a Calorie Restriction-Induced Self-Renewal Signal to Mammary Epithelial Stem Cells. Cells 2022; 11:cells11182923. [PMID: 36139499 PMCID: PMC9496835 DOI: 10.3390/cells11182923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Calorie restriction enhances stem cell self-renewal in various tissues, including the mammary gland. We hypothesized that similar to their intestinal counterparts, mammary epithelial stem cells are insulated from sensing changes in energy supply, depending instead on niche signaling. The latter was investigated by subjecting cultures of mammary epithelial stem cells for 8 days to in vivo paracrine calorie-restriction signals collected from a 4-day-conditioned medium of individual mammary cell populations. Conditioned medium from calorie-restricted non-epithelial cells induced latent cell propagation and mammosphere formation—established markers of stem cell self-renewal. Combined RNA-Seq, immunohistochemistry and immunofluorescence analyses of the non-epithelial population identified macrophages and secreted CSF1 as the energy sensor and paracrine signal, respectively. Calorie restriction-induced pStat6 expression in macrophages suggested that skewing to the M2 phenotype contributes to the sensing mechanism. Enhancing CSF1 signaling with recombinant protein and interrupting the interaction with its highly expressed receptor in the epithelial stem cells by neutralizing antibodies were both affected stem cell self-renewal. In conclusion, combined in vivo, in vitro and in silico studies identified macrophages and secreted CSF1 as the energy sensor and paracrine transmitter, respectively, of the calorie restriction-induced effect on mammary stem cell self-renewal.
Collapse
Affiliation(s)
- Anna Kosenko
- The Volcani Center, Agricultural Research Organization, Institute of Animal Science, Bet Dagan 50250, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Tomer Meir Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7632706, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7632706, Israel
| | - Itamar Barash
- The Volcani Center, Agricultural Research Organization, Institute of Animal Science, Bet Dagan 50250, Israel
- Correspondence:
| |
Collapse
|
33
|
Martemucci G, Portincasa P, Di Ciaula A, Mariano M, Centonze V, D'Alessandro AG. Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Michele Mariano
- Unità Operativa Complessa di Radiodiagnostica Universitaria, Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Vincenzo Centonze
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Angela Gabriella D'Alessandro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
34
|
Wu Q, Gao ZJ, Yu X, Wang P. Dietary regulation in health and disease. Signal Transduct Target Ther 2022; 7:252. [PMID: 35871218 PMCID: PMC9308782 DOI: 10.1038/s41392-022-01104-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Nutriments have been deemed to impact all physiopathologic processes. Recent evidences in molecular medicine and clinical trials have demonstrated that adequate nutrition treatments are the golden criterion for extending healthspan and delaying ageing in various species such as yeast, drosophila, rodent, primate and human. It emerges to develop the precision-nutrition therapeutics to slow age-related biological processes and treat diverse diseases. However, the nutritive advantages frequently diversify among individuals as well as organs and tissues, which brings challenges in this field. In this review, we summarize the different forms of dietary interventions extensively prescribed for healthspan improvement and disease treatment in pre-clinical or clinical. We discuss the nutrient-mediated mechanisms including metabolic regulators, nutritive metabolism pathways, epigenetic mechanisms and circadian clocks. Comparably, we describe diet-responsive effectors by which dietary interventions influence the endocrinic, immunological, microbial and neural states responsible for improving health and preventing multiple diseases in humans. Furthermore, we expatiate diverse patterns of dietotheroapies, including different fasting, calorie-restricted diet, ketogenic diet, high-fibre diet, plants-based diet, protein restriction diet or diet with specific reduction in amino acids or microelements, potentially affecting the health and morbid states. Altogether, we emphasize the profound nutritional therapy, and highlight the crosstalk among explored mechanisms and critical factors to develop individualized therapeutic approaches and predictors.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhi-Jie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
35
|
Li GY, Zhang ZQ. Age-specific mortality and fecundity of a spider mite under diet restriction and delayed mating. INSECT SCIENCE 2022; 29:889-899. [PMID: 34264548 DOI: 10.1111/1744-7917.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Numerous experimental life-history studies on aging are mainly baised on two classical models-fruit fly Drosophila melanogaster (Meigen) and nematode Caenorhabditis elegans (Maupas)-with relatively little attention given to other organisms with different life-history characters. Two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) differs from many other arthropods in that the females continue their growth in the early adult stage and can reproduce sexually and asexually. In this study, the influences of dietary restriction and delayed mating on the aging patterns of the spider mite were examined with the prevailing survival and reproduction trade-off hypothesis of aging being tested. Significant sex-specific responses of the spider mites were found. The females showed longevity extension on diet restriction (fasting for 2 days in every 4 days) compared with their counterparts being fed ad libitum, and after delayed mating for 9 days, while the males displayed a decrease in lifespan when experiencing diet restriction but were not significantly influenced by delayed mating. Path analysis was used to investigate the relationship between mite survival and reproduction traits, including longevity, female lifetime reproduction, age at first reproduction, early reproductive efforts and late reproductive efforts, yielding no evidence for trade-offs between these life-history traits. The additive effects of dietary restriction and delayed mating in lifespan extension of female spider mites were confirmed, proving that diet restriction is a robust anti-aging intervention, and that later onset of reproduction can prolong adult lifespan in females.
Collapse
Affiliation(s)
- Guang-Yun Li
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Manaaki Whenua-Landcare Research, Auckland, New Zealand
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Zhi-Qiang Zhang
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Manaaki Whenua-Landcare Research, Auckland, New Zealand
| |
Collapse
|
36
|
Jia W, Wang C, Zheng J, Li Y, Yang C, Wan QL, Shen J. Pioglitazone Hydrochloride Extends the Lifespan of Caenorhabditis elegans by Activating DAF-16/FOXO- and SKN-1/NRF2-Related Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8496063. [PMID: 35677109 PMCID: PMC9168093 DOI: 10.1155/2022/8496063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Pioglitazone hydrochloride (PGZ), a nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, is a universally adopted oral agent for the treatment of type 2 diabetes (T2D). Previous studies reported that PGZ could ameliorate the symptoms of aging-related diseases and Alzheimer's disease. However, whether PGZ participates in aging regulation and the underlying mechanism remain undetermined. Here, we found that PGZ significantly prolonged the lifespan and healthspan of Caenorhabditis elegans (C. elegans). We found that a variety of age-related pathways and age-related genes are required for PGZ-induced lifespan extension. The transcription factors DAF-16/FOXO, HSF-1, and SKN-1/NRF2, as well as the nuclear receptors DAF-12 and NHR-49, all functioned in the survival advantage conferred by PGZ. Moreover, our results demonstrated that PGZ induced lifespan extension through the inhibition of insulin/insulin-like signaling (IIS) and reproductive signaling pathways, as well as the activation of dietary restriction- (DR-) related pathways. Additionally, our results also indicated that beneficial longevity mediated by PGZ is linked to its antioxidative activity. Our research may provide a basis for further research on PGZ, as an anti-T2D drug, to interfere with aging and reduce the incidence of age-related diseases in diabetic patients.
Collapse
Affiliation(s)
- Wenjuan Jia
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
- Department of Endocrinology, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Chongyang Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Jingming Zheng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yimin Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Caixian Yang
- Department of Endocrinology, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qin-Li Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| |
Collapse
|
37
|
Astragalus membranaceus treatment combined with caloric restriction may enhance genesis factors and decrease apoptosis in the hippocampus of rats. Arch Gerontol Geriatr 2022; 99:104584. [DOI: 10.1016/j.archger.2021.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022]
|
38
|
Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic Biol Med 2022; 182:206-218. [PMID: 35218914 DOI: 10.1016/j.freeradbiomed.2022.02.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
Intermittent fasting (IF) has been studied for its effects on lifespan and the prevention or delay of age-related diseases upon the regulation of metabolic pathways. Mitochondria participate in key metabolic pathways and play important roles in maintaining intracellular signaling networks that modulate various cellular functions. Mitochondrial dysfunction has been described as an early feature of brain aging and neurodegeneration. Although IF has been shown to prevent brain aging and neurodegeneration, the mechanism is still unclear. This review focuses on the mechanisms by which IF improves mitochondrial function, which plays a central role in brain aging and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The cellular and molecular mechanisms of IF in brain aging and neurodegeneration involve activation of adaptive cellular stress responses and signaling- and transcriptional pathways, thereby enhancing mitochondrial function, by promoting energy metabolism and reducing oxidant production.
Collapse
Affiliation(s)
- Yihang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
39
|
Gu YF, Lin FP, Epstein RJ. How aging of the global population is changing oncology. Ecancermedicalscience 2022; 15:ed119. [PMID: 35211208 PMCID: PMC8816510 DOI: 10.3332/ecancer.2021.ed119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Population aging is causing a demographic redistribution with implications for the future of healthcare. How will this affect oncology? First, there will be an overall rise in cancer affecting older adults, even though age-specific cancer incidences continue to fall due to better prevention. Second, there will be a wider spectrum of health functionality in this expanding cohort of older adults, with differences between “physiologically older” and “physiologically younger” patients becoming more important for optimal treatment selection. Third, greater teamwork with supportive care, geriatric, mental health and rehabilitation experts will come to enrich oncologic decision-making by making it less formulaic than it is at present. Success in this transition to a more nuanced professional mindset will depend in part on the development of user-friendly computational tools that can integrate a complex mix of quantitative and qualitative inputs from evidence-based medicine, functional and cognitive assessments, and the personal priorities of older adults.
Collapse
Affiliation(s)
- Yan Fei Gu
- New Hope Cancer Center, United Family Hospitals, 9 Jiangtai W Rd, Chaoyang, Beijing 100015, China
| | - Frank P Lin
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney 2010, Australia.,NH&MRC Clinical Trials Centre, 92 Parramatta Rd, Camperdown, Sydney 2050, Australia
| | - Richard J Epstein
- New Hope Cancer Center, United Family Hospitals, 9 Jiangtai W Rd, Chaoyang, Beijing 100015, China.,Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney 2010, Australia.,UNSW Clinical School, St Vincent's Hospital, 390 Victoria St, Darlinghurst, Sydney 2010, Australia.,https://orcid.org/0000-0002-4640-0195
| |
Collapse
|
40
|
Lionaki E, Ploumi C, Tavernarakis N. One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells 2022; 11:cells11020214. [PMID: 35053330 PMCID: PMC8773781 DOI: 10.3390/cells11020214] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. In this review, we summarize the current knowledge on OCM and related pathways and discuss how this metabolic network may impact longevity and neurodegeneration across species.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810-391069
| |
Collapse
|
41
|
|
42
|
Zhang C, Yan Q, Zhu Q, Liu J, Dong Y, Li Y, Wang R, Tang X, Lv X, Li X, Cai Y, Niu Y. Metabolomics Study of Isocaloric Different Dietary Patterns on the Life Span in Healthy Population. Clin Interv Aging 2021; 16:2111-2123. [PMID: 35221682 PMCID: PMC8866994 DOI: 10.2147/cia.s343057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose How to prolong life by diet has been widely concerned. There are many reports about the effects of different dietary patterns on life span, but the results are not consistent. The main reason may be that total energy intake has not been considered. This study aims to explore the effects of isocaloric different dietary patterns on population life span. Materials and Methods From the data of the follow-up population, eligible participators were divided into normal control (NC) group (28.31% fat, 12.37% protein, 62.30% carbohydrate), isocaloric high-fat (IHF) group (38.39% fat, 12.21% protein, 51.32% carbohydrate), isocaloric high-protein (IHP) group (33.41% fat, 17.10% protein, 52.67% carbohydrate) and isocaloric high-carbohydrate (IHC) group (22.23% fat, 10.52% protein, 70.13% carbohydrate) according to the dietary structure and the age stratification. Global serum metabolic profiling analysis by UPLC−Q-TOF-MS/MS technology, fatty acid and amino acid profiles in serum were determined by GC-MS and UPLC-TQ-MS technology. One-way ANOVA followed by Dunnett post hoc test and receiver operating characteristic (ROC) curve analysis were used to statistical analysis. Results Non-targeted metabolomics was to identify 18 potential metabolites related to longevity. ROC curve analysis to identify biomarkers indicated that the areas under the ROC (AUC) of the 12 of 18 biomarkers are above 0.9. The 12 biomarkers were mainly enriched in three metabolic pathways: lipid metabolism, amino acid metabolism and tricarboxylic acid cycle. Compared to control, 11 and 10 of 12 biomarkers showed the same trend with aging in IHP and IHC groups, respectively. Conversely, no differences were observed between IHF group and NC group. Conclusion Without consideration of the nature of carbohydrates, fats and proteins, IHP and IHC diets might shorten life span by influencing amino acid metabolism, lipid metabolism and tricarboxylic acid cycle metabolism, while the isocaloric IHF diet has no effects on longevity.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, People’s Republic of China
- Center of Disease Control and Prevention of Xishan District, Wuxi, 214000, People’s Republic of China
| | - Qingna Yan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Qiushuang Zhu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Jinxiao Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Yuanjie Dong
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Yuqiao Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Ruohua Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Xuanfeng Tang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Xinyi Lv
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Xiaoqing Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Yunjiang Cai
- Nursing College of Daqing Campus of Harbin Medical University, Daqing, 163319, People’s Republic of China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, People’s Republic of China
- Correspondence: Yucun Niu Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, People’s Republic of ChinaTel +86-451-8750-2730Fax +86-451-8750-2885 Email
| |
Collapse
|
43
|
Wang Q, Qi Y, Shen W, Xu J, Wang L, Chen S, Hou T, Si J. The Aged Intestine: Performance and Rejuvenation. Aging Dis 2021; 12:1693-1712. [PMID: 34631215 PMCID: PMC8460310 DOI: 10.14336/ad.2021.0202] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to the growing elderly population, age-related problems are gaining increasing attention from the scientific community. With senescence, the intestine undergoes a spectrum of changes and infirmities that are likely the causes of overall aging. Therefore, identification of the aged intestine and the search for novel strategies to rescue it, are required. Although progress has been made in research on some components of the aged intestine, such as intestinal stem cells, the comprehensive understanding of intestinal aging is still limited, and this restricts the in-depth search for efficient strategies. In this concise review, we discuss several aspects of intestinal aging. More emphasis is placed on the appraisal of current and potential strategies to alleviate intestinal aging, as well as future targets to rejuvenate the aged intestine.
Collapse
Affiliation(s)
- Qiwen Wang
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yadong Qi
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Weiyi Shen
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jilei Xu
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Lan Wang
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shujie Chen
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Tongyao Hou
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jianmin Si
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
44
|
Fang Y, Wang X, Yang D, Lu Y, Wei G, Yu W, Liu X, Zheng Q, Ying J, Hua F. Relieving Cellular Energy Stress in Aging, Neurodegenerative, and Metabolic Diseases, SIRT1 as a Therapeutic and Promising Node. Front Aging Neurosci 2021; 13:738686. [PMID: 34616289 PMCID: PMC8489683 DOI: 10.3389/fnagi.2021.738686] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
The intracellular energy state will alter under the influence of physiological or pathological stimuli. In response to this change, cells usually mobilize various molecules and their mechanisms to promote the stability of the intracellular energy status. Mitochondria are the main source of ATP. Previous studies have found that the function of mitochondria is impaired in aging, neurodegenerative diseases, and metabolic diseases, and the damaged mitochondria bring lower ATP production, which further worsens the progression of the disease. Silent information regulator-1 (SIRT1) is a multipotent molecule that participates in the regulation of important biological processes in cells, including cellular metabolism, cell senescence, and inflammation. In this review, we mainly discuss that promoting the expression and activity of SIRT1 contributes to alleviating the energy stress produced by physiological and pathological conditions. The review also discusses the mechanism of precise regulation of SIRT1 expression and activity in various dimensions. Finally, according to the characteristics of this mechanism in promoting the recovery of mitochondrial function, the relationship between current pharmacological preparations and aging, neurodegenerative diseases, metabolic diseases, and other diseases was analyzed.
Collapse
Affiliation(s)
- Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yimei Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
45
|
Effects of Caloric Restriction and Rope-Skipping Exercise on Cardiometabolic Health: A Pilot Randomized Controlled Trial in Young Adults. Nutrients 2021; 13:nu13093222. [PMID: 34579097 PMCID: PMC8467906 DOI: 10.3390/nu13093222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of this study is to investigate the effects of calorie restriction (CR), rope-skipping (RS) exercise, and their joint effects on cardiometabolic health in young adults. An 8-week randomized trial was conducted on 46 undergraduates aged 19–21 y from South China. The participants were randomized into the following three groups: Calorie restriction (CR) group (n = 14), Rope-skipping (RS) group (n = 14), and CR plus RS (CR–RS) group (n = 12). At both allocation and the end of the intervention, data on anthropometry, serum metabolic, and inflammatory markers were collected. A total of 40 participants completed the intervention and were included in the analysis. After the 8-week intervention, the participants from the CR group and the CR–RS group reduced in body weight (−1.1 ± 1.7 kg, −1.3 ± 2.0 kg), body mass index (−0.4 ± 0.6 kg/m2, −0.5 ± 0.7 kg/m2), body fat percentage (−1.2 ± 1.6%, −1.7 ± 1.8%), and body fat mass (−1.1 kg (−2.2, −0.3), −1.1 kg (−2.5, −0.4)) compared to the baseline (p < 0.05 or p = 0.051). For metabolic and inflammatory factors, the participants in the CR–RS group showed significant decreases in low density lipoprotein cholesterol (−0.40 mmol/L) and interleukin-8 (−0.73 mmol/L). While all the above markers showed no significant difference among the groups after intervention, in the subgroup of overweight/obese participants (n = 23), the CR–RS group had significantly lower blood pressure, fasting insulin, homeostatic model assessment of insulin resistance, tumor necrosis factor-α, and interleukin-8 levels than the CR or RS groups (p < 0.05). In conclusion, both CR and CR–RS could reduce weight and improve body composition in young adults. More importantly, in those with overweight or obesity, CR–RS intervention might be superior to either CR or RS in improving cardiometabolic health.
Collapse
|
46
|
Bhoumik S, Rizvi SI. Anti‐aging effects of intermittent fasting: a potential alternative to calorie restriction? Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Kökten T, Hansmannel F, Ndiaye NC, Heba AC, Quilliot D, Dreumont N, Arnone D, Peyrin-Biroulet L. Calorie Restriction as a New Treatment of Inflammatory Diseases. Adv Nutr 2021; 12:1558-1570. [PMID: 33554240 PMCID: PMC8321869 DOI: 10.1093/advances/nmaa179] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Immoderate calorie intake coupled with a sedentary lifestyle are major determinants of health issues and inflammatory diseases in modern society. The balance between energy consumption and energy expenditure is critical for longevity. Excessive energy intake and adiposity cause systemic inflammation, whereas calorie restriction (CR) without malnutrition, exerts a potent anti-inflammatory effect. The objective of this review was to provide an overview of different strategies used to reduce calorie intake, discuss physiological mechanisms by which CR might lead to improved health outcomes, and summarize the present knowledge about inflammatory diseases. We discuss emerging data of observational studies and randomized clinical trials on CR that have been shown to reduce inflammation and improve human health.
Collapse
Affiliation(s)
- Tunay Kökten
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Franck Hansmannel
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Ndeye Coumba Ndiaye
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Anne-Charlotte Heba
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Didier Quilliot
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
- Université de Lorraine, Centre Hospitalier Régional Universitaire (CHRU)-Nancy, Department of Diabetology-Endocrinology-Nutrition, Nancy, France
| | - Natacha Dreumont
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Djésia Arnone
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Laurent Peyrin-Biroulet
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
- Université de Lorraine, Centre Hospitalier Régional Universitaire (CHRU)-Nancy, Department of Gastroenterology, Nancy, France
| |
Collapse
|
48
|
Duran-Ortiz S, List EO, Basu R, Kopchick JJ. Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary 2021; 24:438-456. [PMID: 33459974 PMCID: PMC8122064 DOI: 10.1007/s11102-020-01117-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Progress made in the years of aging research have allowed the opportunity to explore potential interventions to slow aging and extend healthy lifespan. Studies performed in yeast, worms, flies and mice subjected to genetic and pharmacological interventions have given insight into the cellular and molecular mechanisms associated with longevity. Furthermore, it is now possible to effectively modulate pathways that slow aging at different stages of life (early life or at an adult age). Interestingly, interventions that extend longevity in adult mice have had sex-specific success, suggesting a potential link between particular pathways that modulate aging and sex. For example, reduction of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis at an adult age extends lifespan preferentially in females. Moreover, several postnatal dietary interventions tested by the 'Intervention Testing Program (ITP)' from the National Institute of Aging (NIA) have shown that while pharmacological interventions like rapamycin affect the IGF-1/insulin pathway and preferentially extend lifespan in females; dietary compounds that target other cellular pathways are effective only in male mice-indicating mutually exclusive sex-specific pathways. Therefore, a combination of interventions that target non-overlapping aging-related pathways appears to be an effective approach to further extend healthy lifespan in both sexes. Here, we review the germline and postnatal mouse lines that target the GH/IGF-1 axis as a mechanism to extend longevity as well as the dietary compounds that tested positive in the NIA program to increase lifespan. We believe that the interventions reviewed in this paper could constitute feasible combinations for an extended healthy lifespan in both male and female mice.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
49
|
Neuroinflammation in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9050524. [PMID: 34067173 PMCID: PMC8150909 DOI: 10.3390/biomedicines9050524] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.
Collapse
|
50
|
Dorling JL, van Vliet S, Huffman KM, Kraus WE, Bhapkar M, Pieper CF, Stewart T, Das SK, Racette SB, Roberts SB, Ravussin E, Redman LM, Martin CK, the CALERIE Study Group. Effects of caloric restriction on human physiological, psychological, and behavioral outcomes: highlights from CALERIE phase 2. Nutr Rev 2021; 79:98-113. [PMID: 32940695 PMCID: PMC7727025 DOI: 10.1093/nutrit/nuaa085] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/01/2020] [Indexed: 02/04/2023] Open
Abstract
Caloric restriction (CR) is a strategy that attenuates aging in multiple nonhuman species. The Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) trials are part of a research program aiming to test the effects of CR on aging and longevity biomarkers in humans. Building on CALERIE phase 1, CALERIE phase 2 (CALERIE 2) was the largest study to date to assess sustained CR in healthy humans without obesity. In a 24-month randomized controlled trial comprising 218 participants at baseline, CALERIE 2 showed that moderate CR, 11.9% on average, induced improvements in aging-related biomarkers without adversely affecting psychological or behavioral outcomes. The objectives of this report are to summarize and review the highlights of CALERIE 2 and report previously unpublished results on eating disorder symptoms and cognitive function. This article specifically summarizes the physiological, psychological, aging, behavioral, and safety results of the trial. Also provided are research directions beyond CALERIE 2 that highlight important opportunities to investigate the role of CR in aging, longevity, and health span in humans.
Collapse
Affiliation(s)
- James L Dorling
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | - Kim M Huffman
- Duke University School of Medicine, Durham, North Carolina, USA
| | - William E Kraus
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Carl F Pieper
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Tiffany Stewart
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Sai Krupa Das
- US Department of Agriculture, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Susan B Racette
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan B Roberts
- US Department of Agriculture, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Corby K Martin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|