1
|
Michaëlsson K, Lemming EW, Larsson SC, Höijer J, Melhus H, Svennblad B, Baron JA, Wolk A, Byberg L. Non-fermented and fermented milk intake in relation to risk of ischemic heart disease and to circulating cardiometabolic proteins in swedish women and men: Two prospective longitudinal cohort studies with 100,775 participants. BMC Med 2024; 22:483. [PMID: 39511582 PMCID: PMC11546556 DOI: 10.1186/s12916-024-03651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND The effect of milk on the risk of ischemic heart disease (IHD) and acute myocardial infarction (MI) is unclear. We aimed to examine the association between non-fermented and fermented milk consumption on these endpoints and investigate the relationship between milk intake and cardiometabolic-related proteins in plasma. METHODS Our study is based on two Swedish prospective cohort studies that included 59,998 women and 40,777 men without IHD or cancer at baseline who provided repeated measures of diet and lifestyle factors and plasma proteomics data in two subcohorts. Through registry linkage, 17,896 cases with IHD were documented during up to 33 years of follow-up, including 10,714 with MI. We used time-updated multivariable Cox regression analysis to examine non-fermented or fermented milk intake with time to IHD or MI. Using high-throughput multiplex immunoassays, 276 cardiometabolic plasma proteins were measured in two subcohorts. We applied multivariable-adjusted regression models using a discovery-replication design to examine protein associations with increasing consumption of non-fermented or fermented milk. RESULTS The results for non-fermented milk differed by sex (p-value for interaction = 0.01). In women, we found a pattern of successively greater risk of IHD and MI at non-fermented milk intake levels higher than 1.5 glasses/day. Compared with an intake of 0.5 glass/day (100 mL/day), non-fermented milk intake of 2 glasses/day in women conferred a multivariable-adjusted hazard ratio (HR) of 1.05 (95% CI 1.01-1.08) for IHD, an intake of 3 glasses/day an HR of 1.12 (95% CI 1.06-1.19), and an intake of 4 glasses/day an HR of 1.21 (95% CI 1.10-1.32). Findings were similar for whole, medium-fat, and low-fat milk. We did not detect higher risks of IHD with increasing milk intakes in men. Fermented milk intake was unrelated to the risk of IHD or MI in either sex. Increasing non-fermented milk intake in women was robustly associated with a higher concentration of plasma ACE2 and a lower concentration of FGF21. CONCLUSIONS We show a positive association between high amounts of non-fermented milk intake and IHD in women but not men. We suggest metabolic pathways related to ACE2 and FGF21 potentially underlie the association.
Collapse
Affiliation(s)
- Karl Michaëlsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Eva Warensjö Lemming
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Susanna C Larsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Höijer
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Håkan Melhus
- Clinical Pharmacology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Bodil Svennblad
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - John A Baron
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Liisa Byberg
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Lu D, Zhang X, Ye H, Wang J, Han D. Milk-Derived Extracellular Vesicles Carrying ssc-let-7 c Alleviate Early Intestinal Inflammation and Regulate Macrophage Polarization via Targeting the PTEN-Mediated PI3K/Akt Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22092-22104. [PMID: 39188059 DOI: 10.1021/acs.jafc.4c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Milk-derived extracellular vesicles (mEVs) are beneficial to the health of infants. However, the effect of mEVs on early intestinal inflammation is not well established. Herein, weaned colitic mice were used to explore the potential effects and underlying mechanisms of porcine mEVs (pmEVs) on intestinal inflammation during early life. We found that pmEVs administration attenuated early life intestinal inflammation and promoted colonic barrier integrity in mice. The anti-inflammatory effect of pmEVs was achieved by shifting a proinflammatory macrophage (M1) toward an anti-inflammatory macrophage (M2). Moreover, pmEVs can be absorbed by macrophages and reduce proinflammatory polarization (stimulated by LPS) in vitro. Noteworthily, ssc-let-7c was found to be highly expressed in pmEVs that can regulate the polarization of macrophages by targeting the tensin homologue deleted on chromosome ten (PTEN), thereby activating the PI3K/Akt pathway. Collectively, our findings revealed a crucial role of mEVs in early intestinal immunity and its underlying mechanism.
Collapse
Affiliation(s)
- Dongdong Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Adaptation Physiology Group, Department of Animal Science, Wageningen University& Research, Wageningen 6700 AH, The Netherlands
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Ye
- Adaptation Physiology Group, Department of Animal Science, Wageningen University& Research, Wageningen 6700 AH, The Netherlands
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Almohaid S, Akhtar S. Diet, lifestyle factors, comorbidities, and hepatocellular carcinoma risk in a middle eastern country: a case-control study. BMC Cancer 2024; 24:694. [PMID: 38844890 PMCID: PMC11157712 DOI: 10.1186/s12885-024-12409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) can be classified as one of the most common malignancies worldwide. There is scarcity of the published data on the risk factors for HCC in the Gulf Cooperation Council countries specifically Kuwait. Therefore, this case-control study sought to examine the risk factors associated with HCC in Kuwait. METHODS Fifty-three histopathologically confirmed HCC cases were recruited from the Kuwait Cancer Control Center Registry. One hundred ninety-six controls (1:4 ratio) were selected from medical and/ or surgical outpatient's clinics at all six public hospitals of Kuwait. A structured questionnaire was used to collect the data both from cases and controls through face-to-face interviews. A multivariable logistic regression model was fitted to the case-control data. Adjusted odds ratios (ORadj) and their 95% confidence intervals (CI) were computed using the parameters' estimates of the final model and used for interpretation of the model. RESULTS The HCC cases compared with the controls were 41.6 times more likely to have had the history of non-alcoholic fatty liver disease (NAFLD) (ORadj = 41.6; 95% CI: 8.9-193.5; p < 0.001). The cases compared with the controls were more likely to have reported the history of heavy alcohol drinking (ORadj = 14.2; 95% CI: 1.2-173.4; p = 0.038). Furthermore, compared with the controls, the HCC cases tended to frequently consume milk and/or milk substitutes (≥ 3 glass/ week) (ORadj = 7.2; 95% CI: 1.2-43.4). Conversely however, there was a significant protective effect if the participants reportedly have had regularly used olive oil in their routine diet as a source of fat (ORadj = 0.17; 95% CI: 0.04-0.80) or regularly used non-steroid anti-inflammatory drugs (NSAIDs) (ORadj = 0.20; 95% CI: 0.05-0.71). CONCLUSIONS This study showed that heavy alcohol consumption, NAFLD history, and excessive consumption of milk/ milk substitutes were associated with a significantly increased HCC risk. Conversely however, regular use of olive oil in the diet as a source of fat or regular use of NSAIDs had a significantly protective effect against HCC risk. Adapting healthy dietary habits and preventing/ treating NAFLD may minimize the HCC risk. Future research with a larger sample size may contemplate validating the results of this study and unraveling additional risk factors contributing to HCC risk. The resultant data may help design and implement evidence-based educational programs for the prevention of HCC in this and other similar settings.
Collapse
Affiliation(s)
- Shaimaa Almohaid
- Department of Community Medicine and Behavioural Sciences, College of Medicine, Kuwait University, PO Box 24923, Safat, 13110, Kuwait
| | - Saeed Akhtar
- Department of Community Medicine and Behavioural Sciences, College of Medicine, Kuwait University, PO Box 24923, Safat, 13110, Kuwait.
| |
Collapse
|
4
|
Meng Z, Zhou D, Lv D, Gan Q, Liao Y, Peng Z, Zhou X, Xu S, Chi P, Wang Z, Nüssler AK, Yang X, Liu L, Deng D, Yang W. Human milk extracellular vesicles enhance muscle growth and physical performance of immature mice associating with Akt/mTOR/p70s6k signaling pathway. J Nanobiotechnology 2023; 21:304. [PMID: 37644475 PMCID: PMC10463453 DOI: 10.1186/s12951-023-02043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Extracellular vesicles (EVs) play an important role in human and bovine milk composition. According to excellent published studies, it also exerts various functions in the gut, bone, or immune system. However, the effects of milk-derived EVs on skeletal muscle growth and performance have yet to be fully explored. Firstly, the current study examined the amino acids profile in human milk EVs (HME) and bovine milk EVs (BME) using targeted metabolomics. Secondly, HME and BME were injected in the quadriceps of mice for four weeks (1 time/3 days). Then, related muscle performance, muscle growth markers/pathways, and amino acids profile were detected or measured by grip strength analysis, rotarod performance testing, Jenner-Giemsa/H&E staining, Western blotting, and targeted metabolomics, respectively. Finally, HME and BME were co-cultured with C2C12 cells to detect the above-related indexes and further testify relative phenomena. Our findings mainly demonstrated that HME and BME significantly increase the diameter of C2C12 myotubes. HME treatment demonstrates higher exercise performance and muscle fiber densities than BME treatment. Besides, after KEGG and correlation analyses with biological function after HME and BME treatment, results showed L-Ornithine acts as a "notable marker" after HME treatment to affect mouse skeletal muscle growth or functions. Otherwise, L-Ornithine also significantly positively correlates with the activation of the AKT/mTOR pathway and myogenic regulatory factors (MRFs) and can also be observed in muscle and C2C12 cells after HME treatment. Overall, our study not only provides a novel result for the amino acid composition of HME and BME, but the current study also indicates the advantage of human milk on skeletal muscle growth and performance.
Collapse
Affiliation(s)
- Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Dong Zhou
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
- Department of Critical Care Medicine, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
| | - Dan Lv
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, China
| | - Quan Gan
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
- Department of Critical Care Medicine, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Penglong Chi
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhipeng Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
5
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
6
|
Melnik BC, John SM, Carrera-Bastos P, Cordain L, Leitzmann C, Weiskirchen R, Schmitz G. The Role of Cow's Milk Consumption in Breast Cancer Initiation and Progression. Curr Nutr Rep 2023; 12:122-140. [PMID: 36729355 PMCID: PMC9974716 DOI: 10.1007/s13668-023-00457-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW This review evaluates cow milk's impact on breast carcinogenesis by linking recent epidemiological evidence and new insights into the molecular signaling of milk and its constituents in breast cancer (BCa) pathogenesis. RECENT FINDINGS Recent prospective cohort studies support the association between cow's milk consumption and the risk of estrogen receptor-α-positive (ER+) BCa. Milk is a complex biological fluid that increases systemic insulin-like growth factor 1 (IGF-1), insulin and estrogen signaling, and interacting hormonal promoters of BCa. Further potential oncogenic components of commercial milk include exosomal microRNAs (miR-148a-3p, miR-21-5p), bovine meat and milk factors, aflatoxin M1, bisphenol A, pesticides, and micro- and nanoplastics. Individuals with BRCA1 loss-of-function mutations and FTO and IGF1 gain-of-function polymorphisms enhancing IGF-1/mTORC1 signaling may be at increased risk for milk-induced ER+ BCa. Recent prospective epidemiological and pathobiochemical studies identify commercial milk consumption as a critical risk factor of ER+ BCa. Large meta-analyses gathering individuals of different ethnic origins with milk derived from dairy cows of varying genetic backgrounds and diverse feeding procedures as well as missing data on thermal processing of milk (pasteurization versus ultra-heat treatment) make multi-national meta-analyses unsuitable for BCa risk estimations in susceptible populations. Future studies are required that consider all vulnerable periods of breast carcinogenesis to cow's milk exposure, beginning during the perinatal period and puberty, since these are the most critical periods of mammary gland morphogenesis. Notwithstanding the need for better studies including detailed information on milk processing and vulnerable periods of human breast carcinogenesis, the available evidence suggests that dietary guidelines on milk consumption may have to be reconsidered.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076, Osnabrück, Germany.
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076, Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm) at the University of Osnabrück, Lower-Saxonian Institute of Occupational Dermatology (NIB), Osnabrück, Germany
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, 205 02, Malmö, Sweden
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670, Madrid, Spain
- Centro de Estudios Avanzados en Nutrición (CEAN), 11007, Cádiz, Spain
| | | | - Claus Leitzmann
- Institute of Nutrition, University of Giessen, 35390, Giessen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074, Aachen, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
7
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
8
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
9
|
Kakkoura MG, Du H, Guo Y, Yu C, Yang L, Pei P, Chen Y, Sansome S, Chan WC, Yang X, Fan L, Lv J, Chen J, Li L, Key TJ, Chen Z. Dairy consumption and risks of total and site-specific cancers in Chinese adults: an 11-year prospective study of 0.5 million people. BMC Med 2022; 20:134. [PMID: 35513801 PMCID: PMC9074208 DOI: 10.1186/s12916-022-02330-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies of primarily Western populations have reported contrasting associations of dairy consumption with certain cancers, including a positive association with prostate cancer and inverse associations with colorectal and premenopausal breast cancers. However, there are limited data from China where cancer rates and levels of dairy consumption differ importantly from those in Western populations. METHODS The prospective China Kadoorie Biobank study recruited ~0.5 million adults from ten diverse (five urban, five rural) areas across China during 2004-2008. Consumption frequency of major food groups, including dairy products, was collected at baseline and subsequent resurveys, using a validated interviewer-administered laptop-based food frequency questionnaire. To quantify the linear association of dairy intake and cancer risk and to account for regression dilution bias, the mean usual consumption amount for each baseline group was estimated via combining the consumption level at both baseline and the second resurvey. During a mean follow-up of 10.8 (SD 2.0) years, 29,277 incident cancer cases were recorded among the 510,146 participants who were free of cancer at baseline. Cox regression analyses for incident cancers associated with usual dairy intake were stratified by age-at-risk, sex and region and adjusted for cancer family history, education, income, alcohol intake, smoking, physical activity, soy and fresh fruit intake, and body mass index. RESULTS Overall, 20.4% of participants reported consuming dairy products (mainly milk) regularly (i.e. ≥1 day/week), with the estimated mean consumption of 80.8 g/day among regular consumers and of 37.9 g/day among all participants. There were significant positive associations of dairy consumption with risks of total and certain site-specific cancers, with adjusted HRs per 50 g/day usual consumption being 1.07 (95% CI 1.04-1.10), 1.12 (1.02-1.22), 1.19 (1.01-1.41) and 1.17 (1.07-1.29) for total cancer, liver cancer (n = 3191), female breast cancer (n = 2582) and lymphoma (n=915), respectively. However, the association with lymphoma was not statistically significant after correcting for multiple testing. No significant associations were observed for colorectal cancer (n = 3350, 1.08 [1.00-1.17]) or other site-specific cancers. CONCLUSION Among Chinese adults who had relatively lower dairy consumption than Western populations, higher dairy intake was associated with higher risks of liver cancer, female breast cancer and, possibly, lymphoma.
Collapse
Affiliation(s)
- Maria G Kakkoura
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Huaidong Du
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Yu Guo
- Fuwai Hospital Chinese Academy of Medical Sciences, National Center for Cardiovascular Diseases, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ling Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pei Pei
- Chinese Academy of Medical Sciences, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sam Sansome
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Wing Ching Chan
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiaoming Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lei Fan
- NCDs Prevention and Control Department, Henan CDC, Zhengzhou, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Timothy J Key
- Cancer Epidemiology Unit (CEU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
García-Martínez J, Pérez-Castillo ÍM, Salto R, López-Pedrosa JM, Rueda R, Girón MD. Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk. Nutrients 2022; 14:nu14071442. [PMID: 35406056 PMCID: PMC9003525 DOI: 10.3390/nu14071442] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are membrane-enclosed secreted vesicles involved in cell-to-cell communication processes, identified in virtually all body fluids. Among extracellular vesicles, exosomes have gained increasing attention in recent years as they have unique biological origins and deliver different cargos, such as nucleic acids, proteins, and lipids, which might mediate various health processes. In particular, milk-derived exosomes are proposed as bioactive compounds of breast milk, which have been reported to resist gastric digestion and reach systemic circulation, thus being bioavailable after oral intake. In the present manuscript, we critically discuss the available evidence on the health benefits attributed to milk exosomes, and we provide an outlook for the potential future uses of these compounds. The use of milk exosomes as bioactive ingredients represents a novel avenue to explore in the context of human nutrition, and they might exert important beneficial effects at multiple levels, including but not limited to intestinal health, bone and muscle metabolism, immunity, modulation of the microbiota, growth, and development.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
- Correspondence: ; Tel.: +34-958-246363
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
| |
Collapse
|
11
|
Olsson E, Larsson SC, Höijer J, Kilander L, Byberg L. Milk and Fermented Milk Consumption and Risk of Stroke: Longitudinal Study. Nutrients 2022; 14:nu14051070. [PMID: 35268043 PMCID: PMC8912552 DOI: 10.3390/nu14051070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
The role of milk and fermented milk consumption in stroke risk is unclear. We investigated associations of time-updated information on milk and fermented milk consumption (1997 and 2009) with total stroke, cerebral infarction, and hemorrhagic stroke risk among 79,618 Swedish women and men (mean age 61.3 years). During a mean follow-up of 17.7 years, we identified 9735 incident cases of total stroke, of which 7573 were cerebral infarctions, 1470 hemorrhagic strokes, and 692 unspecified strokes. Compared with an intake of 100 g/day of milk, the multivariable-adjusted hazard ratios (95% confidence interval) of cerebral infarction were 1.05 (1.02–1.08) for 0 g/day, 0.97 (0.95–0.99) for 200 g/day, 0.96 (0.92–1.00) for 400 g/day, 0.98 (0.94–1.03) for 600 g/day, and 1.01 (0.94–1.07) for 800 g/day. Corresponding estimates for hemorrhagic stroke were 0.98 (0.91–1.05) for 0 g/day, 1.02 (0.97–1.07) for 200 g/day, 1.07 (0.98–1.17) for 400 g/day, 1.13 (1.02–1.25) for 600 g/day, and 1.19 (1.03–1.36) for 800 g/day. No associations were observed between milk consumption and total stroke or for fermented milk consumption and any of the stroke outcomes. Higher long-term milk consumption based on repeated measures of intake was weakly and non-linearly associated with cerebral infarction, and was directly associated with hemorrhagic stroke.
Collapse
Affiliation(s)
- Erika Olsson
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, SE-75185 Uppsala, Sweden; (S.C.L.); (J.H.); (L.B.)
- Correspondence: ; Tel.: +46-70-4584954
| | - Susanna C. Larsson
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, SE-75185 Uppsala, Sweden; (S.C.L.); (J.H.); (L.B.)
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Jonas Höijer
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, SE-75185 Uppsala, Sweden; (S.C.L.); (J.H.); (L.B.)
| | - Lena Kilander
- Public Health and Caring Sciences, Geriatrics, Uppsala University, SE-75123 Uppsala, Sweden;
| | - Liisa Byberg
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, SE-75185 Uppsala, Sweden; (S.C.L.); (J.H.); (L.B.)
| |
Collapse
|
12
|
Monfoulet LE, Martinez MC. Dietary modulation of large extracellular vesicles: the good and the bad for human health. Nutr Rev 2021; 80:1274-1293. [PMID: 34875084 DOI: 10.1093/nutrit/nuab106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Extracellular vesicles (EVs) encompassing nanovesicles derived from the endosome system and generated by plasmatic membrane shedding are of increasing interest in view of their ability to sustain cell-to-cell communication and the possibility that they could be used as surrogate biomarkers of healthy and unhealthy trajectories. Nutritional strategies have been developed to preserve health, and the impact of these strategies on circulating EVs is arousing growing interest. Data available from published studies are now sufficient for a first integration to better understand the role of EVs in the relationship between diet and health. Thus, this review focuses on human intervention studies investigating the impact of diet or its components on circulating EVs. Because of analytical bias, only large EVs have been assessed so far. The analysis highlights that poor-quality diets with elevated fat and sugar content increase levels of circulating large EVs, and these can be partly counteracted by healthy food or some food micronutrients and bioactive compounds. However, knowledge of the content and the biological functions of these diet-induced EVs is still missing. It is important to address these aspects in new research in order to state if EVs are mediators of the effects of diet on health.
Collapse
Affiliation(s)
- Laurent-Emmanuel Monfoulet
- L.-E. Monfoulet is with the Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France M.C. Martinez is with the oxidative stress and metabolic pathologies laboratory (SOPAM), U1063, INSERM, Université Angers, Angers, France
| | - Maria Carmen Martinez
- L.-E. Monfoulet is with the Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France M.C. Martinez is with the oxidative stress and metabolic pathologies laboratory (SOPAM), U1063, INSERM, Université Angers, Angers, France
| |
Collapse
|
13
|
Mahala S, Rai S, Singh A, Mehrotra A, Pandey HO, Kumar A. Perspectives of bovine and human milk exosomics as health biomarkers for advancing systemic therapeutic potential. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1979033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sudarshan Mahala
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Sweta Rai
- Department of Food Science and Technology, College of Agriculture, Gbpuat, Pantnagar US Nagar, Uttarakhand, India
| | - Akansha Singh
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Arnav Mehrotra
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Hari Om Pandey
- Scientist, Livestock Production and Management, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
14
|
Melnik BC. Lifetime Impact of Cow's Milk on Overactivation of mTORC1: From Fetal to Childhood Overgrowth, Acne, Diabetes, Cancers, and Neurodegeneration. Biomolecules 2021; 11:404. [PMID: 33803410 PMCID: PMC8000710 DOI: 10.3390/biom11030404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
The consumption of cow's milk is a part of the basic nutritional habits of Western industrialized countries. Recent epidemiological studies associate the intake of cow's milk with an increased risk of diseases, which are associated with overactivated mechanistic target of rapamycin complex 1 (mTORC1) signaling. This review presents current epidemiological and translational evidence linking milk consumption to the regulation of mTORC1, the master-switch for eukaryotic cell growth. Epidemiological studies confirm a correlation between cow's milk consumption and birthweight, body mass index, onset of menarche, linear growth during childhood, acne vulgaris, type 2 diabetes mellitus, prostate cancer, breast cancer, hepatocellular carcinoma, diffuse large B-cell lymphoma, neurodegenerative diseases, and all-cause mortality. Thus, long-term persistent consumption of cow's milk increases the risk of mTORC1-driven diseases of civilization. Milk is a highly conserved, lactation genome-controlled signaling system that functions as a maternal-neonatal relay for optimized species-specific activation of mTORC1, the nexus for regulation of eukaryotic cell growth, and control of autophagy. A deeper understanding of milk´s impact on mTORC1 signaling is of critical importance for the prevention of common diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|