1
|
Zhu K, An Z, Li Y, Zhang Q, Zhang F, Zhao R, Yu H, Yao Q. A causal association between osteoporosis and postural instability: a Mendelian randomization study. Sci Rep 2025; 15:10234. [PMID: 40133532 PMCID: PMC11937421 DOI: 10.1038/s41598-025-93793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Many observational studies have found an association between osteoporosis and postural instability. However, it is unclear whether there is a genetic causal relationship between osteoporosis and postural instability. In this study, we conducted a two-sample Mendelian randomization (MR) analysis to investigate the causal relationship between osteoporosis and postural instability, with osteoporosis represented by bone mineral density (BMD). We used random effects Inverse Variance Weighted (IVW), weighted median, and MR-Egger methods after Steiger filtering, followed by FDR correction, to assess the causal relationship. We also used the Cochran Q statistic and MR-PRESSO to detect and exclude heterogeneity, the MR-Egger intercept to detect horizontal pleiotropy, and the leave-one-out method for sensitivity analyses. After excluding the heterogeneity in causal estimates across different SNPs and after Steiger filtering, the inverse variance weighted analysis showed a significant negative correlation between femoral neck BMD (FN-BMD) and the occurrence of postural instability, with an OR of 0.9171 (95% CI: 0.8745-0.9617; FDR P.value = 0.0009). Similar results were obtained in the weighted median analysis, with an OR of 0.923 (95% CI: 0.8717-0.9733; FDR P = 0.0180), and in the analysis of lumbar spine BMD (LS-BMD) in IVW, with an OR of 0.9491 (95% CI: 0.9156-0.9838; FDR P.value = 0.0129). However, there was no significant correlation between forearm BMD (FA-BMD) and postural instability. Further analysis showed no horizontal pleiotropy or heterogeneity in FN-BMD and LS-BMD after excluding heterogeneous SNPs. This study demonstrates a causal association between BMD and postural instability, suggesting that individuals with osteoporosis may be at higher risk of experiencing postural instability.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - ZiJie An
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - YaWei Li
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiaoyu Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Feng Zhang
- Department of Orthopaedics, Fuyang People's Hospital, Fuyang, China
| | - Rui Zhao
- Department of General Medicine, Bengbu Medical University, Bengbu, China.
| | - Haiyang Yu
- Department of Orthopaedics, Fuyang People's Hospital, Fuyang, China.
| | - Qingqiang Yao
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Gharpure M, Vyavahare S, Asante DM, Chen J, Zhong R, Cooley MA, Deak F, Lu XY, Isales CM, Fulzele S. Sex-specific transcriptomic profiling reveals key players in bone loss associated with Alzheimer's disease. GeroScience 2025:10.1007/s11357-025-01535-7. [PMID: 39875754 DOI: 10.1007/s11357-025-01535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is frequently associated with musculoskeletal complications, including sarcopenia and osteoporosis, which substantially impair patient quality of life. Despite these clinical observations, the molecular mechanisms linking AD to bone loss remain insufficiently explored. In this study, we examined the femoral bone microarchitecture and transcriptomic profiles of APP/PS1 transgenic mouse models of AD to elucidate the disease's impact on bone pathology and identify potential gene candidates associated with bone deterioration. We performed micro-computed tomography (microCT) and RNA transcriptome analysis on the femoral bone of these mice. We observed a significant reduction in bone microstructure in both male and female APP/PS1 mice compared to their wild-type counterparts. Transcriptomic analysis of femoral bone tissue revealed substantial differential gene expression between AD mice and controls. Specifically, APP/PS1 mice exhibited differential expression in 289 protein-coding genes across both sexes. Notably, in female APP/PS1 mice, 664 genes were differentially expressed, with key genes such as Shh, Efemp1, Arg1, EphA2, Irx1, and PORCN potentially implicated in bone loss. In male APP/PS1 mice, 787 genes were differentially expressed, with Sel1l, Ffar4, Hspa1a, AMH, WFS1, and CLIC1 emerging as notable candidates in the context of bone deterioration. Gene Ontology (GO) enrichment analysis further revealed distinct sex-specific gene pathways between male and female APP/PS1 mice, underscoring the differential molecular underpinnings of bone pathology in AD. This study identifies novel sex-specific genes in the APP/PS1 mouse model and proposes potential therapeutic targets to mitigate bone loss in AD patients.
Collapse
Affiliation(s)
- Mohini Gharpure
- Division of Endocrinology, Department of Medicine, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Division of Endocrinology, Department of Medicine, Augusta University, Augusta, GA, USA
| | - Diana M Asante
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Jie Chen
- Division of Biostatistics, Data Science, Augusta University, Augusta, GA, USA
| | - Roger Zhong
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
| | - Ferenc Deak
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
| | - Xin-Yun Lu
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Division of Endocrinology, Department of Medicine, Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
- Department of Neuroscience & Regenerative Medicine, Augusta, GA, 30912, USA
| | - Sadanand Fulzele
- Division of Endocrinology, Department of Medicine, Augusta University, Augusta, GA, USA.
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA.
- Department of Neuroscience & Regenerative Medicine, Augusta, GA, 30912, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
3
|
Wang Z, Liang Q, Lin Z, Li H, Chen X, Zou Z, Mo J. Potential role of formononetin as a novel natural agent in Alzheimer's disease and osteoporosis comorbidity. J Alzheimers Dis 2025; 103:361-371. [PMID: 39828895 DOI: 10.1177/13872877241299104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BACKGROUND The growing aging population has led to an increase in the prevalence of Alzheimer's disease (AD) and osteoporosis (OP), both of which significantly impair quality of life. The comorbid nature of these conditions suggests a shared genetic etiology, the understanding of which is crucial for developing targeted therapies. OBJECTIVE This study aims to explore the shared genetic etiology underlying AD and OP, using a system biology approach to identify potential therapeutic targets and natural compounds for treatment. METHODS We employed Weighted Gene Co-Expression Network Analysis (WGCNA) with molecular docking strategies to uncover the genetic links between AD and OP. MT2A and CACNA1C were identified as key pleiotropic hub genes potentially linking AD and OP. Molecular docking was utilized to screen for compounds with therapeutic potential, leading to the identification of formononetin as a compound with significant binding affinity to these hub genes. Quantitative real-time PCR (qRT-PCR) validation was conducted to confirm the gene expression changes in disease models. RESULTS Our study indicate that formononetin exhibits strong binding affinity to the identified hub genes, MT2A and CACNA1C. qRT-PCR validation confirmed the upregulation of these genes in disease models, which was mitigated upon treatment with formononetin, suggesting a reversal of disease markers. CONCLUSIONS This study advances our understanding of the genetic intersections between AD and OP and positions formononetin as a promising natural agent for further translational research. Formononetin's multi-target potential makes it a valuable candidate for managing these comorbid conditions, meriting further investigation and development as a therapeutic strategy.
Collapse
Affiliation(s)
- Zhigang Wang
- Clinical Research Center for Neurological Diseases of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Brain and Cognition of Guangxi Province, Guilin Medical University, Guilin, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Qiaoyi Liang
- Clinical Research Center for Neurological Diseases of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Brain and Cognition of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Zhaoqiu Lin
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Hongyang Li
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Xin Chen
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Zhenyou Zou
- Biochemistry Department of Purdue University, West Lafayette, IN, USA
| | - Jingxin Mo
- Clinical Research Center for Neurological Diseases of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Brain and Cognition of Guangxi Province, Guilin Medical University, Guilin, China
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Puranik N, Song M. Glutamate: Molecular Mechanisms and Signaling Pathway in Alzheimer's Disease, a Potential Therapeutic Target. Molecules 2024; 29:5744. [PMID: 39683904 DOI: 10.3390/molecules29235744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Gamma-glutamate is an important excitatory neurotransmitter in the central nervous system (CNS), which plays an important role in transmitting synapses, plasticity, and other brain activities. Nevertheless, alterations in the glutamatergic signaling pathway are now accepted as a central element in Alzheimer's disease (AD) pathophysiology. One of the most prevalent types of dementia in older adults is AD, a progressive neurodegenerative illness brought on by a persistent decline in cognitive function. Since AD has been shown to be multifactorial, a variety of pharmaceutical targets may be used to treat the condition. N-methyl-D-aspartic acid receptor (NMDAR) antagonists and acetylcholinesterase inhibitors (AChEIs) are two drug classes that the Food and Drug Administration has authorized for the treatment of AD. The AChEIs approved to treat AD are galantamine, donepezil, and rivastigmine. However, memantine is the only non-competitive NMDAR antagonist that has been authorized for the treatment of AD. This review aims to outline the involvement of glutamate (GLU) at the molecular level and the signaling pathways that are associated with AD to demonstrate the drug target therapeutic potential of glutamate and its receptor. We will also consider the opinion of the leading authorities working in this area, the drawback of the existing therapeutic strategies, and the direction for the further investigation.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Nagarajan A, Laird J, Ugochukwu O, Reppe S, Gautvik K, Ross RD, Bennett DA, Rosen C, Kiel DP, Higginbotham LA, Seyfried NT, Lary CW. Network Analysis of Brain and Bone Tissue Transcripts Reveals Shared Molecular Mechanisms Underlying Alzheimer's Disease and Related Dementias and Osteoporosis. J Gerontol A Biol Sci Med Sci 2024; 79:glae211. [PMID: 39194133 PMCID: PMC11503475 DOI: 10.1093/gerona/glae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Alzheimer's disease and related dementias (ADRD) and osteoporosis (OP) are 2 prevalent diseases of aging with demonstrated epidemiological association, but the underlying molecular mechanisms contributing to this association are unknown. METHODS We used network analysis of bone and brain transcriptomes to discover common molecular mechanisms underlying these 2 diseases. Our study included RNA-sequencing data from the dorsolateral prefrontal cortex tissue of autopsied brains in 629 participants from ROSMAP (Religious Orders Study and the Rush Memory and Aging Project), with a subgroup of 298 meeting criteria for inclusion in 5 ADRD categories, and RNA array data from transiliac bone biopsies in 84 participants from the Oslo study of postmenopausal women. After developing each network within each tissue, we analyzed associations between modules (groups of coexpressed genes) with multiple bone and neurological traits, examined overlap in modules between networks, and performed pathway enrichment analysis to discover conserved mechanisms. RESULTS We discovered 3 modules in ROSMAP that showed significant associations with ADRD and bone-related traits and 4 modules in Oslo that showed significant associations with multiple bone outcomes. We found significant module overlap between the 2 networks in modules linked to signaling, tissue homeostasis, and development, and Wingless-related integration site (Wnt) signaling was found to be highly enriched in OP and ADRD modules of interest. CONCLUSIONS These results provide translational opportunities in the development of treatments and biomarkers for ADRD and OP.
Collapse
Affiliation(s)
- Archana Nagarajan
- Roux Institute, Northeastern University, Portland, Maine, USA
- Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Jason Laird
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Obiadada Ugochukwu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kaare Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Ryan D Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Clifford Rosen
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lenora A Higginbotham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christine W Lary
- Roux Institute, Northeastern University, Portland, Maine, USA
- MaineHealth Institute for Research, Scarborough, Maine, USA
| |
Collapse
|
6
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
7
|
Zhang X, Li D, Ye S, Liu S, Ma S, Li M, Peng Q, Hu L, Shang X, He M, Zhang L. Decoding the genetic comorbidity network of Alzheimer's disease. BioData Min 2024; 17:40. [PMID: 39385276 PMCID: PMC11465508 DOI: 10.1186/s13040-024-00394-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease (AD) has emerged as the most prevalent and complex neurodegenerative disorder among the elderly population. However, the genetic comorbidity etiology for AD remains poorly understood. In this study, we conducted pleiotropic analysis for 41 AD phenotypic comorbidities, identifying ten genetic comorbidities with 16 pleiotropy genes associated with AD. Through biological functional and network analysis, we elucidated the molecular and functional landscape of AD genetic comorbidities. Furthermore, leveraging the pleiotropic genes and reported biomarkers for AD genetic comorbidities, we identified 50 potential biomarkers for AD diagnosis. Our findings deepen the understanding of the occurrence of AD genetic comorbidities and provide new insights for the search for AD diagnostic markers.
Collapse
Affiliation(s)
- Xueli Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China.
| | - Dantong Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Siting Ye
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Shunming Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shuo Ma
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Ethicon Minimally Invasive Procedures and Advanced Energy, Johnson & Johnson Medical (Shanghai) Device Company, Shanghai, China
| | - Min Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qiliang Peng
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Lianting Hu
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Experimental Ophthalmology, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.
| | - Mingguang He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Experimental Ophthalmology, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.
| | - Lei Zhang
- Clinical Medical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China.
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia.
| |
Collapse
|
8
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
9
|
Zhang S, Liu Y, Yu W, Gu X. Research trends and hotspots on osteoporosis: a decade-long bibliometric and visualization analysis from 2014 to 2023. Front Med (Lausanne) 2024; 11:1436486. [PMID: 39267978 PMCID: PMC11390546 DOI: 10.3389/fmed.2024.1436486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Background Osteoporosis is characterized by diminished bone density and quality, compromised bone microstructure, and increased bone fragility, culminating in a heightened risk of fracture. Relatively few attempts have been made to survey the breadth of osteoporosis research using bibliometric approaches. This study aims to delineate the current landscape of osteoporosis research, offering clarity and visualization, while also identifying potential future directions for investigation. Methods We retrieved and filtered articles and reviews pertaining to osteoporosis from the Web of Science Core Collection database, specifically the Science Citation Index Expanded (SCI-E) edition, spanning the years 2014 to 2023. Informatics tools such as CiteSpace and VOSviewer were employed to dissect the intellectual framework, discern trends, and pinpoint focal points of interest within osteoporosis research. Results Our dataset comprised 33,928 osteoporosis-related publications, with a notable surge in annual publication numbers throughout the last decade. China and the United States lead in terms of research output. The University of California System contributed substantially to this body of work, with Amgen demonstrating the highest degree of centrality within the network. Cooper Cyrus emerged as a pivotal figure in the field. An analysis of highly-cited studies, co-citation networks, and keyword co-occurrence revealed that recent years have predominantly concentrated on elucidating mechanisms underlying osteoporosis, as well as its diagnosis, prevention, and treatment strategies. Burst detection analyses of citations and keywords highlighted osteoblasts, sarcopenia, gut microbiota, and denosumab as contemporary hotspots within osteoporosis research. Conclusion This bibliometric analysis has provided a visual representation of the fundamental knowledge structure, prevailing trends, and key focal areas within osteoporosis research. The identification of osteoblasts, sarcopenia, gut microbiota, and denosumab as current hotspots may guide future research endeavors. Continued efforts directed at understanding the mechanisms, fracture outcomes, diagnostics, and therapeutics related to osteoporosis are anticipated to deepen our comprehension of this complex disease.
Collapse
Affiliation(s)
- Song Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Ye Liu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xiyao Gu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
10
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Shen J, Hu L, Huang X, Mao J, Wu Y, Xie Z, Lan Y. Skeleton-derived extracellular vesicles in bone and whole-body aging: From mechanisms to potential applications. Bone 2024; 183:117076. [PMID: 38521235 DOI: 10.1016/j.bone.2024.117076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The skeleton serves as a supportive and protective organ for the body. As individuals age, their bone tissue undergoes structural, cellular, and molecular changes, including the accumulation of senescent cells. Extracellular vesicles (EVs) play a crucial role in aging through the cellular secretome and have been found to induce or accelerate age-related dysfunction in bones and to contribute further via the circulatory system to the aging of phenotypes of other bodily systems. However, the extent of these effects and their underlying mechanisms remain unclear. Therefore, this paper attempts to give an overview of the current understanding of age-related alteration in EVs derived from bones. The role of EVs in mediating communications among bone-related cells and other body parts is discussed, and the significance of bones in the whole-body aging process is highlighted. Ultimately, it is hoped that gaining a clearer understanding of the relationship between EVs and aging mechanisms may serve as a basis for new treatment strategies for age-related degenerative diseases in the skeleton and other systems.
Collapse
Affiliation(s)
- Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Lingling Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyuan Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jiajie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yuzhu Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
12
|
Liu T, Wang Y, Qian B, Li P. Potential Metabolic Pathways Involved in Osteoporosis and Evaluation of Fracture Risk in Individuals with Diabetes. BIOMED RESEARCH INTERNATIONAL 2024; 2024:6640796. [PMID: 38884020 PMCID: PMC11178402 DOI: 10.1155/2024/6640796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
Diabetes has a significant global prevalence. Chronic hyperglycemia affects multiple organs and tissues, including bones. A large number of diabetic patients develop osteoporosis; however, the precise relationship between diabetes and osteoporosis remains incompletely elucidated. The activation of the AGE-RAGE signaling pathway hinders the differentiation of osteoblasts and weakens the process of bone formation due to the presence of advanced glycation end products. High glucose environment can induce ferroptosis of osteoblasts and then develop osteoporosis. Hyperglycemia also suppresses the secretion of sex hormones, and the reduction of testosterone is difficult to effectively maintain bone mineral density. As diabetes therapy, thiazolidinediones control blood glucose by activating PPAR-γ. Activated PPAR-γ can promote osteoclast differentiation and regulate osteoblast function, triggering osteoporosis. The effects of metformin and insulin on bone are currently controversial. Currently, there are no appropriate tools available for assessing the risk of fractures in diabetic patients, despite the fact that the occurrence of osteoporotic fractures is considerably greater in diabetic individuals compared to those without diabetes. Further improving the inclusion criteria of FRAX risk factors and clarifying the early occurrence of osteoporosis sites unique to diabetic patients may be an effective way to diagnose and treat diabetic osteoporosis and reduce the risk of fracture occurrence.
Collapse
Affiliation(s)
- Tong Liu
- Emergency DepartmentHonghui HospitalXi'an Jiaotong UniversitySchool of Medicine, Xi'an, China
| | - Yanjun Wang
- Emergency DepartmentHonghui HospitalXi'an Jiaotong UniversitySchool of Medicine, Xi'an, China
| | - Bing Qian
- Emergency DepartmentHonghui HospitalXi'an Jiaotong UniversitySchool of Medicine, Xi'an, China
| | - Pan Li
- Emergency DepartmentHonghui HospitalXi'an Jiaotong UniversitySchool of Medicine, Xi'an, China
| |
Collapse
|
13
|
Guo X, Yang YY, Zhou R, Tian G, Shan C, Liu JM, Li R. Causal effect of blood osteocalcin on the risk of Alzheimer's disease and the mediating role of energy metabolism. Transl Psychiatry 2024; 14:205. [PMID: 38769320 PMCID: PMC11106250 DOI: 10.1038/s41398-024-02924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Growing evidence suggests an association between osteocalcin (OCN), a peptide derived from bone and involved in regulating glucose and lipid metabolism, and the risk of Alzheimer's disease (AD). However, the causality of these associations and the underlying mechanisms remain uncertain. We utilized a Mendelian randomization (MR) approach to investigate the causal effects of blood OCN levels on AD and to assess the potential involvement of glucose and lipid metabolism. Independent instrumental variables strongly associated (P < 5E-08) with blood OCN levels were obtained from three independent genome-wide association studies (GWAS) on the human blood proteome (N = 3301 to 35,892). Two distinct summary statistics datasets on AD from the International Genomics of Alzheimer's Project (IGAP, N = 63,926) and a recent study including familial-proxy AD patients (FPAD, N = 472,868) were used. Summary-level data for fasting glucose (FG), 2h-glucose post-challenge, fasting insulin, HbA1c, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol (TC), and triglycerides were incorporated to evaluate the potential role of glucose and lipid metabolism in mediating the impact of OCN on AD risk. Our findings consistently demonstrate a significantly negative correlation between genetically determined blood OCN levels and the risk of AD (IGAP: odds ratio [OR, 95%CI] = 0.83[0.72-0.96], P = 0.013; FPAD: OR = 0.81 [0.70-0.93], P = 0.002). Similar estimates with the same trend direction were obtained using other statistical approaches. Furthermore, employing multivariable MR analysis, we found that the causal relationship between OCN levels and AD was disappeared after adjustment of FG and TC (IGAP: OR = 0.97[0.80-1.17], P = 0.753; FPAD: OR = 0.98 [0.84-1.15], P = 0.831). There were no apparent instances of horizontal pleiotropy, and leave-one-out analysis showed good stability of the estimates. Our study provides evidence supporting a protective effect of blood OCN levels on AD, which is primarily mediated through regulating FG and TC levels. Further studies are warranted to elucidate the underlying physio-pathological mechanisms.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Yu-Ying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Rong Zhou
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Ge Tian
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Chang Shan
- Department of Endocrinology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
14
|
Fehsel K, Bouvier ML, Capobianco L, Lunetti P, Klein B, Oldiges M, Majora M, Löffler S. Neuroreceptor Inhibition by Clozapine Triggers Mitohormesis and Metabolic Reprogramming in Human Blood Cells. Cells 2024; 13:762. [PMID: 38727298 PMCID: PMC11083702 DOI: 10.3390/cells13090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Marie-Luise Bouvier
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Bianca Klein
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marko Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marc Majora
- Leibniz Research Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany;
| | - Stefan Löffler
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Sana Klinikum Offenbach, Teaching Hospital of Goethe University, Starkenburgring 66, 63069 Offenbach, Germany;
| |
Collapse
|
15
|
Pan Z, Shao M, Zhao C, Yang X, Li H, Cui G, Liang X, Yu CW, Ye Q, Gao C, Di L, Chern JW, Zhou H, Lee SMY. J24335 exerts neuroprotective effects against 6-hydroxydopamine-induced lesions in PC12 cells and mice. Eur J Pharm Sci 2024; 194:106696. [PMID: 38199443 DOI: 10.1016/j.ejps.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Parkinson's disease is the second most prevalent age-related neurodegenerative disease and disrupts the lives of people aged >60 years. Meanwhile, single-target drugs becoming inapplicable as PD pathogenesis diversifies. Mitochondrial dysfunction and neurotoxicity have been shown to be relevant to the pathogenesis of PD. The novel synthetic compound J24335 (11-Hydroxy-1-(8-methoxy-5-(trifluoromethyl)quinolin-2-yl)undecan-1-one oxime), which has been researched similarly to J2326, has the potential to be a multi-targeted drug and alleviate these lesions. Therefore, we investigated the mechanism of action and potential neuroprotective function of J24335 against 6-OHDA-induced neurotoxicity in mice, and in PC12 cell models. The key target of action of J24335 was also screened. MTT assay, LDH assay, flow cytometry, RT-PCR, LC-MS, OCR and ECAR detection, and Western Blot analysis were performed to characterize the neuroprotective effects of J24335 on PC12 cells and its potential mechanism. Behavioral tests and immunohistochemistry were used to evaluate behavioral changes and brain lesions in mice. Moreover, bioinformatics was employed to assess the drug-likeness of J24335 and screen its potential targets. J24335 attenuated the degradation of mitochondrial membrane potential and enhanced glucose metabolism and mitochondrial biosynthesis to ameliorate 6-OHDA-induced mitochondrial dysfunction. Animal behavioral tests demonstrated that J24335 markedly improved motor function and loss of TH-positive neurons and dopaminergic nerve fibers, and contributed to an increase in the levels of dopamine and its metabolites in brain tissue. The activation of both the CREB/PGC-1α/NRF-1/TFAM and PKA/Akt/GSK-3β pathways was a major contributor to the neuroprotective effects of J24335. Furthermore, bioinformatics predictions revealed that J24335 is a low toxicity and highly BBB permeable compound targeting 8 key genes (SRC, EGFR, ERBB2, SYK, MAPK14, LYN, NTRK1 and PTPN1). Molecular docking suggested a strong and stable binding between J24335 and the 8 core targets. Taken together, our results indicated that J24335, as a multi-targeted neuroprotective agent with promising therapeutic potential for PD, could protect against 6-OHDA-induced neurotoxicity via two potential pathways in mice and PC12 cells.
Collapse
Affiliation(s)
- Zhijian Pan
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Min Shao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Xuanjun Yang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xiaonan Liang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Chao-Wu Yu
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Qingqing Ye
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Lijun Di
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ji-Wang Chern
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Hefeng Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
16
|
Nie X, Zhang Q, Wang Y, Liu Z, Xie D, Song Q, Yang C, Yu T, Sun Y. Causal effects of osteoporosis on structural changes in specific brain regions: a Mendelian randomization study. Cereb Cortex 2024; 34:bhad528. [PMID: 38216525 DOI: 10.1093/cercor/bhad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
Observational studies have reported that osteoporosis is associated with cortical changes in the brain. However, the inherent limitations of observational studies pose challenges in eliminating confounding factors and establishing causal relationships. And previous observational studies have not reported changes in specific brain regions. By employing Mendelian randomization, we have been able to infer a causal relationship between osteoporosis and a reduction in the surficial area (SA) of the brain cortical. This effect is partially mediated by vascular calcification. We found that osteoporosis significantly decreased the SA of global brain cortical (β = -1587.62 mm2, 95%CI: -2645.94 mm2 to -529.32 mm2, P = 0.003) as well as the paracentral gyrus without global weighted (β = - 19.42 mm2, 95%CI: -28.90 mm2 to -9.95 mm2, P = 5.85 × 10-5). Furthermore, we estimated that 42.25% and 47.21% of the aforementioned effects are mediated through vascular calcification, respectively. Osteoporosis leads to a reduction in the SA of the brain cortical, suggesting the presence of the bone-brain axis. Vascular calcification plays a role in mediating this process to a certain extent. These findings establish a theoretical foundation for further investigations into the intricate interplay between bone, blood vessels, and the brain.
Collapse
Affiliation(s)
- Xinlin Nie
- Department of Orthopedic Center, the First Hospital of Jilin University, Changchun 130000, China
| | - Qiong Zhang
- Department of Orthopedic Center, the First Hospital of Jilin University, Changchun 130000, China
| | - Yixuan Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710000, China
| | - Zhaoliang Liu
- Department of Orthopedic Center, the First Hospital of Jilin University, Changchun 130000, China
| | - Dongheng Xie
- Department of Orthopedic Center, the First Hospital of Jilin University, Changchun 130000, China
| | - Qingxu Song
- Department of Orthopedic Center, the First Hospital of Jilin University, Changchun 130000, China
| | - Chen Yang
- Department of Orthopedic Center, the First Hospital of Jilin University, Changchun 130000, China
| | - Tiecheng Yu
- Department of Orthopedic Center, the First Hospital of Jilin University, Changchun 130000, China
| | - Yang Sun
- Department of Orthopedic Center, the First Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
17
|
Ruggiero C, Baroni M, Xenos D, Parretti L, Macchione IG, Bubba V, Laudisio A, Pedone C, Ferracci M, Magierski R, Boccardi V, Antonelli-Incalzi R, Mecocci P. Dementia, osteoporosis and fragility fractures: Intricate epidemiological relationships, plausible biological connections, and twisted clinical practices. Ageing Res Rev 2024; 93:102130. [PMID: 38030092 DOI: 10.1016/j.arr.2023.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Dementia, osteoporosis, and fragility fractures are chronic diseases, often co-existing in older adults. These conditions pose severe morbidity, long-term disability, and mortality, with relevant socioeconomic implications. While in the research arena, the discussion remains on whether dementia is the cause or the consequence of fragility fractures, healthcare professionals need a better understanding of the interplay between such conditions from epidemiological and physiological standpoints. With this review, we summarized the available literature surrounding the relationship between cognitive impairment, dementia, and both low bone mineral density (BMD) and fragility fractures. Given the strength of the bi-directional associations and their impact on the quality of life, we shed light on the biological connections between brain and bone systems, presenting the main mediators, including gut microbioma, and pathological pathways leading to the dysregulation of bone and brain metabolism. Ultimately, we synthesized the evidence about the impact of available pharmacological treatments for the prevention of fragility fractures on cognitive functions and individuals' outcomes when dementia coexists. Vice versa, the effects of symptomatic treatments for dementia on the risk of falls and fragility fractures are explored. Combining evidence alongside clinical practice, we discuss challenges and opportunities related to the management of older adults affected by cognitive impairment or dementia and at high risk for fragility fracture prevention, which leads to not only an improvement in patient health-related outcomes and survival but also a reduction in healthcare cost and socio-economic burden.
Collapse
Affiliation(s)
- C Ruggiero
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy.
| | - M Baroni
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - D Xenos
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - L Parretti
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - I G Macchione
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - V Bubba
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - A Laudisio
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - C Pedone
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - M Ferracci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Magierski
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - V Boccardi
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Antonelli-Incalzi
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - P Mecocci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| |
Collapse
|
18
|
Xie C, Wang C, Luo H. Increased risk of osteoporosis in patients with cognitive impairment: a systematic review and meta-analysis. BMC Geriatr 2023; 23:797. [PMID: 38049723 PMCID: PMC10694915 DOI: 10.1186/s12877-023-04548-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Both osteoporosis and cognitive impairment affect overall health in elderly individuals. This study aimed to investigate the association between cognitive impairment and the risk of osteoporosis. METHODS PubMed, Web of Science, and the Cochrane Library were searched for studies on the association between osteoporosis and cognitive impairment from their inception until August 2023. The random-effects model was used to calculate the pooled risk ratio (RR) of osteoporosis in patients with cognitive impairment. Subgroup analysis was used to detect the sources of heterogeneity. Sensitivity analysis was used to test the robustness of the pooled results. Funnel plots, Egger's test, and Begg's test were used to test publication bias. RESULTS Ten studies involving 9,872 patients were included in this meta-analysis. The pooled results showed that patients with cognitive impairment had an increased risk of osteoporosis (RR = 1.56, 95% confidence interval [CI]: 1.30-1.87, p < 0.001). Subgroup analysis showed that patients with Alzheimer's disease (AD) are at 1.7-fold risk of osteoporosis compared with the control group (RR = 1.70, 95% CI: 1.23-2.37, p = 0.001), and sex, cognitive classification, study region, study design, and study quality might be the sources of heterogeneity. Sensitivity analysis showed robustness of the pooled results. No significant publication bias was found (Begg's test, p = 0.474; Egger's test, p = 0.065). CONCLUSION Current evidence suggests that patients with cognitive impairment are at increased risk of osteoporosis, especially patients with AD.
Collapse
Affiliation(s)
- Chengxin Xie
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317099, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Department of Endocrinology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Chenglong Wang
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318001, China
| | - Hua Luo
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317099, China.
| |
Collapse
|
19
|
Hwang S, Soung YG, Kang SU, Yu D, Baek H, Jang JW. Association Between Persistent Treatment of Alzheimer's Dementia and Osteoporosis Using a Common Data Model. Dement Neurocogn Disord 2023; 22:121-129. [PMID: 38025411 PMCID: PMC10654484 DOI: 10.12779/dnd.2023.22.4.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/04/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Purpose As it becomes an aging society, interest in senile diseases is increasing. Alzheimer's dementia (AD) and osteoporosis are representative senile diseases. Various studies have reported that AD and osteoporosis share many risk factors that affect each other's incidence. This aimed to determine if active medication treatment of AD could affect the development of osteoporosis. Methods The Health Insurance Review and Assessment Service provided data consisting of diagnosis, demographics, prescription drug, procedures, medical materials, and healthcare resources. In this study, data of all AD patients in South Korea who were registered under the national health insurance system were obtained. The cohort underwent conversion to an Observational Medical Outcomes Partnership-Common Data Model version 5 format. Results This study included 11,355 individuals in the good persistent group and an equal number of 11,355 individuals in the poor persistent group from the National Health Claims database for AD drug treatment. In primary analysis, the risk of osteoporosis was significantly higher in the poor persistence group than in the good persistence group (hazard ratio, 1.20 [95% confidence interval, 1.09-1.32]; p<0.001). Conclusions We found that the good persistence group treated with anti-dementia drugs for AD was associated with a significant lower risk of osteoporosis in this nationwide study. Further studies are needed to clarify the pathophysiological link in patients with two chronic diseases.
Collapse
Affiliation(s)
- Seonhwa Hwang
- Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yong Gwon Soung
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Korea
| | - Seong Uk Kang
- Department of Convergence Security, Kangwon National University, Chuncheon, Korea
| | - Donghan Yu
- Big Data Department, Health Insurance Review & Assessment Service, Wonju, Korea
| | - Haeran Baek
- Big Data Department, Health Insurance Review & Assessment Service, Wonju, Korea
| | - Jae-Won Jang
- Kangwon National University School of Medicine, Chuncheon, Korea
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Korea
| |
Collapse
|
20
|
Fehsel K. Why Is Iron Deficiency/Anemia Linked to Alzheimer's Disease and Its Comorbidities, and How Is It Prevented? Biomedicines 2023; 11:2421. [PMID: 37760862 PMCID: PMC10526115 DOI: 10.3390/biomedicines11092421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Impaired iron metabolism has been increasingly observed in many diseases, but a deeper, mechanistic understanding of the cellular impact of altered iron metabolism is still lacking. In addition, deficits in neuronal energy metabolism due to reduced glucose import were described for Alzheimer's disease (AD) and its comorbidities like obesity, depression, cardiovascular disease, and type 2 diabetes mellitus. The aim of this review is to present the molecular link between both observations. Insufficient cellular glucose uptake triggers increased ferritin expression, leading to depletion of the cellular free iron pool and stabilization of the hypoxia-induced factor (HIF) 1α. This transcription factor induces the expression of the glucose transporters (Glut) 1 and 3 and shifts the cellular metabolism towards glycolysis. If this first line of defense is not adequate for sufficient glucose supply, further reduction of the intracellular iron pool affects the enzymes of the mitochondrial electron transport chain and activates the AMP-activated kinase (AMPK). This enzyme triggers the translocation of Glut4 to the plasma membrane as well as the autophagic recycling of cell components in order to mobilize energy resources. Moreover, AMPK activates the autophagic process of ferritinophagy, which provides free iron urgently needed as a cofactor for the synthesis of heme- and iron-sulfur proteins. Excessive activation of this pathway ends in ferroptosis, a special iron-dependent form of cell death, while hampered AMPK activation steadily reduces the iron pools, leading to hypoferremia with iron sequestration in the spleen and liver. Long-lasting iron depletion affects erythropoiesis and results in anemia of chronic disease, a common condition in patients with AD and its comorbidities. Instead of iron supplementation, drugs, diet, or phytochemicals that improve energy supply and cellular glucose uptake should be administered to counteract hypoferremia and anemia of chronic disease.
Collapse
Affiliation(s)
- Karin Fehsel
- Neurobiochemical Research Unit, Department of Psychiatry, Medical Faculty, Heinrich-Heine-University, 240629 Düsseldorf, Germany
| |
Collapse
|
21
|
Hu H, Mei J, Cai Y, Ding H, Niu S, Zhang W, Fang X. No genetic causal association between Alzheimer's disease and osteoporosis: A bidirectional two-sample Mendelian randomization study. Front Aging Neurosci 2023; 15:1090223. [PMID: 36761181 PMCID: PMC9905740 DOI: 10.3389/fnagi.2023.1090223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Objective Many observational studies have found an association between Alzheimer's disease (AD) and osteoporosis. However, it is unclear whether there is causal genetic between osteoporosis and AD. Methods A two-sample Mendelian randomization (MR) study was used to investigate whether there is a causal relationship between osteoporosis and AD. Genes for osteoporosis and AD were obtained from published the genome-wide association studies (GWAS). Single nucleotide polymorphisms (SNPs) with significant genome-wide differences (p < 5 × 10-8) and independent (r 2 < 0.001) were selected, and SNPs with F ≥ 10 were further analyzed. Inverse variance weighted (IVW) was used to assess causality, and the results were reported as odds ratios (ORs). Subsequently, heterogeneity was tested using Cochran's Q test, pleiotropy was tested using the MR-Egger intercept, and leave-one-out sensitivity analysis was performed to assess the robustness of the results. Results Using the IVW method, MR Egger method, and median-weighted method, we found that the results showed no significant causal effect of osteoporosis at different sites and at different ages on AD, regardless of the removal of potentially pleiotropic SNPs. The results were similar for the opposite direction of causality. These results were confirmed to be reliable and stable by sensitivity analysis. Conclusion This study found that there is no bidirectional causal relationship between osteoporosis and AD. However, they share similar pathogenesis and pathways.
Collapse
Affiliation(s)
- Hongxin Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Jian Mei
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuanqing Cai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| | - Haiqi Ding
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Susheng Niu
- Key Laboratory of Orthopedics and Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,*Correspondence: Wenming Zhang, ✉
| | - Xinyu Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Xinyu Fang, ✉
| |
Collapse
|
22
|
Pan H, Cao J, Wu C, Huang F, Wu P, Lang J, Liu Y. Osteoporosis is associated with elevated baseline cerebrospinal fluid biomarkers and accelerated brain structural atrophy among older people. Front Aging Neurosci 2022; 14:958050. [PMID: 36185490 PMCID: PMC9523506 DOI: 10.3389/fnagi.2022.958050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Objective The aim of this study was to examine whether osteoporosis (OP) is associated with Alzheimer’s disease-related cerebrospinal fluid (CSF) biomarkers and brain structures among older people. Methods From the Alzheimer’s disease Neuroimaging Initiative database, we grouped participants according to the OP status (OP+/OP−) and compared the Alzheimer’s disease (AD)-related CSF biomarker levels and the regional brain structural volumes between the two groups using multivariable models. These models were adjusted for covariates including age, education, gender, diagnosis of Alzheimer’s disease, and apolipoprotein E4 carrier status. Results In the cross-sectional analyses at baseline, OP was related to higher CSF t-tau (total tau) and p-tau181 (tau phosphorylated at threonine-181) but not to CSF amyloid-beta (1–42) or the volumes of entorhinal cortex and hippocampus. In the longitudinal analyses, OP was not associated with the change in the three CSF biomarkers over time but was linked to a faster decline in the size of the entorhinal cortex and hippocampus. Conclusion OP was associated with elevated levels of CSF t-tau and p-tau181 at baseline, and accelerated entorhinal cortex and hippocampal atrophies over time among older people.
Collapse
Affiliation(s)
- Hao Pan
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiali Cao
- Department of Outpatient, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congcong Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Furong Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junzhe Lang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangbo Liu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Yangbo Liu,,
| |
Collapse
|
23
|
HIF in Gastric Cancer: Regulation and Therapeutic Target. Molecules 2022; 27:molecules27154893. [PMID: 35956843 PMCID: PMC9370240 DOI: 10.3390/molecules27154893] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
HIF means hypoxia-inducible factor gene family, and it could regulate various biological processes, including tumor development. In 2021, the FDA approved the new drug Welireg for targeting HIF-2a, and it is mainly used to treat von Hippel-Lindau syndrome, which demonstrated its good prospects in tumor therapy. As the fourth deadliest cancer worldwide, gastric cancer endangers the health of people all across the world. Currently, there are various treatment methods for patients with gastric cancer, but the five-year survival rate of patients with advanced gastric cancer is still not high. Therefore, here we reviewed the regulatory role and target role of HIF in gastric cancer, and provided some references for the treatment of gastric cancer.
Collapse
|