1
|
Kathiresan N, Selvaraj C, Subbaraj GK, Langeswaran K. Exploring neurosurgical interventions in Alzheimer's disease: current perspectives and future directions. Neurol Sci 2025; 46:1925-1927. [PMID: 39656383 DOI: 10.1007/s10072-024-07925-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/01/2024] [Indexed: 03/19/2025]
Abstract
Alzheimer's Disease (AD), a neurodegenerative disorder characterized by cognitive decline, has traditionally relied on pharmacological interventions. However, the limitations of current treatments have spurred interest in neurosurgical approaches. This review explores the potential of neurosurgery, particularly deep brain stimulation (DBS), in modifying disease progression and enhancing cognitive function in AD patients. While promising, significant challenges, including surgical precision, patient variability, and ethical considerations, hinder widespread application. The future of neurosurgical interventions lies in minimally invasive techniques, novel neurostimulation methods, and precision neurosurgery guided by advanced imaging and neurophysiological mapping. As research advances, neurosurgery may emerge as a valuable tool in the comprehensive management of AD.
Collapse
Affiliation(s)
- Nachammai Kathiresan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CsrDD Lab, Department of Microbiology, Dr. D. Y. Patil Medical College Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pimpri, Pune, 411018, India
| | - Gowtham Kumar Subbaraj
- Faculty of Allied Health Sciences Chettinad Hospital & Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Kelambakkam, Tamil Nadu, India
| | - Kulanthaivel Langeswaran
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India.
- Department of Biomedical Science, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
2
|
Xu J, Liu B, Shang G, Feng Z, Yang H, Chen Y, Yu X, Mao Z. Efficacy and Safety of Bilateral Deep Brain Stimulation (DBS) for Severe Alzheimer's Disease: A Comparative Analysis of Fornix Versus Basal Ganglia of Meynert. CNS Neurosci Ther 2025; 31:e70285. [PMID: 40243219 PMCID: PMC12004396 DOI: 10.1111/cns.70285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a novel therapy for severe Alzheimer's disease (AD). However, there is an ongoing debate regarding the optimal target for DBS, particularly the fornix and the basal ganglia of Meynert (NBM). OBJECTIVE This study aimed to investigate the safety and efficacy of DBS for severe AD and to compare the fornix and the NBM as potential targets. METHODS We conducted a prospective, nonrandomized clinical study involving 20 patients with severe AD (MMSE score 0 to 10, CDR level 3) from January 2015 to August 2022, comprising 12 males and eight females, with a mean age of 59.05 ± 6.45 years. All patients underwent DBS treatment, among which 14 received bilateral fornix implantation, while six received bilateral implantation in the NBM. Electrical stimulation commenced 1 month postoperatively. We assessed the patients before surgery, followed by evaluations at 1 month, 3 months, 6 months, and 12 months poststimulation. Primary outcome measures focused on changes in cognitive function, assessed using the MMSE, MoCA, ADAS-Cog, and CDR scales. Secondary measures encompassed quality of life, caregiver burden, neuropsychiatric symptoms, and sleep disturbances, evaluated through the BI, FAQ, FIM, ZBI, NPI, HAMA, HAMD, and PSQI scales. RESULTS All patients tolerated DBS well, with no serious adverse effects reported. Early on, DBS significantly improved cognitive function and quality of life. Long-term benefits include the improvement of neuropsychiatric symptoms and sleep disorders and the alleviation of caregiver burden. Comparison between DBS targeting the NBM and fornix revealed no significant differences in overall scale scores. However, upon deeper analysis, NBM-DBS exhibited a more pronounced improvement in neuropsychiatric symptoms, particularly in NPI scores. CONCLUSION DBS is a potential therapeutic approach for severe AD, capable of improving patients' cognitive function, quality of life, and neuropsychiatric symptoms. Notably, NBM-DBS showed distinct advantages in ameliorating neuropsychiatric symptoms, providing valuable insights for clinically selecting the optimal DBS target. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03115814.
Collapse
Affiliation(s)
- Junpeng Xu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Bin Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Guosong Shang
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | | | - Haonan Yang
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yuhan Chen
- The First Clinical Medical College of Hebei North UniversityZhangjiakouChina
| | - Xinguang Yu
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhiqi Mao
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
3
|
Deng L, Feng L, Li J, Huang Y, Ou P, Shi L, Chen H, Zhang Y, Dai L, He Y, Wei C, Chen H, Wang J, Li L, Liu C. Effects of trace element dysregulation on brain structure and function in spinocerebellar Ataxia type 3. Neurobiol Dis 2025; 207:106816. [PMID: 39921113 DOI: 10.1016/j.nbd.2025.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), a neurodegenerative disorder caused by excess CAG repeats in the ATXN3 gene, leads to progressive cerebellar ataxia and other symptoms. The results of previous studies suggest that trace element dysregulation contributes to neurodegenerative disorder onset. Here, we investigated the relationships of trace element dysregulation with CAG repeat length, clinical severity, and brain structural and functional connectivity in 45 patients with SCA3 and 44 healthy controls (HCs). Blood levels of lithium (Li), selenium (Se), and copper (Cu) were significantly lower in patients with SCA3 than in HCs; Li and Se levels were negatively correlated with CAG repeat length, especially in the manifest subgroup. Diffusion tensor imaging combined with resting-state functional magnetic resonance imaging revealed that Li levels were negatively correlated with fractional anisotropy in the white matter (WM) of bilateral frontal and parietal regions; tractography mapping showed disorder structural connectivity of Li-associated region nerve fiber pathways in patients with SCA3. Dynamic causal modeling analyses showed bidirectional causal connectivity from the inferior parietal lobule(IPL) to the cerebellum was significantly correlated with the blood level of Li in patients with SCA3. Time series correlation-based functional connectivity analysis revealed that the intrinsic connectivities of the bilateral dorsal premotor cortex(PMd) and IPL with local cerebellar regions were significantly weaker in patients with SCA3 than in HCs. Our results suggest that trace element dysregulation, especially Li deficiency, induces brain alterations and clinical manifestations in patients with SCA3; Li supplementation may be beneficial for WM or astrocytes in this patient population.
Collapse
Affiliation(s)
- LiHua Deng
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liu Feng
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China; Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - JingWen Li
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - YongHua Huang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - PeiLing Ou
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - LinFeng Shi
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Chen
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - YuHan Zhang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - LiMeng Dai
- Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuan He
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Wei
- MR Research Collaboration Teams, Siemens Healthineers Ltd., Guangzhou, China
| | - HuaFu Chen
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Wang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Leinian Li
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Chen Liu
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
4
|
Hussein AM, Abouelnaga AF, Obydah W, Saad S, Abass M, Yehia A, Ibrahim EM, Ahmed AT, Abulseoud OA. Lateral hypothalamic area high-frequency deep brain stimulation rescues memory decline in aged rat: behavioral, molecular, and electrophysiological study. Pflugers Arch 2025; 477:371-391. [PMID: 39836224 PMCID: PMC11825635 DOI: 10.1007/s00424-024-03059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
To examine the effect of DBS of the lateral hypothalamic area (LHA) on age-related memory changes, neuronal firing from CA1, oxidative stress, and the expression of Hsp70, BDNF, and synaptophysin. 72 male rats were randomly allocated into 6 equal groups: a) normal young group (8 W), b) sham young group, c) DBS young group, d) normal old group (24 months), e) sham old group and f) DBS old group. Memory tests (passive avoidance and Y maze), oxidative stress markers (MDA, catalase, and GSH) and expression of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin were measured by the end of the experiment. Also, in vivo recording of the neuronal firing of the CA1 region in the hippocampus was done. Old rats show significant decline in memories, antioxidant genes (Nrf2 and HO-1), antioxidants (GSH and catalase), Hsp70, BDNF, and synaptophysin with significant increase in MDA in hippocampus (p < 0.05) and DBS for LHA caused a significant improvement in memories in old rats, with significant rise in fast gamma and theta waves in CA1 region in old rats (p < 0.05). This was associated with a significant increase in antioxidants (GSH and CAT), antioxidant genes (Nrf2, HO-1), Hsp70, BDNF, and synaptophysin with significant reduction in MDA in hippocampus (p < 0.05). DBS for LHA ameliorates the age-induced memory decline. This might be due to increase in fast gamma in CA1, attenuation of oxidative stress, upregulation of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin in the hippocampus.
Collapse
Affiliation(s)
- Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt.
| | - Ahmed F Abouelnaga
- Department of Animal Behavior and Management, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Walaa Obydah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
| | - Somaya Saad
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa Yehia
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, USA
| | - Eman M Ibrahim
- Department of Anatomic Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed T Ahmed
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
5
|
Perez FP, Walker B, Morisaki J, Kanakri H, Rizkalla M. Neurostimulation devices to treat Alzheimer's disease. EXPLORATION OF NEUROSCIENCE 2025; 4:100674. [PMID: 40084342 PMCID: PMC11904933 DOI: 10.37349/en.2025.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
The use of neurostimulation devices for the treatment of Alzheimer's disease (AD) is a growing field. In this review, we examine the mechanism of action and therapeutic indications of these neurostimulation devices in the AD process. Rapid advancements in neurostimulation technologies are providing non-pharmacological relief to patients affected by AD pathology. Neurostimulation therapies include electrical stimulation that targets the circuitry-level connection in important brain areas such as the hippocampus to induce therapeutic neuromodulation of dysfunctional neural circuitry and electromagnetic field (EMF) stimulation that targets anti-amyloid molecular pathways to promote the degradation of beta-amyloid (Aβ). These devices target specific or diffuse cortical and subcortical brain areas to modulate neuronal activity at the electrophysiological or molecular pathway level, providing therapeutic effects for AD. This review attempts to determine the most effective and safe neurostimulation device for AD and provides an overview of potential and current clinical indications. Several EMF devices have shown a beneficial or harmful effect in cell cultures and animal models but not in AD human studies. These contradictory results may be related to the stimulation parameters of these devices, such as frequency, penetration depth, power deposition measured by specific absorption rate, time of exposure, type of cell, and tissue dielectric properties. Based on this, determining the optimal stimulation parameters for EMF devices in AD and understanding their mechanism of action is essential to promote their clinical application, our review suggests that repeated EMF stimulation (REMFS) is the most appropriate device for human AD treatments. Before its clinical application, it is necessary to consider the complicated and interconnected genetic and epigenetic effects of REMFS-biological system interaction. This will move forward the urgently needed therapy of EMF in human AD.
Collapse
Affiliation(s)
- Felipe P. Perez
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brett Walker
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Haitham Kanakri
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Tang B, Wu Z, Wang Q, Tang J. Neuronal Network Activation Induced by Forniceal Deep Brain Stimulation in Mice. Genes (Basel) 2025; 16:210. [PMID: 40004540 PMCID: PMC11855867 DOI: 10.3390/genes16020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The fimbria-fornix is a nerve fiber bundle that connects various structures of the limbic system in the brain and plays a key role in cognition. It has become a major target of deep brain stimulation (DBS) to treat memory impairment in both dementia patients and animal models of neurological diseases. Previously, we have reported the beneficial memory effects of chronic forniceal DBS in mouse models of intellectual disability disorders. In Rett syndrome and CDKL5 deficiency disorder models, DBS strengthens hippocampal synaptic plasticity, reduces dentate inhibitory transmission or increases adult hippocampal neurogenesis that aids memory. However, the underlying neuronal circuitry mechanisms remain unknown. This study we explored the neural network circuits involved in forniceal DBS treatment. Methods: We used acute forniceal DBS-induced expression of c-Fos, an activity-dependent neuronal marker, to map the brain structures functionally connected to the fornix. We also evaluated the mouse behavior of locomotion, anxiety, and fear memory after acute forniceal DBS treatment. Results: Acute forniceal DBS induces robust activation of multiple structures in the limbic system. DBS-induced neuronal activation extends beyond hippocampal formation and includes brain structures not directly innervated by the fornix. Conclusions: Acute forniceal DBS activates multiple limbic structures associated with emotion and memory. The neural circuits revealed here help elucidate the neural network effect and pave the way for further research on the mechanism by which forniceal DBS induces benefits on cognitive impairments.
Collapse
Affiliation(s)
- Bin Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA; (B.T.); (Z.W.); (Q.W.)
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA; (B.T.); (Z.W.); (Q.W.)
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qi Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA; (B.T.); (Z.W.); (Q.W.)
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA; (B.T.); (Z.W.); (Q.W.)
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Sahu M, Ambasta RK, Das SR, Mishra MK, Shanker A, Kumar P. Harnessing Brainwave Entrainment: A Non-invasive Strategy To Alleviate Neurological Disorder Symptoms. Ageing Res Rev 2024; 101:102547. [PMID: 39419401 DOI: 10.1016/j.arr.2024.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
From 1990-2019, the burden of neurological disorders varied considerably across countries and regions. Psychiatric disorders, often emerging in early to mid-adulthood, are linked to late-life neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Individuals with conditions such as Major Depressive Disorder, Anxiety Disorder, Schizophrenia, and Bipolar Disorder face up to four times higher risk of developing neurodegenerative disorders. Contrarily, 65 % of those with neurodegenerative conditions experience severe psychiatric symptoms during their illness. Further, the limitation of medical resources continues to make this burden a significant global and local challenge. Therefore, brainwave entrainment provides therapeutic avenues for improving the symptoms of diseases. Brainwaves are rhythmic oscillations produced either spontaneously or in response to stimuli. Key brainwave patterns include gamma, beta, alpha, theta, and delta waves, yet the underlying physiological mechanisms and the brain's ability to shift between these dynamic states remain areas for further exploration. In neurological disorders, brainwaves are often disrupted, a phenomenon termed "oscillopathy". However, distinguishing these impaired oscillations from the natural variability in brainwave activity across different regions and functional states poses significant challenges. Brainwave-mediated therapeutics represents a promising research field aimed at correcting dysfunctional oscillations. Herein, we discuss a range of non-invasive techniques such as non-invasive brain stimulation (NIBS), neurologic music therapy (NMT), gamma stimulation, and somatosensory interventions using light, sound, and visual stimuli. These approaches, with their minimal side effects and cost-effectiveness, offer potential therapeutic benefits. When integrated, they may not only help in delaying disease progression but also contribute to the development of innovative medical devices for neurological care.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, and The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
8
|
Qi G, Tang H, Gong P, Liu Y, He C, Hu J, Kang S, Chen L, Qin S. Sex-specific hypothalamic neuropathology and glucose metabolism in an amyloidosis transgenic mouse model of Alzheimer's disease. Cell Biosci 2024; 14:120. [PMID: 39272160 PMCID: PMC11395863 DOI: 10.1186/s13578-024-01295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Amyloid toxicity and glucose metabolic disorders are key pathological features during the progression of Alzheimer's disease (AD). While the hypothalamus plays a crucial role in regulating systemic energy balance, the distribution of amyloid plaques in the preoptic, anterior, tuberal, and mammillary regions of the hypothalamus in AD mice, particularly across both sexes, remains largely unclear. Our ongoing research aims to explore hypothalamic neuropathology and glucose metabolic disturbances in a well-described APP/PS1 mouse model of AD. RESULTS Immunocytochemical staining revealed that Old-AD-Female mice exhibited a greater hypothalamic Amyloid β (Aβ) burden than their Old-AD-Male counterparts, with the mammillary bodies showing the most severe accumulation. Analysis of ionized calcium binding adaptor molecule 1 (IBA1) immunoreactivity and Iba1 mRNA indicated differential microgliosis based on sex, while tanycytic territory and ZO-1 tight junction protein expression remained stable in AD mice. Moreover, sex-specific peripheral glucose metabolic parameters (random and fasting blood glucose) seemed to be exacerbated by age. Old AD mice of both sexes exhibited limited hypothalamic activation (c-Fos + cells) in response to blood glucose fluctuations. Hypothalamic Glut 1 expression decreased in young but increased in old female AD mice compared with age-matched male AD mice. Pearson correlation analysis further supported a negative correlation between hypothalamic Aβ load and random blood glucose in old AD groups of both genders, shedding light on the mechanisms underlying this amyloidosis mouse model. CONCLUSION Aged APP/PS1 mice exhibit sex-specific hypothalamic neuropathology and differential glucose metabolism, highlighting distinct pathological mechanisms within each gender.
Collapse
Affiliation(s)
- Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Han Tang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenzhao He
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianian Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Siying Kang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Liang Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Hu J, Zhang M, Zhang Y, Zhuang H, Zhao Y, Li Y, Jin W, Qian X, Wang L, Ye G, Tang H, Liu J, Li B, Nachev P, Liang Z, Li Y. Neurometabolic topography and associations with cognition in Alzheimer's disease: A whole-brain high-resolution 3D MRSI study. Alzheimers Dement 2024; 20:6407-6422. [PMID: 39073196 PMCID: PMC11497670 DOI: 10.1002/alz.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Altered neurometabolism, detectable via proton magnetic resonance spectroscopic imaging (1H-MRSI), is spatially heterogeneous and underpins cognitive impairments in Alzheimer's disease (AD). However, the spatial relationships between neurometabolic topography and cognitive impairment in AD remain unexplored due to technical limitations. METHODS We used a novel whole-brain high-resolution 1H-MRSI technique, with simultaneously acquired 18F-florbetapir positron emission tomography (PET) imaging, to investigate the relationship between neurometabolic topography and cognitive functions in 117 participants, including 22 prodromal AD, 51 AD dementia, and 44 controls. RESULTS Prodromal AD and AD dementia patients exhibited spatially distinct reductions in N-acetylaspartate, and increases in myo-inositol. Reduced N-acetylaspartate and increased myo-inositol were associated with worse global cognitive performance, and N-acetylaspartate correlated with five specific cognitive scores. Neurometabolic topography provides biological insights into diverse cognitive dysfunctions. DISCUSSION Whole-brain high-resolution 1H-MRSI revealed spatially distinct neurometabolic topographies associated with cognitive decline in AD, suggesting potential for noninvasive brain metabolic imaging to track AD progression. HIGHLIGHTS Whole-brain high-resolution 1H-MRSI unveils neurometabolic topography in AD. Spatially distinct reductions in NAA, and increases in mI, are demonstrated. NAA and mI topography correlates with global cognitive performance. NAA topography correlates with specific cognitive performance.
Collapse
Affiliation(s)
- Jialin Hu
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Miao Zhang
- Department of Nuclear MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaoyu Zhang
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Huixiang Zhuang
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yibo Zhao
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Yudu Li
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- National Center for Supercomputing ApplicationsUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Wen Jin
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Xiao‐Hang Qian
- Department of GeriatricsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Medical Center on Aging of Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lijun Wang
- Department of Neurovascular CenterChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Guanyu Ye
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huidong Tang
- Department of GeriatricsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Medical Center on Aging of Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Biao Li
- Department of Nuclear MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Parashkev Nachev
- High‐Dimensional Neurology GroupInstitute of NeurologyUniversity College LondonLondonUK
| | - Zhi‐Pei Liang
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Yao Li
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
10
|
Barany L, Meszaros C, Alpar A, Ganslandt O, Hore N, Delev D, Schnell O, Kurucz P. Topographical anatomy of the septum verum and its white matter connections. Sci Rep 2024; 14:18064. [PMID: 39103521 PMCID: PMC11300447 DOI: 10.1038/s41598-024-68464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
The human septum verum represents a small but clinically important region of the brain. Based on the results of animal experiments, the stimulation of its medial part was recently proposed with various indications like epilepsy or cognitive impairment after traumatic brain injury. The aim of our study was to present the anatomical relationships of the human septum verum using fiber dissection and histological analysis to support its research and provide essential information for future deep brain stimulation therapies. 16 human cadaveric brains were dissected according to Klingler's method. To validate our macroscopical findings, 12 samples obtained from the dissected brains and 2 additional specimens from unfrozen brains were prepared for histological examinations. We identified the following white matter connections of the septum verum: (1) the precommissural fibers of the fornix; (2) the inferior fascicle of the septum pellucidum; (3) the cingulum; (4) the medial olfactory stria; (5) the ventral amygdalofugal pathway; (6) the stria medullaris of the thalamus and (7) the stria terminalis. Moreover, we could distinguish a less-known fiber bundle connecting the postcommissural column of the fornix to the stria medullaris of the thalamus and the anterior thalamic nuclei. In this study we present valuable anatomical information about this region to promote safe and effective deep brain stimulation therapies in the future.
Collapse
Affiliation(s)
- Laszlo Barany
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Cintia Meszaros
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Alan Alpar
- Department of Anatomy, Semmelweis University, Budapest, Hungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Oliver Ganslandt
- Department of Neurosurgery, Katharinenhospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Nirjhar Hore
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniel Delev
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Kurucz
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Neurosurgery, Katharinenhospital, Klinikum Stuttgart, Stuttgart, Germany
| |
Collapse
|
11
|
Deng Q, Wu C, Parker E, Liu TCY, Duan R, Yang L. Microglia and Astrocytes in Alzheimer's Disease: Significance and Summary of Recent Advances. Aging Dis 2024; 15:1537-1564. [PMID: 37815901 PMCID: PMC11272214 DOI: 10.14336/ad.2023.0907] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes' physiological and pathological role in AD. These roles include the inflammatory response, "eat me" and "don't eat me" signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Poirier SE, Suskin NG, Khaw AV, Thiessen JD, Shoemaker JK, Anazodo UC. Probing Evidence of Cerebral White Matter Microstructural Disruptions in Ischemic Heart Disease Before and Following Cardiac Rehabilitation: A Diffusion Tensor MR Imaging Study. J Magn Reson Imaging 2024; 59:2137-2149. [PMID: 37589418 DOI: 10.1002/jmri.28964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Ischemic heart disease (IHD) is linked to brain white matter (WM) breakdown but how age or disease effects WM integrity, and whether it is reversible using cardiac rehabilitation (CR), remains unclear. PURPOSE To assess the effects of brain aging, cardiovascular disease, and CR on WM microstructure in brains of IHD patients following a cardiac event. STUDY TYPE Retrospective. POPULATION Thirty-five IHD patients (9 females; mean age = 59 ± 8 years), 21 age-matched healthy controls (10 females; mean age = 59 ± 8 years), and 25 younger controls (14 females; mean age = 26 ± 4 years). FIELD STRENGTH/SEQUENCE 3 T diffusion-weighted imaging with single-shot echo planar imaging acquired at 3 months and 9 months post-cardiac event. ASSESSMENT Tract-based spatial statistics (TBSS) and tractometry were used to compare fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in cerebral WM between: 1) older and younger controls to distinguish age-related from disease-related WM changes; 2) IHD patients at baseline (pre-CR) and age-matched controls to investigate if cardiovascular disease exacerbates age-related WM changes; and 3) IHD patients pre-CR and post-CR to investigate the neuroplastic effect of CR on WM microstructure. STATISTICAL TESTS Two-sample unpaired t-test (age: older vs. younger controls; IHD: IHD pre-CR vs. age-matched controls). One-sample paired t-test (CR: IHD pre- vs. post-CR). Statistical threshold: P < 0.05 (FWE-corrected). RESULTS TBSS and tractometry revealed widespread WM changes in older controls compared to younger controls while WM clusters of decreased FA in the fornix and increased MD in body of corpus callosum were observed in IHD patients pre-CR compared to age-matched controls. Robust WM improvements (increased FA, increased AD) were observed in IHD patients post-CR. DATA CONCLUSION In IHD, both brain aging and cardiovascular disease may contribute to WM disruptions. IHD-related WM disruptions may be favorably modified by CR. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Stefan E Poirier
- Lawson Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Neville G Suskin
- Division of Cardiology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Alexander V Khaw
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jonathan D Thiessen
- Lawson Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Joel K Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Udunna C Anazodo
- Lawson Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Research Centre for Studies in Aging, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
13
|
Rapaka D, Tebogo MO, Mathew EM, Adiukwu PC, Bitra VR. Targeting papez circuit for cognitive dysfunction- insights into deep brain stimulation for Alzheimer's disease. Heliyon 2024; 10:e30574. [PMID: 38726200 PMCID: PMC11079300 DOI: 10.1016/j.heliyon.2024.e30574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Hippocampus is the most widely studied brain area coupled with impairment of memory in a variety of neurological diseases and Alzheimer's disease (AD). The limbic structures within the Papez circuit have been linked to various aspects of cognition. Unfortunately, the brain regions that include this memory circuit are often ignored in terms of understanding cognitive decline in these diseases. To properly comprehend where cognition problems originate, it is crucial to clarify any aberrant contributions from all components of a specific circuit -on both a local and a global level. The pharmacological treatments currently available are not long lasting. Deep Brain Stimulation (DBS) emerged as a new powerful therapeutic approach for alleviation of the cognitive dysfunctions. Metabolic, functional, electrophysiological, and imaging studies helped to find out the crucial nodes that can be accessible for DBS. Targeting these nodes within the memory circuit produced significant improvement in learning and memory by disrupting abnormal circuit activity and restoring the physiological network. Here, we provide an overview of the neuroanatomy of the circuit of Papez along with the mechanisms and various deep brain stimulation targets of the circuit structures which could be significant for improving cognitive dysfunctions in AD.
Collapse
Affiliation(s)
| | - Motshegwana O. Tebogo
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | - Elizabeth M. Mathew
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | | | - Veera Raghavulu Bitra
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| |
Collapse
|
14
|
Moisseinen N, Ahveninen L, Martínez‐Molina N, Sairanen V, Melkas S, Kleber B, Sihvonen AJ, Särkämö T. Choir singing is associated with enhanced structural connectivity across the adult lifespan. Hum Brain Mapp 2024; 45:e26705. [PMID: 38716698 PMCID: PMC11077432 DOI: 10.1002/hbm.26705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
The global ageing of populations calls for effective, ecologically valid methods to support brain health across adult life. Previous evidence suggests that music can promote white matter (WM) microstructure and grey matter (GM) volume while supporting auditory and cognitive functioning and emotional well-being as well as counteracting age-related cognitive decline. Adding a social component to music training, choir singing is a popular leisure activity among older adults, but a systematic account of its potential to support healthy brain structure, especially with regard to ageing, is currently missing. The present study used quantitative anisotropy (QA)-based diffusion MRI connectometry and voxel-based morphometry to explore the relationship of lifetime choir singing experience and brain structure at the whole-brain level. Cross-sectional multiple regression analyses were carried out in a large, balanced sample (N = 95; age range 21-88) of healthy adults with varying levels of choir singing experience across the whole age range and within subgroups defined by age (young, middle-aged, and older adults). Independent of age, choir singing experience was associated with extensive increases in WM QA in commissural, association, and projection tracts across the brain. Corroborating previous work, these overlapped with language and limbic networks. Enhanced corpus callosum microstructure was associated with choir singing experience across all subgroups. In addition, choir singing experience was selectively associated with enhanced QA in the fornix in older participants. No associations between GM volume and choir singing were found. The present study offers the first systematic account of amateur-level choir singing on brain structure. While no evidence for counteracting GM atrophy was found, the present evidence of enhanced structural connectivity coheres well with age-typical structural changes. Corroborating previous behavioural studies, the present results suggest that regular choir singing holds great promise for supporting brain health across the adult life span.
Collapse
Affiliation(s)
- Nella Moisseinen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Lotta Ahveninen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Noelia Martínez‐Molina
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Center for Brain and Cognition, Department of Information and Communication TechnologiesUniversity Pompeu FabraBarcelonaSpain
| | - Viljami Sairanen
- Department of RadiologyKanta‐Häme Central HospitalHämeenlinnaFinland
- Baby Brain Activity Center, Children's HospitalHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Susanna Melkas
- Clinical Neurosciences, NeurologyUniversity of HelsinkiHelsinkiFinland
| | - Boris Kleber
- Center for Music in the Brain, Department of Clinical MedicineAarhus University and The Royal Academy of Music Aarhus/AalborgAarhusDenmark
| | - Aleksi J. Sihvonen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Centre for Clinical Research, School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneAustralia
- Department of NeurologyHelsinki University HospitalHelsinkiFinland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
15
|
Gao S, Wang Y, Li X, Liang Y, Jin Z, Yang B, Yuan TF, Tian H, Peng B, Rao Y. Dynamics of N6-methyladenosine modification during Alzheimer's disease development. Heliyon 2024; 10:e26911. [PMID: 38496847 PMCID: PMC10944207 DOI: 10.1016/j.heliyon.2024.e26911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
N6-methyladenosine (m6A) modification is a common RNA modification in the central nervous system and has been linked to various neurological disorders, including Alzheimer's disease (AD). However, the dynamic of mRNA m6A modification and m6A enzymes during the development of AD are not well understood. Therefore, this study examined the expression profiles of m6A and its enzymes in the development of AD. The results showed that changes in the expression levels of m6A regulatory factors occur in the early stages of AD, indicating a potential role for m6A modification in the onset of the disease. Additionally, the analysis of mRNA m6A expression profiles using m6A-seq revealed significant differences in m6A modification between AD and control brains. The genes with differential methylation were found to be enriched in GO and KEGG terms related to processes such as inflammation response, immune system processes. And the differently expressed genes (DEGs) are negatively lryassociated with genes involved in microglia hemostasis, but positively associated with genes related to "disease-associated microglia" (DAM) associated genes. These findings suggest that dysregulation of mRNA m6A modification may contribute to the development of AD by affecting the function and gene expression of microglia.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, 200040, China
| | - Yuqing Wang
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Medical Science, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, 121010, China
| | - Xiaoyu Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, 200040, China
| | - Yuqing Liang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhihao Jin
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Baozhi Yang
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China
| | - Hengli Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, 200040, China
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| |
Collapse
|
16
|
Rao Y, Peng B. Allogenic microglia replacement: A novel therapeutic strategy for neurological disorders. FUNDAMENTAL RESEARCH 2024; 4:237-245. [PMID: 38933508 PMCID: PMC11197774 DOI: 10.1016/j.fmre.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/17/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS) that play vital roles in CNS development, homeostasis and disease pathogenesis. Genetic defects in microglia lead to microglial dysfunction, which in turn leads to neurological disorders. The correction of the specific genetic defects in microglia in these disorders can lead to therapeutic effects. Traditional genetic defect correction approaches are dependent on viral vector-based genetic defect corrections. However, the viruses used in these approaches, including adeno-associated viruses, lentiviruses and retroviruses, do not primarily target microglia; therefore, viral vector-based genetic defect corrections are ineffective in microglia. Microglia replacement is a novel approach to correct microglial genetic defects via replacing microglia of genetic defects with allogenic healthy microglia. In this paper, we systematically review the history, rationale and therapeutic perspectives of microglia replacement, which would be a novel strategy for treating CNS disorders.
Collapse
Affiliation(s)
- Yanxia Rao
- Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200000, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
17
|
Shen Y, Wang M, Li S, Yang J. Current emerging novel therapies for Alzheimer's disease and the future prospects of magneto-mechanical force therapy. J Mater Chem B 2023; 11:9404-9418. [PMID: 37721092 DOI: 10.1039/d3tb01629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly, and the morbidity increases with the aging population aggravation. The clinical symptoms of AD mainly include cognitive impairment and memory loss, which undoubtedly bring a huge burden to families and society. Currently, the drugs in clinical use only improve the symptoms of AD but do not cure or prevent the progression of the disease. Therefore, it is urgent for us to develop novel therapeutic strategies for effective AD treatment. To provide a better theoretical basis for exploring novel therapeutic strategies in future AD treatment, this review introduces the recent AD treatment technologies from three aspects, including nanoparticle (NP) based drug therapy, biological therapy and physical therapy. The nanoparticle-mediated therapeutic approaches at the nanomaterial-neural interface and biological system are described in detail, and in particular the magneto-regulated strategies by magnetic field actuating magnetic nanoparticles are highlighted. Promising application of magneto-mechanical force regulated strategy in future AD treatment is also addressed, which offer possibilities for the remote manipulation in a precise manner. In the future, it may be possible for physicians to realize a remote, precise and effective therapy for AD using magneto-mechanical force regulated technology based on the combination of magnetic nanoparticles and an external magnetic field.
Collapse
Affiliation(s)
- Yajing Shen
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Shutang Li
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
18
|
Wang Q, Tang B, Hao S, Wu Z, Yang T, Tang J. Forniceal deep brain stimulation in a mouse model of Rett syndrome increases neurogenesis and hippocampal memory beyond the treatment period. Brain Stimul 2023; 16:1401-1411. [PMID: 37704033 PMCID: PMC11152200 DOI: 10.1016/j.brs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT), caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2), severely impairs learning and memory. We previously showed that forniceal deep brain stimulation (DBS) stimulates hippocampal neurogenesis with concomitant improvements in hippocampal-dependent learning and memory in a mouse model of RTT. OBJECTIVES To determine the duration of DBS benefits; characterize DBS effects on hippocampal neurogenesis; and determine whether DBS influences MECP2 genotype and survival of newborn dentate granular cells (DGCs) in RTT mice. METHODS Chronic DBS was delivered through an electrode implanted in the fimbria-fornix. We tested separate cohorts of mice in contextual and cued fear memory at different time points after DBS. We then examined neurogenesis, DGC apoptosis, and the expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) after DBS by immunohistochemistry. RESULTS After two weeks of forniceal DBS, memory improvements lasted between 6 and 9 weeks. Repeating DBS every 6 weeks was sufficient to maintain the improvement. Forniceal DBS stimulated the birth of more MeCP2-positive than MeCP2-negative DGCs and had no effect on DGC survival. It also increased the expression of BDNF but not VEGF in the RTT mouse dentate gyrus. CONCLUSION Improvements in learning and memory from forniceal DBS in RTT mice extends well beyond the treatment period and can be maintained by repeated DBS. Stimulation of BDNF expression correlates with improvements in hippocampal neurogenesis and memory benefits.
Collapse
Affiliation(s)
- Qi Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bin Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tingting Yang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Etter G, Carmichael JE, Williams S. Linking temporal coordination of hippocampal activity to memory function. Front Cell Neurosci 2023; 17:1233849. [PMID: 37720546 PMCID: PMC10501408 DOI: 10.3389/fncel.2023.1233849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Oscillations in neural activity are widespread throughout the brain and can be observed at the population level through the local field potential. These rhythmic patterns are associated with cycles of excitability and are thought to coordinate networks of neurons, in turn facilitating effective communication both within local circuits and across brain regions. In the hippocampus, theta rhythms (4-12 Hz) could contribute to several key physiological mechanisms including long-range synchrony, plasticity, and at the behavioral scale, support memory encoding and retrieval. While neurons in the hippocampus appear to be temporally coordinated by theta oscillations, they also tend to fire in sequences that are developmentally preconfigured. Although loss of theta rhythmicity impairs memory, these sequences of spatiotemporal representations persist in conditions of altered hippocampal oscillations. The focus of this review is to disentangle the relative contribution of hippocampal oscillations from single-neuron activity in learning and memory. We first review cellular, anatomical, and physiological mechanisms underlying the generation and maintenance of hippocampal rhythms and how they contribute to memory function. We propose candidate hypotheses for how septohippocampal oscillations could support memory function while not contributing directly to hippocampal sequences. In particular, we explore how theta rhythms could coordinate the integration of upstream signals in the hippocampus to form future decisions, the relevance of such integration to downstream regions, as well as setting the stage for behavioral timescale synaptic plasticity. Finally, we leverage stimulation-based treatment in Alzheimer's disease conditions as an opportunity to assess the sufficiency of hippocampal oscillations for memory function.
Collapse
Affiliation(s)
| | | | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Hu YY, Ding XS, Yang G, Liang XS, Feng L, Sun YY, Chen R, Ma QH. Analysis of the influences of social isolation on cognition and the therapeutic potential of deep brain stimulation in a mouse model. Front Psychiatry 2023; 14:1186073. [PMID: 37409161 PMCID: PMC10318365 DOI: 10.3389/fpsyt.2023.1186073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Background Social interaction is a fundamental human need. Social isolation (SI) can have negative effects on both emotional and cognitive function. However, it is currently unclear how age and the duration of SI affect emotion and recognition function. In addition, there is no specific treatment for the effects of SI. Methods The adolescence or adult mice were individually housed in cages for 1, 6 or 12 months and for 2 months to estabolish SI mouse model. We investigated the effects of SI on behavior in mice at different ages and under distinct durations of SI, and we explored the possible underlying mechanisms. Then we performed deep brain stimulation (DBS) to evaluate its influences on SI induced behavioral abnormalities. Results We found that social recognition was affected in the short term, while social preference was damaged by extremely long periods of SI. In addition to affecting social memory, SI also affects emotion, short-term spatial ability and learning willingness in mice. Myelin was decreased significantly in the medial prefrontal cortex (mPFC) and dorsal hippocampus of socially isolated mice. Cellular activity in response to social stimulation in both areas was impaired by social isolation. By stimulating the mPFC using DBS, we found that DBS alleviated cellular activation disorders in the mPFC after long-term SI and improved social preference in mice. Conclusion Our results suggest that the therapeutic potential of stimulating the mPFC with DBS in individuals with social preference deficits caused by long-term social isolation, as well as the effects of DBS on the cellular activity and density of OPCs.
Collapse
Affiliation(s)
- Yun-Yun Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Respiratory Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xuan-Si Ding
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, China
| | - Xue-Song Liang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Second Clinical College, Dalian Medical University, Dalian, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, China
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Rui Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Respiratory Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Senevirathne DKL, Mahboob A, Zhai K, Paul P, Kammen A, Lee DJ, Yousef MS, Chaari A. Deep Brain Stimulation beyond the Clinic: Navigating the Future of Parkinson's and Alzheimer's Disease Therapy. Cells 2023; 12:1478. [PMID: 37296599 PMCID: PMC10252401 DOI: 10.3390/cells12111478] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Deep brain stimulation (DBS) is a surgical procedure that uses electrical neuromodulation to target specific regions of the brain, showing potential in the treatment of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Despite similarities in disease pathology, DBS is currently only approved for use in PD patients, with limited literature on its effectiveness in AD. While DBS has shown promise in ameliorating brain circuits in PD, further research is needed to determine the optimal parameters for DBS and address any potential side effects. This review emphasizes the need for foundational and clinical research on DBS in different brain regions to treat AD and recommends the development of a classification system for adverse effects. Furthermore, this review suggests the use of either a low-frequency system (LFS) or high-frequency system (HFS) depending on the specific symptoms of the patient for both PD and AD.
Collapse
Affiliation(s)
| | - Anns Mahboob
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Alexandra Kammen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Darrin Jason Lee
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Mohammad S. Yousef
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
22
|
Meng HW, Kim JH, Kim HY, Lee AY, Cho EJ. Paeoniflorin Attenuates Lipopolysaccharide-Induced Cognitive Dysfunction by Inhibition of Amyloidogenesis in Mice. Int J Mol Sci 2023; 24:ijms24054838. [PMID: 36902268 PMCID: PMC10003666 DOI: 10.3390/ijms24054838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, associated with progressive cognitive impairment and memory loss. In the present study, we examined the protective effects of paeoniflorin against memory loss and cognitive decline in lipopolysaccharide (LPS)-induced mice. Treatment with paeoniflorin alleviated LPS-induced neurobehavioral dysfunction, as confirmed by behavioral tests, including the T-maze test, novel-object recognition test, and Morris water maze test. LPS stimulated the amyloidogenic pathway-related proteins (amyloid precursor protein, APP; β-site APP cleavage enzyme, BACE; presenilin1, PS1; presenilin2, PS2) expression in the brain. However, paeoniflorin decreased APP, BACE, PS1, and PS2 protein levels. Therefore, paeoniflorin reverses LPS-induced cognitive impairment via inhibition of the amyloidogenic pathway in mice, which suggests that paeoniflorin may be useful in the prevention of neuroinflammation related to AD.
Collapse
Affiliation(s)
- Hui Wen Meng
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| |
Collapse
|
23
|
Pelekanos V, Premereur E, Mitchell AS. Structural Connectivity Changes After Fornix Transection in Macaques Using Probabilistic Diffusion Tractography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:11-20. [PMID: 37525029 DOI: 10.1007/978-3-031-31978-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The fornix, the limbic system's white matter tract connecting the extended hippocampal system to subcortical structures of the medial diencephalon, is strongly associated with learning and memory in humans and nonhuman primates (NHPs). Here, we sought to investigate alterations in structural connectivity across key cortical and subcortical regions after fornix transection in NHPs. We collected diffusion-weighted MRI (dMRI) data from three macaque monkeys that underwent bilateral fornix transection during neurosurgery and from four age- and cohort-matched control macaques that underwent surgery to implant a head-post but remained neurologically intact. dMRI data were collected from both groups at two time points, before and after the surgeries, and scans took place at around the same time for the two groups. We used probabilistic tractography and employed the number of tracking streamlines to quantify connectivity across our regions of interest (ROIs), in all dMRI sessions. In the neurologically intact monkeys, we observed high connectivity across certain ROIs, including the CA3 hippocampal subfield with the retrosplenial cortex (RSC), the anterior thalamus with the RSC, and the RSC with the anterior cingulate cortex (ACC). However, we found that, compared to the control group, the fornix-transected monkeys showed marked, significant, connectivity changes including increases between the anterior thalamus and the ACC and between the CA3 and the ACC, as well as decreases between the CA3 and the RSC. Our results highlight cortical and subcortical network changes after fornix transection and identify candidate indirect connectivity routes that may support memory functions after damage and/or neurodegeneration.
Collapse
Affiliation(s)
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Department of Psychology, Hearing and Speech, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
24
|
Multiscale co-simulation of deep brain stimulation with brain networks in neurodegenerative disorders. BRAIN MULTIPHYSICS 2022. [DOI: 10.1016/j.brain.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|