1
|
Du X, Wang Y, Wang X, Tian X, Jing W. Neural circuit mechanisms of epilepsy: Maintenance of homeostasis at the cellular, synaptic, and neurotransmitter levels. Neural Regen Res 2026; 21:455-465. [PMID: 40326979 DOI: 10.4103/nrr.nrr-d-24-00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/19/2024] [Indexed: 05/07/2025] Open
Abstract
Epilepsy, a common neurological disorder, is characterized by recurrent seizures that can lead to cognitive, psychological, and neurobiological consequences. The pathogenesis of epilepsy involves neuronal dysfunction at the molecular, cellular, and neural circuit levels. Abnormal molecular signaling pathways or dysfunction of specific cell types can lead to epilepsy by disrupting the normal functioning of neural circuits. The continuous emergence of new technologies and the rapid advancement of existing ones have facilitated the discovery and comprehensive understanding of the neural circuit mechanisms underlying epilepsy. Therefore, this review aims to investigate the current understanding of the neural circuit mechanisms in epilepsy based on various technologies, including electroencephalography, magnetic resonance imaging, optogenetics, chemogenetics, deep brain stimulation, and brain-computer interfaces. Additionally, this review discusses these mechanisms from three perspectives: structural, synaptic, and transmitter circuits. The findings reveal that the neural circuit mechanisms of epilepsy encompass information transmission among different structures, interactions within the same structure, and the maintenance of homeostasis at the cellular, synaptic, and neurotransmitter levels. These findings offer new insights for investigating the pathophysiological mechanisms of epilepsy and enhancing its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xueqing Du
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi Province, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Wei Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
2
|
Gazerani P. The neuroplastic brain: current breakthroughs and emerging frontiers. Brain Res 2025; 1858:149643. [PMID: 40280532 DOI: 10.1016/j.brainres.2025.149643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/01/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Neuroplasticity, the brain's capacity to reorganize itself by forming new neural connections, is central to modern neuroscience. Once believed to occur only during early development, research now shows that plasticity continues throughout the lifespan, supporting learning, memory, and recovery from injury or disease. Substantial progress has been made in understanding the mechanisms underlying neuroplasticity and their therapeutic applications. This overview article examines synaptic plasticity, structural remodeling, neurogenesis, and functional reorganization, highlighting both adaptive (beneficial) and maladaptive (harmful) processes across different life stages. Recent strategies to harness neuroplasticity, ranging from pharmacological agents and lifestyle interventions to cutting-edge technologies like brain-computer interfaces (BCIs) and targeted neuromodulation are evaluated in light of current empirical evidence. Contradictory findings in the literature are addressed, and methodological limitations that hamper widespread clinical adoption are discussed. The ethical and societal implications of deploying novel neuroplasticity-based interventions, including issues of equitable access, data privacy, and the blurred line between treatment and enhancement, are then explored in a structured manner. By integrating mechanistic insights, empirical data, and ethical considerations, the aim is to provide a comprehensive and balanced perspective for researchers, clinicians, and policymakers working to optimize brain health across diverse populations.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Pilestredet 50, 0167 Oslo, Norway.
| |
Collapse
|
3
|
Wu X, Yang Z, Zou J, Gao H, Shao Z, Li C, Lei P. Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery. Signal Transduct Target Ther 2025; 10:146. [PMID: 40328798 PMCID: PMC12056177 DOI: 10.1038/s41392-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases (e.g., Alzheimer's, Parkinson's, Huntington's disease, and Amyotrophic Lateral Sclerosis) are major health threats for the aging population and their prevalences continue to rise with the increasing of life expectancy. Although progress has been made, there is still a lack of effective cures to date, and an in-depth understanding of the molecular and cellular mechanisms of these neurodegenerative diseases is imperative for drug development. Protein phosphorylation, regulated by protein kinases and protein phosphatases, participates in most cellular events, whereas aberrant phosphorylation manifests as a main cause of diseases. As evidenced by pharmacological and pathological studies, protein kinases are proven to be promising therapeutic targets for various diseases, such as cancers, central nervous system disorders, and cardiovascular diseases. The mechanisms of protein phosphatases in pathophysiology have been extensively reviewed, but a systematic summary of the role of protein kinases in the nervous system is lacking. Here, we focus on the involvement of protein kinases in neurodegenerative diseases, by summarizing the current knowledge on the major kinases and related regulatory signal transduction pathways implicated in diseases. We further discuss the role and complexity of kinase-kinase networks in the pathogenesis of neurodegenerative diseases, illustrate the advances of clinical applications of protein kinase inhibitors or novel kinase-targeted therapeutic strategies (such as antisense oligonucleotides and gene therapy) for effective prevention and early intervention.
Collapse
Affiliation(s)
- Xiaolei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Premchand B, Toe KK, Wang C, Wan KR, Selvaratnam T, Toh VE, Ng WH, Libedinsky C, Chen W, Lim R, Cheng MY, Gao Y, Ang KK, So RQY. Comparing a BCI communication system in a patient with Multiple System Atrophy, with an animal model. Brain Res Bull 2025; 223:111289. [PMID: 40049458 DOI: 10.1016/j.brainresbull.2025.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Paralysis affects many people worldwide, and the people affected often suffer from impaired communication. We developed a microelectrode-based Brain-Computer Interface (BCI) for enabling communication in patients affected by paralysis, and implanted it in a patient with Multiple System Atrophy (MSA), a neurodegenerative disease that causes widespread neural symptoms including paralysis. To verify the effectiveness of the BCI system, it was also tested by implanting it in a non-human primate (NHP). Data from the human and NHP were used to train binary classifiers two different types of machine learning models: a Linear Discriminant Analysis (LDA) model, and a Long Short-Term Memory (LSTM)-based Artificial Neural Network (ANN). The LDA model performed at up to 72.7 % accuracy for binary decoding in the human patient, however, performance was highly variable and was much lower on most recording days. The BCI system was able to accurately decode movement vs non-movement in the NHP (accuracy using LDA: 82.7 ± 3.3 %, LSTM: 83.7 ± 2.2 %, 95 % confidence intervals), however it was not able to with recordings from the human patient (accuracy using LDA: 47.0 ± 5.1 %, LSTM: 44.6 ± 9.9 %, 95 % confidence intervals). We discuss how neurodegenerative diseases such as MSA can impede BCI-based communication, and postulate on the mechanisms by which this may occur.
Collapse
Affiliation(s)
- Brian Premchand
- Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A⁎STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore.
| | - Kyaw Kyar Toe
- Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A⁎STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore
| | - Chuanchu Wang
- Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A⁎STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore
| | - Kai Rui Wan
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Thevapriya Selvaratnam
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Valerie Ethans Toh
- Department of Psychology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Wai Hoe Ng
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Camilo Libedinsky
- Department of Psychology, National University of Singapore, Singapore 117570, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Weiguo Chen
- Institute Of Microelectronics, Agency for Science, Technology and Research (A⁎STAR), 11 Science Park Rd, Singapore 117685, Singapore
| | - Ruiqi Lim
- Institute Of Microelectronics, Agency for Science, Technology and Research (A⁎STAR), 11 Science Park Rd, Singapore 117685, Singapore
| | - Ming-Yuan Cheng
- Institute Of Microelectronics, Agency for Science, Technology and Research (A⁎STAR), 11 Science Park Rd, Singapore 117685, Singapore
| | - Yuan Gao
- Institute Of Microelectronics, Agency for Science, Technology and Research (A⁎STAR), 11 Science Park Rd, Singapore 117685, Singapore
| | - Kai Keng Ang
- Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A⁎STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore; College of Computing and Data Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Rosa Qi Yue So
- Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A⁎STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
5
|
Jayasinghe M, Rashidi F, Gadelmawla AF, Pitton Rissardo J, Rashidi M, Elendu CC, Fornari Caprara AL, Khalil I, Hmedat KI, Atef M, Moharam H, Prathiraja O. Neurological Manifestations of Systemic Lupus Erythematosus: A Comprehensive Review. Cureus 2025; 17:e79569. [PMID: 40151747 PMCID: PMC11947500 DOI: 10.7759/cureus.79569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Neurological involvement in systemic lupus erythematosus (SLE) poses significant challenges, impacting patient morbidity, mortality, and quality of life. This narrative review provides an update on the pathogenesis, clinical presentation, diagnosis, and management of neurological SLE. The multifaceted pathophysiology involves immune-mediated and vascular mechanisms such as autoantibodies, neuroinflammation, complement dysregulation, and genetic factors. Neuropsychiatric SLE (NPSLE) manifests in a variety of ways, including cognitive dysfunction, mood disorders, psychosis, cerebrovascular disease, demyelinating syndromes, and neuropathies. Diagnosing neurological SLE is complicated by nonspecific and fluctuating symptoms, requiring comprehensive neurological examination, neuroimaging, autoantibody profiling, and cerebrospinal fluid analysis. Current management strategies include corticosteroids, immunosuppressive agents, and emerging biologics targeting specific immune pathways. Managing neuropsychiatric symptoms, seizures, and neuropathic pain remains a complex aspect of treatment. This review highlights the importance of early recognition and tailored management approaches to improve patient outcomes in neurological SLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ibrahim Khalil
- Neurological Surgery, Faculty of Medicine, Alexandria University, Alexandria, EGY
| | - Khalil I Hmedat
- Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, EGY
| | | | | | | |
Collapse
|
6
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Sun D, Amiri M, Meng Q, Unnithan RR, French C. Calcium Signalling in Neurological Disorders, with Insights from Miniature Fluorescence Microscopy. Cells 2024; 14:4. [PMID: 39791705 PMCID: PMC11719922 DOI: 10.3390/cells14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target. Recently, the development of the miniature fluorescence microscope (miniscope) enabled simultaneous recording of the spatiotemporal calcium activity from large neuronal ensembles in unrestrained animals, providing a novel method for studying NDs. In this review, we discuss the abnormalities observed in calcium signalling and its potential as a therapeutic target for NDs. Additionally, we highlight recent studies that utilise miniscope technology to investigate the alterations in calcium dynamics associated with NDs.
Collapse
Affiliation(s)
- Dechuan Sun
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
- Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Mona Amiri
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
| | - Qi Meng
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
| | - Ranjith R. Unnithan
- Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Chris French
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
| |
Collapse
|
8
|
Bower MR. Review: seizure-related consolidation and the network theory of epilepsy. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1430934. [PMID: 39238837 PMCID: PMC11374659 DOI: 10.3389/fnetp.2024.1430934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024]
Abstract
Epilepsy is a complex, multifaceted disease that affects patients in several ways in addition to seizures, including psychological, social, and quality of life issues, but epilepsy is also known to interact with sleep. Seizures often occur at the boundary between sleep and wake, patients with epilepsy often experience disrupted sleep, and the rate of inter-ictal epileptiform discharges increases during non-REM sleep. The Network Theory of Epilepsy did not address a role for sleep, but recent emphasis on the interaction between epilepsy and sleep suggests that post-seizure sleep may also be involved in the process by which seizures arise and become more severe with time ("epileptogenesis") by co-opting processes related to the formation of long-term memories. While it is generally acknowledged that recurrent seizures arise from the aberrant function of neural circuits, it is possible that the progression of epilepsy is aided by normal, physiological function of neural circuits during sleep that are driven by pathological signals. Studies recording multiple, single neurons prior to spontaneous seizures have shown that neural assemblies activated prior to the start of seizures were reactivated during post-seizure sleep, similar to the reactivation of behavioral neural assemblies, which is thought to be involved in the formation of long-term memories, a process known as Memory Consolidation. The reactivation of seizure-related neural assemblies during sleep was thus described as being a component of Seizure-Related Consolidation (SRC). These results further suggest that SRC may viewed as a network-related aspect of epilepsy, even in those seizures that have anatomically restricted neuroanatomical origins. As suggested by the Network Theory of Epilepsy as a means of interfering with ictogenesis, therapies that interfered with SRC may provide some anti-epileptogenic therapeutic benefit, even if the interference targeted structures that were not involved originally in the seizure. Here, we show how the Network Theory of Epilepsy can be expanded to include neural plasticity mechanisms associated with learning by providing an overview of Memory Consolidation, the mechanisms thought to underlie MC, their relation to Seizure-Related Consolidation, and suggesting novel, anti-epileptogenic therapies targeting interference with network activation in epilepsy following seizures during post-seizure sleep.
Collapse
Affiliation(s)
- Mark R Bower
- Department of Neurology, Yale University, New Haven, CT, United States
| |
Collapse
|
9
|
Yoshioka M, Takahashi M, Kershaw J, Handa M, Takada A, Takuwa H. Two-photon optogenetics-based assessment of neuronal connectivity in healthy and chronic hypoperfusion mice. NEUROPHOTONICS 2024; 11:035009. [PMID: 39345733 PMCID: PMC11436461 DOI: 10.1117/1.nph.11.3.035009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
Significance Two-photon optogenetics and simultaneous calcium imaging can be used to visualize the response of surrounding neurons with respect to the activity of an optically stimulated target neuron, providing a direct method to assess neuronal connectivity. Aim We aim to develop a two-photon optogenetics-based method for evaluating neuronal connectivity, compare it to the existing indirect resting-state synchrony method, and investigate the application of the method to brain pathophysiology. Approach C1V1-mScarlet was introduced into GCaMP6s-expressing transgenic mice with an adeno-associated virus. Optical stimulation of a single target neuron and simultaneous calcium imaging of the target and surrounding cells were performed. Neuronal connectivity was evaluated from the correlation between the fluorescence intensity of the target and surrounding cells. Results The neuronal connectivity in the living brain was evaluated using two-photon optogenetics. However, resting-state synchrony was not always consistent with two-photon optogenetics-based connectivity. Comparison with neuronal synchrony measured during sensory stimulation suggested that the disagreement was due to external sensory input. Two-photon optogenetics-based connectivity significantly decreased in the common carotid artery occlusion model, whereas there was no significant change in the control group. Conclusions We successfully developed a direct method to evaluate neuronal connectivity in the living brain using two-photon optogenetics. The technique was successful in detecting connectivity impairment in hypoperfusion model mice.
Collapse
Affiliation(s)
- Masaki Yoshioka
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Medicine, Department of Neurological Surgery, Chiba, Japan
| | - Manami Takahashi
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
| | - Jeff Kershaw
- National Institutes for Quantum Science and Technology, Institute for Quantum Medical Science, Department of Molecular Imaging and Theranostics, Chiba, Japan
| | - Mariko Handa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Ayaka Takada
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Hiroyuki Takuwa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| |
Collapse
|
10
|
Kwapong WR, Tang F, Liu P, Zhang Z, Cao L, Feng Z, Yang S, Shu Y, Xu H, Lu Y, Zhao X, Chong B, Wu B, Liu M, Lei P, Zhang S. Choriocapillaris reduction accurately discriminates against early-onset Alzheimer's disease. Alzheimers Dement 2024; 20:4185-4198. [PMID: 38747519 PMCID: PMC11180859 DOI: 10.1002/alz.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION This study addresses the urgent need for non-invasive early-onset Alzheimer's disease (EOAD) prediction. Using optical coherence tomography angiography (OCTA), we present a choriocapillaris model sensitive to EOAD, correlating with serum biomarkers. METHODS Eighty-four EOAD patients and 73 controls were assigned to swept-source OCTA (SS-OCTA) or the spectral domain OCTA (SD-OCTA) cohorts. Our hypothesis on choriocapillaris predictive potential in EOAD was tested and validated in these two cohorts. RESULTS Both cohorts revealed diminished choriocapillaris signals, demonstrating the highest discriminatory capability (area under the receiver operating characteristic curve: SS-OCTA 0.913, SD-OCTA 0.991; P < 0.001). A sparser SS-OCTA choriocapillaris correlated with increased serum amyloid beta (Aβ)42, Aβ42/40, and phosphorylated tau (p-tau)181 levels (all P < 0.05). Apolipoprotein E status did not affect choriocapillaris measurement. DISCUSSION The choriocapillaris, observed in both cohorts, proves sensitive to EOAD diagnosis, and correlates with serum Aβ and p-tau181 levels, suggesting its potential as a diagnostic tool for identifying and tracking microvascular changes in EOAD. HIGHLIGHTS Optical coherence tomography angiography may be applied for non-invasive screening of Alzheimer's disease (AD). Choriocapillaris demonstrates high sensitivity and specificity for early-onset AD diagnosis. Microvascular dynamics abnormalities are associated with AD.
Collapse
Affiliation(s)
| | - Fei Tang
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Peng Liu
- Department of EmergencyWest China Hospital of Sichuan UniversityChengduP.R. China
| | - Ziyi Zhang
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Le Cao
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Zijuan Feng
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Shiyun Yang
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Yang Shu
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Heng Xu
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Ying Lu
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Xinjun Zhao
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Baochen Chong
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Bo Wu
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ming Liu
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Peng Lei
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
- State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduP.R. China
| | - Shuting Zhang
- Department of NeurologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
11
|
Xiao Y, Gao L, Hu Y, The Alzheimer’s Disease Neuroimaging Initiative. Disrupted single-subject gray matter networks are associated with cognitive decline and cortical atrophy in Alzheimer's disease. Front Neurosci 2024; 18:1366761. [PMID: 39165340 PMCID: PMC11334729 DOI: 10.3389/fnins.2024.1366761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/18/2024] [Indexed: 08/22/2024] Open
Abstract
Background Research has shown disrupted structural network measures related to cognitive decline and future cortical atrophy during the progression of Alzheimer's disease (AD). However, evidence regarding the individual variability of gray matter network measures and the associations with concurrent cognitive decline and cortical atrophy related to AD is still sparse. Objective To investigate whether alterations in single-subject gray matter networks are related to concurrent cognitive decline and cortical gray matter atrophy during AD progression. Methods We analyzed structural MRI data from 185 cognitively normal (CN), 150 mild cognitive impairment (MCI), and 153 AD participants, and calculated the global network metrics of gray matter networks for each participant. We examined the alterations of single-subject gray matter networks in patients with MCI and AD, and investigated the associations of network metrics with concurrent cognitive decline and cortical gray matter atrophy. Results The small-world properties including gamma, lambda, and sigma had lower values in the MCI and AD groups than the CN group. AD patients had reduced degree, clustering coefficient, and path length than the CN and MCI groups. We observed significant associations of cognitive ability with degree in the CN group, with gamma and sigma in the MCI group, and with degree, connectivity density, clustering coefficient, and path length in the AD group. There were significant correlation patterns between sigma values and cortical gray matter volume in the CN, MCI, and AD groups. Conclusion These findings suggest the individual variability of gray matter network metrics may be valuable to track concurrent cognitive decline and cortical atrophy during AD progression. This may contribute to a better understanding of cognitive decline and brain morphological alterations related to AD.
Collapse
Affiliation(s)
- Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yubin Hu
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | | |
Collapse
|
12
|
Bangar A, Khan H, Kaur A, Dua K, Singh TG. Understanding mechanistic aspect of the therapeutic role of herbal agents on neuroplasticity in cerebral ischemic-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117153. [PMID: 37717842 DOI: 10.1016/j.jep.2023.117153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke is one of the leading causes of death and disability. The only FDA-approved therapy for treating stroke is tissue plasminogen activator (tPA), exhibiting a short therapeutic window. Due to this reason, only a small number of patients can be benefitted in this critical period. In addition, the use of endovascular interventions may reverse vessel occlusion more effectively and thus help further improve outcomes in experimental stroke. During recovery of blood flow after ischemia, patients experience cognitive, behavioral, affective, emotional, and electrophysiological changes. Therefore, it became the need for an hour to discover a novel strategy for managing stroke. The drug discovery process has focused on developing herbal medicines with neuroprotective effects via modulating neuroplasticity. AIM OF THE STUDY We gather and highlight the most essential traditional understanding of therapeutic plants and their efficacy in cerebral ischemia-reperfusion injury. In addition, we provide a concise summary and explanation of herbal drugs and their role in improving neuroplasticity. We review the pharmacological activity of polyherbal formulations produced from some of the most frequently referenced botanicals for the treatment of cerebral ischemia damage. MATERIALS AND METHODS A systematic literature review of bentham, scopus, pubmed, medline, and embase (elsevier) databases was carried out with the help of the keywords like neuroplasticity, herbal drugs, neural progenitor cells, neuroprotection, stem cells. The review was conducted using the above keywords to understand the therapeutic and mechanistic role of herbal neuroprotective agents on neuroplasticity in cerebral ischemic-reperfusion injury. RESULTS Neuroplasticity emerged as an alternative to improve recovery and management after cerebral ischemic reperfusion injury. Neuroplasticity is a physiological process throughout one's life in response to any stimuli and environment. Traditional herbal medicines have been established as an adjuvant to stroke therapy since they were used from ancient times and provided promising effects as an adjuvant to experimental stroke. The plants and phytochemicals such as Curcuma longa L., Moringa oliefera Lam, Panax ginseng C.A. Mey., and Rehmannia glutinosa (Gaertn.) DC., etc., have shown promising effects in improving neuroplasticity after experimental stroke. Such effects occur by modulation of various molecular signalling pathways, including PI3K/Akt, BDNF/CREB, JAK/STAT, HIF-1α/VEGF, etc. CONCLUSIONS: Here, we gave a perspective on plant species that have shown neuroprotective effects and can show promising results in promoting neuroplasticity with specific targets after cerebral ischemic reperfusion injury. In this review, we provide the complete detail of studies conducted on the role of herbal drugs in improving neuroplasticity and the signaling pathway involved in the recovery and management of experimental stroke.
Collapse
Affiliation(s)
- Annu Bangar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | | |
Collapse
|
13
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
14
|
Chen K, Tang F, Du B, Yue Z, Jiao L, Ding X, Tuo Q, Meng J, He S, Dai L, Lei P, Wei X. Leucine-rich repeat kinase 2 (LRRK2) inhibition upregulates microtubule-associated protein 1B to ameliorate lysosomal dysfunction and parkinsonism. MedComm (Beijing) 2023; 4:e429. [PMID: 38020716 PMCID: PMC10661827 DOI: 10.1002/mco2.429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Mutations in LRRK2 (encoding leucine-rich repeat kinase 2 protein, LRRK2) are the most common genetic risk factors for Parkinson's disease (PD), and increased LRRK2 kinase activity was observed in sporadic PD. Therefore, inhibition of LRRK2 has been tested as a disease-modifying therapeutic strategy using the LRRK2 mutant mice and sporadic PD. Here, we report a newly designed molecule, FL090, as a LRRK2 kinase inhibitor, verified in cell culture and animal models of PD. Using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice and SNCA A53T transgenic mice, FL090 ameliorated motor dysfunctions, reduced LRRK2 kinase activity, and rescued loss in the dopaminergic neurons in the substantia nigra. Notably, by RNA-Seq analysis, we identified microtubule-associated protein 1 (MAP1B) as a crucial mediator of FL090's neuroprotective effects and found that MAP1B and LRRK2 co-localize. Overexpression of MAP1B rescued 1-methyl-4-phenylpyridinium induced cytotoxicity through rescuing the lysosomal function, and the protective effect of FL090 was lost in MAP1B knockout cells. Further studies may be focused on the in vivo mechanisms of MAP1B and microtubule function in PD. Collectively, these findings highlight the potential of FL090 as a therapeutic agent for sporadic PD and familial PD without LRRK2 mutations.
Collapse
Affiliation(s)
- Kang Chen
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Fei Tang
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Bin Du
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Zhe‐Zhou Yue
- Guizhou Yiluoqini Techno. Co., Ltd, Guizhou Shuanglong Airport Economic ZoneGuiyangP. R. China
| | - Ling‐Ling Jiao
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Xu‐Long Ding
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Qing‐Zhang Tuo
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Si‐Yu He
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Lunzhi Dai
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Xia‐Wei Wei
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
- Guizhou Yiluoqini Techno. Co., Ltd, Guizhou Shuanglong Airport Economic ZoneGuiyangP. R. China
| |
Collapse
|
15
|
Rissardo JP, Vora N, Mathew B, Kashyap V, Muhammad S, Fornari Caprara AL. Overview of Movement Disorders Secondary to Drugs. Clin Pract 2023; 13:959-976. [PMID: 37623268 PMCID: PMC10453030 DOI: 10.3390/clinpract13040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Drug-induced movement disorders affect a significant percentage of individuals, and they are commonly overlooked and underdiagnosed in clinical practice. Many comorbidities can affect these individuals, making the diagnosis even more challenging. Several variables, including genetics, environmental factors, and aging, can play a role in the pathophysiology of these conditions. The Diagnostic and Statistical Manual of Mental Disorders (DSM) and the International Statistical Classification of Diseases and Related Health Problems (ICD) are the most commonly used classification systems in categorizing drug-induced movement disorders. This literature review aims to describe the abnormal movements associated with some medications and illicit drugs. Myoclonus is probably the most poorly described movement disorder, in which most of the reports do not describe electrodiagnostic studies. Therefore, the information available is insufficient for the diagnosis of the neuroanatomical source of myoclonus. Drug-induced parkinsonism is rarely adequately evaluated but should be assessed with radiotracers when these techniques are available. Tardive dyskinesias and dyskinesias encompass various abnormal movements, including chorea, athetosis, and ballism. Some authors include a temporal relationship to define tardive syndromes for other movement disorders, such as dystonia, tremor, and ataxia. Antiseizure medications and antipsychotics are among the most thoroughly described drug classes associated with movement disorders.
Collapse
Affiliation(s)
| | - Nilofar Vora
- Medicine Department, Terna Speciality Hospital and Research Centre, Navi Mumbai 400706, India;
| | - Bejoi Mathew
- Medicine Department, Sri Devaraj Urs Medical College, Kolar Karnataka 563101, India;
| | - Vikas Kashyap
- Medicine Department, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India;
| | - Sara Muhammad
- Neurology Department, Mayo Clinic, Rochester, MN 55906, USA;
| | | |
Collapse
|