1
|
Drumond-Bock AL, Blankenship HE, Pham KD, Carter KA, Freeman WM, Beckstead MJ. Parallel Gene Expression Changes in Ventral Midbrain Dopamine and GABA Neurons during Normal Aging. eNeuro 2025; 12:ENEURO.0107-25.2025. [PMID: 40360281 PMCID: PMC12121937 DOI: 10.1523/eneuro.0107-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/18/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
The consequences of aging can vary dramatically between different brain regions and cell types. In the ventral midbrain, dopaminergic neurons develop physiological deficits with normal aging that likely convey susceptibility to neurodegeneration. While nearby GABAergic neurons are thought to be more resilient, decreased GABA signaling in other areas nonetheless correlates with age-related cognitive decline and the development of degenerative diseases. Here, we used two novel cell type-specific translating ribosome affinity purification models to elucidate the impact of healthy brain aging on the molecular profiles of dopamine and GABA neurons in the ventral midbrain. By analyzing differential gene expression from young adult (7-10 months) and old (21-24 months) mice, we detected commonalities in the aging process in both neuronal types, including increased inflammatory responses and upregulation of pro-survival pathways. Both cell types also showed downregulation of genes involved in synaptic connectivity and plasticity. Intriguingly, genes involved in serotonergic synthesis were upregulated with age in GABA neurons and not dopamine-releasing cells. In contrast, dopaminergic neurons showed alterations in genes connected with mitochondrial function and calcium signaling, which were markedly downregulated in male mice. Sex differences were detected in both neuron types, but in general were more prominent in dopamine neurons. Multiple sex effects correlated with the differential prevalence for neurodegenerative diseases such as Parkinson's and Alzheimer's seen in humans. In summary, these results provide insight into the connection between non-pathological aging and susceptibility to neurodegenerative diseases involving the ventral midbrain, and identify molecular phenotypes that could underlie homeostatic maintenance during normal aging.
Collapse
Affiliation(s)
- Ana Luiza Drumond-Bock
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Harris E Blankenship
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Kevin D Pham
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Kelsey A Carter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Willard M Freeman
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma 73104
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
2
|
Koehn LM, Steele JR, Schittenhelm RB, Nicolazzo JA. Sex-Specific Markers of Neuroinflammation and Neurodegeneration in the Spinal Cord Proteome of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. J Proteome Res 2025; 24:1956-1970. [PMID: 40117341 DOI: 10.1021/acs.jproteome.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has no cure. The underlying mechanistic details of sex differences in the ALS spinal cord, the site of disease onset, are not understood to an extent that could guide novel drug development. To address this, the spinal cords of 120-day-old wild-type (WT) and SOD1G93A (familial mouse model of ALS with mutant superoxide dismutase 1) mice were subjected to untargeted, quantitative proteomics using tandem mass tag acquisition on high-resolution mass spectrometric instrumentation. Compared to WT, both male and female SOD1G93A spinal cords exhibited an upregulation of neuroinflammatory cascades of both peripheral and central origins, as well as a downregulation of proteins reflective of death and dysfunction of cells within the spinal cord. However, female and male SOD1G93A mouse spinal cords exhibited sex-specific differences in proteins compared to respective WT that related to immune response, as well as cellular structure, function, and homeostasis. The proteomic datasets presented provide entire cohort and sex-specific spinal cord drug targets and disease biomarkers in the SOD1G93A mouse model of ALS that may guide future drug development and sex selection in preclinical study designs utilizing the SOD1G93A model.
Collapse
Affiliation(s)
- Liam M Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Joel R Steele
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
3
|
Zhong R, Dionela DL, Kim NH, Harris EN, Geisler JG, Wei‐LaPierre L. Micro-Doses of DNP Preserve Motor and Muscle Function with a Period of Functional Recovery in Amyotrophic Lateral Sclerosis Mice. Ann Neurol 2025; 97:542-557. [PMID: 39552508 PMCID: PMC11831883 DOI: 10.1002/ana.27140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVE Mitochondrial dysfunction is one of the earliest pathological events observed in amyotrophic lateral sclerosis (ALS). The aim of this study is to evaluate the therapeutic efficacy of 2,4-dinitrophenol (DNP), a mild mitochondrial uncoupler, in an ALS mouse model to provide preclinical proof-of-concept evidence of using DNP as a potential therapeutic drug for ALS. METHODS hSOD1G93A mice were treated with 0.5-1.0 mg/kg DNP through daily oral gavage from presymptomatic stage or disease onset until 18 weeks old. Longitudinal behavioral studies were performed weekly or biweekly from 6 to 18 weeks old. In situ muscle contraction measurements in extensor digitorum longus muscles were conducted to evaluate the preservation of contractile force and motor unit numbers in hSOD1G93A mice following DNP treatment. Muscle innervation and inflammatory markers were assessed using immunostaining. Extent of protein oxidation and activation of Akt pathway were also examined. RESULTS DNP delayed disease onset; improved motor coordination and muscle performance in vivo; preserved muscle contractile function, neuromuscular junction morphology, and muscle innervation; and reduced inflammation and protein oxidation at 18 weeks old in hSOD1G93A mice. Strikingly, symptomatic hSOD1G93A mice exhibited a period of recovery in running ability at 20 cm/s several weeks after 2,4-dinitrophenol treatment started at disease onset, offering the first observation in disease phenotype reversal using a small molecule. INTERPRETATION Our results strongly support that micro-dose DNP may be used as a potential novel treatment for ALS patients, with a possibility for recovery, when used at optimal doses and time of intervention. ANN NEUROL 2025;97:542-557.
Collapse
Affiliation(s)
- Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human PerformanceUniversity of FloridaGainesvilleFL
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNY
- Department of Emergency Medicinethe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Demi L.A. Dionela
- Department of Applied Physiology and Kinesiology, College of Health and Human PerformanceUniversity of FloridaGainesvilleFL
| | - Nina Haeyeon Kim
- Department of Applied Physiology and Kinesiology, College of Health and Human PerformanceUniversity of FloridaGainesvilleFL
| | - Erin N. Harris
- Department of Applied Physiology and Kinesiology, College of Health and Human PerformanceUniversity of FloridaGainesvilleFL
| | | | - Lan Wei‐LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human PerformanceUniversity of FloridaGainesvilleFL
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNY
- Myology InstituteUniversity of FloridaGainesvilleFL
| |
Collapse
|
4
|
Krus KL, Benitez AM, Strickland A, Milbrandt J, Bloom AJ, DiAntonio A. Two cardinal features of ALS, reduced STMN2 and pathogenic TDP-43, synergize to accelerate motor decline in mice. Exp Neurol 2025; 384:115068. [PMID: 39603486 DOI: 10.1016/j.expneurol.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Pathological TDP-43 loss from the nucleus and cytoplasmic aggregation occurs in almost all cases of ALS and half of frontotemporal dementia patients. Stathmin2 (Stmn2) is a key target of TDP-43 regulation and aberrantly spliced Stmn2 mRNA is found in patients with ALS, frontotemporal dementia, and Alzheimer's Disease. STMN2 participates in the axon injury response and its depletion in vivo partially replicates ALS-like symptoms including progressive motor deficits and distal NMJ denervation. The interaction between STMN2 loss and TDP-43 dysfunction has not been studied in mice because TDP-43 regulates human but not murine Stmn2 splicing. Therefore, we generated trans-heterozygous mice that lack one functional copy of Stmn2 and express one mutant TDP-43Q331K knock-in allele to investigate whether reduced STMN2 function exacerbates TDP-43-dependent pathology. Indeed, we observe synergy between these two alleles, resulting in an early onset, progressive motor deficit. Surprisingly, this behavioral defect is not accompanied by detectable neuropathology in the brain, spinal cord, peripheral nerves or at neuromuscular junctions (NMJs). However, the trans-heterozygous mice exhibit abnormal mitochondrial morphology in their distal axons and NMJs. As both STMN2 and TDP-43 affect mitochondrial dynamics, and neuronal mitochondrial dysfunction is a cardinal feature of many neurodegenerative diseases, this abnormality likely contributes to the observed motor deficit. These findings demonstrate that partial loss of STMN2 significantly exacerbates TDP-43-associated phenotypes, suggesting that STMN2 restoration could ameliorate TDP-43 related disease before the onset of degeneration.
Collapse
Affiliation(s)
- Kelsey L Krus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis 63110, United States
| | - Ana Morales Benitez
- Department of Developmental Biology, Washington University School of Medicine, St. Louis 63110, United States
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis 63110, United States
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis 63110, United States; McDonnell Genome Institute, Washington University School of Medicine, St. Louis 63110, United States; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis 63110, United States.
| | - A Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis 63110, United States; McDonnell Genome Institute, Washington University School of Medicine, St. Louis 63110, United States.
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis 63110, United States; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis 63110, United States.
| |
Collapse
|
5
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
6
|
Biswas DD, Sethi R, Woldeyohannes Y, Scarrow ER, El Haddad L, Lee J, ElMallah MK. Respiratory pathology in the TDP-43 transgenic mouse model of amyotrophic lateral sclerosis. Front Physiol 2024; 15:1430875. [PMID: 39403566 PMCID: PMC11471906 DOI: 10.3389/fphys.2024.1430875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 03/28/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in death within 2-5 years of diagnosis. Respiratory failure is the most common cause of death in ALS. Mutations in the transactive response DNA binding protein 43 (TDP-43) encoded by the TARDBP gene are associated with abnormal cellular aggregates in neurons of patients with both familial and sporadic ALS. The role of these abnormal aggregates on breathing is unclear. Since respiratory failure is a major cause of death in ALS, we sought to determine the role of TDP-43 mutations on the respiratory motor unit in the Prp-hTDP-43A315T mouse model - a model that expresses human TDP-43 containing the A315T mutation. We assessed breathing using whole-body plethysmography, and investigated neuropathology in hypoglossal and phrenic respiratory motor units. Postmortem studies included quantification of hypoglossal and putative phrenic motor neurons, activated microglia and astrocytes in respiratory control centers, and assessment of hypoglossal and phrenic nerves of TDP43A315T mice. The male TDP43A315T mice display an early onset of rapid progression of disease, and premature death (less than 15 weeks) compared to control mice and compared to female TDP43A315T mice who die between 20 and 35 weeks of age. The TDP43A315T mice have progressive and profound breathing deficits at baseline and during a respiratory challenge. Histologically, hypoglossal and putative phrenic motor neurons of TDP43A315T mice are decreased and have increased microglial and astrocyte activation, indicating pronounced neurodegeneration and neuroinflammation. Further, there is axonopathy and demyelination in the hypoglossal and phrenic nerve of TDP43A315T mice. Thus, the TDP-43A315T mice have significant respiratory pathology and neuropathology, which makes them a useful translatable model for the study of novel therapies on breathing in ALS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mai K. ElMallah
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
7
|
Goffin L, Lemoine D, Clotman F. Potential contribution of spinal interneurons to the etiopathogenesis of amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1434404. [PMID: 39091344 PMCID: PMC11293063 DOI: 10.3389/fnins.2024.1434404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) consists of a group of adult-onset fatal and incurable neurodegenerative disorders characterized by the progressive death of motor neurons (MNs) throughout the central nervous system (CNS). At first, ALS was considered to be an MN disease, caused by cell-autonomous mechanisms acting specifically in MNs. Accordingly, data from ALS patients and ALS animal models revealed alterations in excitability in multiple neuronal populations, including MNs, which were associated with a variety of cellular perturbations such as protein aggregation, ribonucleic acid (RNA) metabolism defects, calcium dyshomeostasis, modified electrophysiological properties, and autophagy malfunctions. However, experimental evidence rapidly demonstrated the involvement of other types of cells, including glial cells, in the etiopathogenesis of ALS through non-cell autonomous mechanisms. Surprisingly, the contribution of pre-motor interneurons (INs), which regulate MN activity and could therefore critically modulate their excitability at the onset or during the progression of the disease, has to date been severely underestimated. In this article, we review in detail how spinal pre-motor INs are affected in ALS and their possible involvement in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, Belgium
| |
Collapse
|