1
|
Singh M, Sarhan MO, Damiba NNL, Singh AK, Villabona-Rueda A, Nino-Meza OJ, Chen X, Masias-Leon Y, Ruiz-Gonzalez CE, Ordonez AA, D'Alessio FR, Aboagye EO, Carroll LS, Jain SK. Proapoptotic Bcl-2 inhibitor as potential host directed therapy for pulmonary tuberculosis. Nat Commun 2025; 16:3003. [PMID: 40148277 PMCID: PMC11950383 DOI: 10.1038/s41467-025-58190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Mycobacterium tuberculosis establishes within host cells by inducing anti-apoptotic Bcl-2 family proteins, triggering necrosis, inflammation, and fibrosis. Here, we demonstrate that navitoclax, an orally bioavailable, small-molecule Bcl-2 inhibitor, significantly improves pulmonary tuberculosis (TB) treatments as a host-directed therapy. Addition of navitoclax to standard TB treatments at human equipotent dosing in mouse models of TB, inhibits Bcl-2 expression, leading to improved bacterial clearance, reduced tissue necrosis, fibrosis and decreased extrapulmonary bacterial dissemination. Using immunohistochemistry and flow cytometry, we show that navitoclax induces apoptosis in several immune cells, including CD68+ and CD11b+ cells. Finally, positron emission tomography (PET) in live animals using clinically translatable biomarkers for apoptosis (18F-ICMT-11) and fibrosis (18F-FAPI-74), demonstrates that navitoclax significantly increases apoptosis and reduces fibrosis in pulmonary tissues, which are confirmed in postmortem analysis. Our studies suggest that proapoptotic drugs such as navitoclax can potentially improve pulmonary TB treatments, reduce lung damage / fibrosis and may be protective against post-TB lung disease.
Collapse
Affiliation(s)
- Medha Singh
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mona O Sarhan
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nerketa N L Damiba
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alok K Singh
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | - Oscar J Nino-Meza
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xueyi Chen
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuderleys Masias-Leon
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carlos E Ruiz-Gonzalez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franco R D'Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Campus, Imperial College, London, UK
| | - Laurence S Carroll
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Kos M, Tomaka P, Mertowska P, Mertowski S, Wojnicka J, Błażewicz A, Grywalska E, Bojarski K. The Many Faces of Immune Thrombocytopenia: Mechanisms, Therapies, and Clinical Challenges in Oncological Patients. J Clin Med 2024; 13:6738. [PMID: 39597882 PMCID: PMC11594473 DOI: 10.3390/jcm13226738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The pathogenesis of immune thrombocytopenia (ITP) is complex and involves the dysregulation of immune cells, such as T and B lymphocytes, and several cytokines that promote the production of autoantibodies. In the context of cancer patients, ITP can occur in both primary and secondary forms related to anticancer therapies or the disease itself. OBJECTIVE In light of these data, we decided to prepare a literature review that will explain the classification and immunological determinants of the pathogenesis of ITP and present the clinical implications of this condition, especially in patients with cancer. MATERIALS AND METHODS We reviewed the literature on immunological mechanisms, therapies, and challenges in treating ITP, particularly on cancer patients. RESULTS The results of the literature review show that ITP in cancer patients can be both primary and secondary, with secondary ITP being more often associated with anticancer therapies such as chemotherapy and immunotherapy. Innovative therapies such as TPO-RA, rituximab, Bruton's kinase inhibitors, and FcRn receptor inhibitors have shown promising results in treating refractory ITP, especially in patients with chronic disease. CONCLUSIONS ITP is a significant clinical challenge, especially in the context of oncology patients, where both the disease and treatment can worsen thrombocytopenia and increase the risk of bleeding complications. Treatment of oncology patients with ITP requires an individualized approach, and new therapies offer effective tools for managing this condition. Future research into immunological mechanisms may bring further advances in treating ITP and improve outcomes in cancer patients.
Collapse
Affiliation(s)
- Marek Kos
- Department of Public Health, Medical University of Lublin, 20-400 Lublin, Poland
| | - Piotr Tomaka
- Department of Anesthesiology and Intensive Care, SP ZOZ in Łęczna, 21-010 Łęczna, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | |
Collapse
|
3
|
Jain S, Singh M, Sarhan M, Damiba N, Singh A, Villabona-Rueda A, Meza ON, Chen X, Ordonez A, D'Alessio F, Aboagye E, Carroll L. Proapoptotic Bcl-2 inhibitor as host directed therapy for pulmonary tuberculosis. RESEARCH SQUARE 2024:rs.3.rs-4926508. [PMID: 39281866 PMCID: PMC11398574 DOI: 10.21203/rs.3.rs-4926508/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Mycobacterium tuberculosis establishes within host cells by inducing anti-apoptotic Bcl-2 family proteins, triggering necrosis, inflammation, and fibrosis. Here, we demonstrate that navitoclax, an orally bioavailable, small-molecule Bcl-2 inhibitor, significantly improves pulmonary tuberculosis (TB) treatments as a host-directed therapy. Addition of navitoclax to standard TB treatments at human equipotent dosing in mouse models of TB, inhibits Bcl-2 expression, leading to improved bacterial clearance, reduced tissue damage / fibrosis and decreased extrapulmonary bacterial dissemination. Using immunohistochemistry and flow cytometry, we show that navitoclax induces apoptosis in several immune cells, including CD68 + and CD11b + cells. Finally, positron emission tomography (PET) in live animals using novel, clinically translatable biomarkers for apoptosis (18F-ICMT-11) and fibrosis (18F-FAPI-74) demonstrates that navitoclax significantly increases apoptosis and reduces fibrosis in pulmonary tissues, which are confirmed using post-mortem studies. Our studies suggest that proapoptotic drugs such as navitoclax can improve pulmonary TB treatments, and should be evaluated in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Alok Singh
- Johns Hopkins University School of Medicine
| | | | | | - Xueyi Chen
- Johns Hopkins University School of Medicine
| | | | | | | | | |
Collapse
|
4
|
Nie X, Jia L, Peng X, Zhao H, Yu Y, Chen Z, Zhang L, Cheng X, Lyu Y, Cao W, Wang X, Ni X, Zhan S. Detection of Drug-Induced Thrombocytopenia Signals in Children Using Routine Electronic Medical Records. Front Pharmacol 2021; 12:756207. [PMID: 34867372 PMCID: PMC8633439 DOI: 10.3389/fphar.2021.756207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Drug-induced thrombocytopenia (DITP) is a severe adverse reaction and a significantly under-recognized clinical problem in children. However, for post-marketing pharmacovigilance purposes, detection of DITP signals is crucial. This study aimed to develop a signal detection model for DITP using the pediatric electronic medical records (EMR) data. Methods: This study used the electronic medical records collected at Beijing Children’s Hospital between 2009 and 2020. A two-stage modeling method was developed to detect the signal of DITP. In the first stage, we calculated the crude incidence by mining cases of thrombocytopenia to select the potential suspected drugs. In the second stage, we constructed propensity score–matched retrospective cohorts of specific screened drugs from the first stage and estimated the odds ratio (OR) and 95% confidence interval (CI) using conditional logistic regression models. The novelty of the signal was assessed by current evidence. Results: In the study, from a total of 839 drugs, 21 drugs were initially screened as potentially inducing thrombocytopenia. In total, we identified 18 positive DITP associations. Of these, potential DITP risk of nystatin (OR: 1.75, 95% CI: 1.37–2.22) and latamoxef sodium (OR: 1.61, 95% CI: 1.38–1.88) were two new DITP signals in both children and adults. Six associations between thrombocytopenia and drugs including imipenem (OR: 1.69, 95% CI: 1.16–2.45), teicoplanin (OR: 4.75, 95% CI: 3.33–6.78), fusidic acid (OR: 2.81, 95% CI: 2.06–3.86), ceftizoxime sodium (OR: 1.83, 95% CI: 1.36–2.45), ceftazidime (OR: 2.16, 95% CI: 1.58–2.95), and cefepime (OR: 5.06, 95% CI: 3.77–6.78) were considered as new signals in children. Conclusion: This study developed a two-stage algorithm to detect safety signals of DITP and found eighteen positive signals of DITP, including six new signals in a pediatric population. This method is a promising tool for pharmacovigilance based on EMR data.
Collapse
Affiliation(s)
- Xiaolu Nie
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lulu Jia
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoxia Peng
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Houyu Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yuncui Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhenping Chen
- Hematologic Disease Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Liqiang Zhang
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoling Cheng
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yaqi Lyu
- Department of Medical Record Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wang Cao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoling Wang
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin Ni
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China
| |
Collapse
|
5
|
Abstract
Meropenem is a broad-spectrum carbapenem widely used to treat both Gram-positive and negative bacterial infections, including extended-spectrum beta-lactamase-producing microbes. We describe the occurrence of thrombocytopenia and hypersensitivity in a boy receiving intravenous meropenem for intra-abdominal sepsis secondary to perforated appendicitis. The patient developed a pruritic maculopapular rash with occasional petechiae, associated with severe thrombocytopenia, after 7 days of meropenem administration. Investigations for other causes of thrombocytopenia, including possible line sepsis, were unfruitful, and the thrombocytopenia did not resolve until cessation of meropenem. Drug-induced reactions should be considered in children receiving meropenem who present with a rash and thrombocytopenia.
Collapse
Affiliation(s)
- Joanna Cachia
- Department of Paediatrics, Mater Dei Hospital, Msida, Malta
| | - Paul Torpiano
- Department of Paediatrics, Mater Dei Hospital, Msida, Malta
| | - David Pace
- Department of Paediatrics, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
6
|
Al-Tkrit A, Obada Z, Muqeet S, Cervantes J. Adalimumab-Induced Thrombocytopenia in a Patient With Hidradenitis Suppurativa. Cureus 2021; 13:e14769. [PMID: 34094734 PMCID: PMC8164782 DOI: 10.7759/cureus.14769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adalimumab-induced thrombocytopenia is a rarely occurring condition that may present with hemorrhagic manifestations. This report describes a case of a patient who presented with severe, symptomatic thrombocytopenia while on adalimumab for the treatment of hidradenitis suppurativa. The patient responded to treatment with steroids, intravenous immunoglobulin (IVIG), and platelet transfusion, in addition to discontinuation of adalimumab.
Collapse
Affiliation(s)
- Amna Al-Tkrit
- Internal Medicine, Jamaica Hospital Medical Center, Queens, USA
| | - Zaid Obada
- Internal Medicine, Jamaica Hospital Medical Center, Queens, USA
| | - Sara Muqeet
- Internal Medicine, Jamaica Hospital Medical Center, Queens, USA
| | - Jose Cervantes
- Hematology and Medical Oncology, Jamaica Hospital Medical Center, Queens, USA
| |
Collapse
|