1
|
Dayar E, Pechanova O. Targeted Strategy in Lipid-Lowering Therapy. Biomedicines 2022; 10:1090. [PMID: 35625827 PMCID: PMC9138651 DOI: 10.3390/biomedicines10051090] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Dyslipidemia is characterized by a diminished lipid profile, including increased level of total cholesterol and low-density lipoprotein cholesterol (LDL-c) and reduced level of high-density lipoprotein cholesterol (HDL-c). Lipid-lowering agents represent an efficient tool for the prevention or reduction of progression of atherosclerosis, coronary heart diseases and metabolic syndrome. Statins, ezetimibe, and recently proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are the most effective and used drugs in clinical lipid-lowering therapy. These drugs are mainly aimed to lower cholesterol levels by different mechanisms of actions. Statins, the agents of the first-line therapy-known as 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors-suppress the liver cholesterol synthesis. Ezetimibe as the second-line therapy can decrease cholesterol by inhibiting cholesterol absorption. Finally, the PCSK9 inhibitors act as an inducer of LDL excretion. In spite of their beneficial lipid-lowering properties, many patients suffer from their serious side effects, route of administration, or unsatisfactory physicochemical characteristics. Clinical demand for dose reduction and the improvement of bioavailability as well as pharmacodynamic and pharmacokinetic profile has resulted in the development of a new targeted therapy that includes nanoparticle carriers, emulsions or vaccination often associated with another more subtle form of administration. Targeted therapy aims to exert a more potent drug profile with lipid-lowering properties either alone or in mutual combination to potentiate their beneficial effects. This review describes the most effective lipid-lowering drugs, their favorable and adverse effects, as well as targeted therapy and alternative treatments to help reduce or prevent atherosclerotic processes and cardiovascular events.
Collapse
Affiliation(s)
| | - Olga Pechanova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| |
Collapse
|
2
|
Dama A, Baggio C, Boscaro C, Albiero M, Cignarella A. Estrogen Receptor Functions and Pathways at the Vascular Immune Interface. Int J Mol Sci 2021; 22:4254. [PMID: 33923905 PMCID: PMC8073008 DOI: 10.3390/ijms22084254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
Estrogen receptor (ER) activity mediates multiple physiological processes in the cardiovascular system. ERα and ERβ are ligand-activated transcription factors of the nuclear hormone receptor superfamily, while the G protein-coupled estrogen receptor (GPER) mediates estrogenic signals by modulating non-nuclear second messengers, including activation of the MAP kinase signaling cascade. Membrane localizations of ERs are generally associated with rapid, non-genomic effects while nuclear localizations are associated with nuclear activities/transcriptional modulation of target genes. Gender dependence of endothelial biology, either through the action of sex hormones or sex chromosome-related factors, is becoming increasingly evident. Accordingly, cardiometabolic risk increases as women transition to menopause. Estrogen pathways control angiogenesis progression through complex mechanisms. The classic ERs have been acknowledged to function in mediating estrogen effects on glucose metabolism, but 17β-estradiol also rapidly promotes endothelial glycolysis by increasing glucose transporter 1 (GLUT1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) levels through GPER-dependent mechanisms. Estrogens alter monocyte and macrophage phenotype(s), and induce effects on other estrogen-responsive cell lineages (e.g., secretion of cytokines/chemokines/growth factors) that impact macrophage function. The pharmacological modulation of ERs for therapeutic purposes, however, is particularly challenging due to the lack of ER subtype selectivity of currently used agents. Identifying the determinants of biological responses to estrogenic agents at the vascular immune interface and developing targeted pharmacological interventions may result in novel improved therapeutic solutions.
Collapse
Affiliation(s)
- Aida Dama
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Mattia Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Andrea Cignarella
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| |
Collapse
|
3
|
Lappalainen J, Yeung N, Nguyen SD, Jauhiainen M, Kovanen PT, Lee-Rueckert M. Cholesterol loading suppresses the atheroinflammatory gene polarization of human macrophages induced by colony stimulating factors. Sci Rep 2021; 11:4923. [PMID: 33649397 PMCID: PMC7921113 DOI: 10.1038/s41598-021-84249-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
In atherosclerotic lesions, blood-derived monocytes differentiate into distinct macrophage subpopulations, and further into cholesterol-filled foam cells under a complex milieu of cytokines, which also contains macrophage-colony stimulating factor (M-CSF) and granulocyte-macrophage-colony stimulating factor (GM-CSF). Here we generated human macrophages in the presence of either M-CSF or GM-CSF to obtain M-MØ and GM-MØ, respectively. The macrophages were converted into cholesterol-loaded foam cells by incubating them with acetyl-LDL, and their atheroinflammatory gene expression profiles were then assessed. Compared with GM-MØ, the M-MØ expressed higher levels of CD36, SRA1, and ACAT1, and also exhibited a greater ability to take up acetyl-LDL, esterify cholesterol, and become converted to foam cells. M-MØ foam cells expressed higher levels of ABCA1 and ABCG1, and, correspondingly, exhibited higher rates of cholesterol efflux to apoA-I and HDL2. Cholesterol loading of M-MØ strongly suppressed the high baseline expression of CCL2, whereas in GM-MØ the low baseline expression CCL2 remained unchanged during cholesterol loading. The expression of TNFA, IL1B, and CXCL8 were reduced in LPS-activated macrophage foam cells of either subtype. In summary, cholesterol loading converged the CSF-dependent expression of key genes related to intracellular cholesterol balance and inflammation. These findings suggest that transformation of CSF-polarized macrophages into foam cells may reduce their atheroinflammatory potential in atherogenesis.
Collapse
Affiliation(s)
| | | | - Su D Nguyen
- Wihuri Research Institute, Helsinki, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | | | | |
Collapse
|
4
|
Mukherjee V, Ramakrishna P, Bora S, Kotteazeth S. Phytosteroid 28-homobrassinolide targets cholesterol and glucose homeostasis implicating ABCA1 and SREBP role in regulation. Steroids 2021; 165:108756. [PMID: 33171131 DOI: 10.1016/j.steroids.2020.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/03/2020] [Accepted: 10/17/2020] [Indexed: 11/29/2022]
Abstract
Oxysterols are natural ligands of certain nuclear receptors known as liver X receptors (LXR). LXRs are regulators of fatty acid, cholesterol, and glucose homeostasis. Dietary phyto-oxysterol 28-homobrassinolide (28-HB) has been demonstrated to transactivate rat LXR α and β. In this study we assessed the potential of 28-HB to effect such changes in - (1) human HepG2 cancer cell line, (2) isolated perfused goat liver, and (3) high-fat diet-fed C57BL/6J mice. Serum and perfusate marker levels along with hexokinase activity were determined through enzyme assays. Fat deposition was studied by Oil Red O staining, ATP-binding cassette transporter (ABCA1), and sterol regulatory element-binding transcription factor 2 (SREBP2) protein expression by Western blot and their mRNA expression through real-time PCR. In HepG2 cells, 28-HB (5-20 μM) treatment indicated a 2-fold increase in glucose utilization and ABCA1 and SREBP2 protein expression within 12 h. Tissue glucose and cholesterol levels decreased in 28-HB perfused goat liver within 2 h, whereas cholesterol level increased 54% in the perfusate (p < 0.05) and tissue hexokinase activity increased 23% (p < 0.05). Glucokinase, ABCA1, and SREBF1 gene expression increased 2.6, 5.37, and 2.85 fold respectively in the perfused tissue after 4 h. High-fat diet-fed C57BL/6J mice when treated with 28-HB (1-20 µg/day) for 6 weeks exhibited a marked decrease in aortic fat deposit and serum marker levels. Our study suggests that 28-HB modulates cholesterol and glucose homeostasis in animal cells through activation of LXR involving ABCA1 and SREBP-1 and 2 augmentations.
Collapse
Affiliation(s)
- Victor Mukherjee
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India; Interdisciplinary Program in Life Sciences (DBT-BUILDER) School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India
| | - Premalatha Ramakrishna
- Division of Biosciences, Pondicherry University Community College, Lawspet, Pondicherry 605008, India
| | - Sushmita Bora
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India
| | - Srikumar Kotteazeth
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India.
| |
Collapse
|
5
|
Huang S, Liu K, Jiang D, Fang D. Codetermination of Sphingomyelin and Cholesterol in Cellular Plasma Membrane in Sphingomyelin-Depletion-Induced Cholesterol Efflux. Anal Chem 2018; 91:1501-1506. [PMID: 30548066 DOI: 10.1021/acs.analchem.8b04593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quantification of multiple lipids with different contents in plasma membrane in single cells is significant, but challenging, for investigating lipid interactions and the role of dominant protein transporters. In this paper, comonitoring the alteration of low-content sphingomyelin (SM) and high-content cholesterol in plasma membrane of one living cell is realized by use of luminol electrochemiluminescence (ECL) for the first time. Concentrations of SM as low as 0.5 μM are detected, which permits the measurement of low-content membrane SM in single cells. More membrane cholesterol is observed in individual cells after depletion of membrane SM, providing direct evidence about SM-depletion-induced cholesterol efflux. The upregulation of ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1) in SM-depleted cells induces a further increase in membrane cholesterol. These results imply that higher expression of ABCA1/G1 promotes cholesterol trafficking, which offers additional information to solve the debate about ABC transporters in cholesterol efflux. Moreover, the established approach offers a special strategy to investigate the correlation of membrane lipids and the role of transporters in cholesterol trafficking.
Collapse
Affiliation(s)
- Shuohan Huang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine , Nanjing Medical University , Nanjing , Jiangsu 211126 , China
| | - Kang Liu
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine , Nanjing Medical University , Nanjing , Jiangsu 211126 , China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine , Nanjing Medical University , Nanjing , Jiangsu 211126 , China
| |
Collapse
|
6
|
Bowden KL, Dubland JA, Chan T, Xu YH, Grabowski GA, Du H, Francis GA. LAL (Lysosomal Acid Lipase) Promotes Reverse Cholesterol Transport In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 2018; 38:1191-1201. [PMID: 29599133 DOI: 10.1161/atvbaha.117.310507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/13/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To explore the role of LAL (lysosomal acid lipase) in macrophage cholesterol efflux and whole-body reverse cholesterol transport. APPROACH AND RESULTS Immortalized peritoneal macrophages from lal-/- mice showed reduced expression of ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1), reduced production of the regulatory oxysterol 27-hydroxycholesterol, and impaired suppression of cholesterol synthesis on exposure to acetylated low-density lipoprotein when compared with lal+/+ macrophages. LAL-deficient mice also showed reduced hepatic ABCG5 (ATP-binding cassette transporter G5) and ABCG8 (ATP-binding cassette transporter G8) expression compared with lal+/+ mice. LAL-deficient macrophages loaded with [3H]-cholesteryl oleate-labeled acetylated low-density lipoprotein showed impaired efflux of released [3H]-cholesterol to apoA-I (apolipoprotein A-I), with normalization of [3H]-cholesteryl ester levels and partial correction of ABCA1 expression and cholesterol efflux to apoA-I when treated with exogenous rhLAL (recombinant human LAL protein). LAL-deficient mice injected intraperitoneally with lal-/- macrophages cholesterol loaded and labeled in the same way exhibited only 1.55±0.35% total injected [3H]-cholesterol counts appearing in the feces for 48 h (n=30), compared with 5.38±0.92% in lal+/+ mice injected with labeled lal+/+ macrophages (n=27), P<0.001. To mimic the therapeutic condition of delivery of supplemental LAL in vivo, injection of labeled lal-/- macrophages into lal+/+ mice resulted in a significant increase in reverse cholesterol transport (2.60±0.46% of 3H-cholesterol counts in feces at 48 hours [n=19]; P<0.001 when compared with injection into lal-/- mice). CONCLUSIONS These results indicate a critical role for LAL in promoting both macrophage and whole-body reverse cholesterol transport and the ability of supplemental LAL to be taken up and correct reverse cholesterol transport in vivo.
Collapse
Affiliation(s)
- Kristin L Bowden
- From the Department of Medicine, Centre for Heart Lung Innovation, Institute for Heart + Lung Health, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia, Vancouver, Canada (K.L.B., J.A.D., T.C., G.A.F.)
| | - Joshua A Dubland
- From the Department of Medicine, Centre for Heart Lung Innovation, Institute for Heart + Lung Health, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia, Vancouver, Canada (K.L.B., J.A.D., T.C., G.A.F.)
| | - Teddy Chan
- From the Department of Medicine, Centre for Heart Lung Innovation, Institute for Heart + Lung Health, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia, Vancouver, Canada (K.L.B., J.A.D., T.C., G.A.F.)
| | - You-Hai Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, OH (Y.-H.X., G.A.G.).,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, OH (Y.-H.X., G.A.G.)
| | - Gregory A Grabowski
- From the Department of Medicine, Centre for Heart Lung Innovation, Institute for Heart + Lung Health, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia, Vancouver, Canada (K.L.B., J.A.D., T.C., G.A.F.).,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, OH (Y.-H.X., G.A.G.).,Department of Pediatrics, University of Cincinnati College of Medicine, OH (Y.-H.X., G.A.G.)
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis (H.D.)
| | - Gordon A Francis
- From the Department of Medicine, Centre for Heart Lung Innovation, Institute for Heart + Lung Health, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia, Vancouver, Canada (K.L.B., J.A.D., T.C., G.A.F.)
| |
Collapse
|
7
|
Hu L, Li J, Cai H, Yao W, Xiao J, Li YP, Qiu X, Xia H, Peng T. Avasimibe: A novel hepatitis C virus inhibitor that targets the assembly of infectious viral particles. Antiviral Res 2017; 148:5-14. [PMID: 29074218 DOI: 10.1016/j.antiviral.2017.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/15/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Direct-acting antivirals (DAAs), which target hepatitis C virus (HCV) proteins, have exhibited impressive efficacy in the management of chronic hepatitis C. However, the concerns regarding high costs, drug resistance mutations and subsequent unexpected side effects still call for the development of host-targeting agents (HTAs) that target host factors involved in the viral life cycle and exhibit pan-genotypic antiviral activity. Given the close relationship between lipid metabolism and the HCV life cycle, we investigated the anti-HCV activity of a series of lipid-lowering drugs that have been approved by government administrations or proven safety in clinical trials. Our results showed that avasimibe, an inhibitor of acyl coenzyme A:cholesterol acyltransferase (ACAT), exhibited marked pan-genotypic inhibitory activity and superior inhibition against HCV when combined with DAAs. Moreover, avasimibe significantly impaired the assembly of infectious HCV virions. Mechanistic studies demonstrated that avasimibe induced downregulation of microsomal triglyceride transfer protein expression, resulting in reduced apolipoprotein E and apolipoprotein B secretion. Therefore, the pan-genotypic antiviral activity and clinically proven safety endow avasimibe exceptional potential as a candidate for combination therapy with DAAs. In addition, the discovery of the antiviral properties of ACAT inhibitors also suggests that inhibiting the synthesis of cholesteryl esters might be an additional target for the therapeutic intervention for chronic HCV infection.
Collapse
Affiliation(s)
- Longbo Hu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinqian Li
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hua Cai
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenxia Yao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-Ping Li
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Huimin Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
8
|
Cholesterol efflux capacity: An introduction for clinicians. Am Heart J 2016; 180:54-63. [PMID: 27659883 DOI: 10.1016/j.ahj.2016.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/07/2016] [Indexed: 12/28/2022]
Abstract
Epidemiologic studies have shown an inverse correlation between high-density lipoprotein (HDL) cholesterol (HDL-C) levels and cardiovascular disease outcomes. However, the hypothesis of a causal relationship between HDL-C and cardiovascular disease has been challenged by genetic and clinical studies. Serum cholesterol efflux capacity (CEC) is an important measure of HDL function in humans. Recent large clinical studies have shown a correlation between in vitro CEC and cardiovascular disease prevalence and incidence, which appears to be independent of HDL-C concentration. The present review summarizes recent large clinical studies and introduces important methodological considerations. Further studies are required to standardize and establish the reproducibility of this measure of HDL function and clarify whether modulating CEC will emerge as a useful therapeutic target.
Collapse
|
9
|
da Silva RF, Lappalainen J, Lee-Rueckert M, Kovanen PT. Conversion of human M-CSF macrophages into foam cells reduces their proinflammatory responses to classical M1-polarizing activation. Atherosclerosis 2016; 248:170-8. [DOI: 10.1016/j.atherosclerosis.2016.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/07/2016] [Accepted: 03/08/2016] [Indexed: 01/06/2023]
|
10
|
Maeda T, Takeuchi K, Xiaoling P, P Zankov D, Takashima N, Fujiyoshi A, Kadowaki T, Miura K, Ueshima H, Ogita H. Lipoprotein-associated phospholipase A2 regulates macrophage apoptosis via the Akt and caspase-7 pathways. J Atheroscler Thromb 2014; 21:839-53. [PMID: 24717759 DOI: 10.5551/jat.21386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Mutations in lipoprotein-associated phospholipase A2 (Lp-PLA2) are related to atherosclerosis. However, the molecular effects of Lp-PLA2 on atherosclerosis have not been fully investigated. Therefore, this study attempted to elucidate this issue. METHODS Monocytes were isolated from randomly selected healthy male volunteers according to each Lp-PLA2 genotype (wild-type Lp-PLA2 [Lp-PLA2 (V/V)], the heterozygous V279F mutation [LpPLA2 (V/F)] and the homozygous V279F mutation [Lp-PLA2 (F/F)]) and differentiated into macrophages. The level of apoptosis in the macrophages following incubation without serum was measured using the annexin V/propidium iodide double staining method, and the underlying mechanisms were further examined using a culture cell line. RESULTS The average plasma Lp-PLA2 concentration [Lp-PLA2 (V/V): 129.4 ng/mL, Lp-PLA2 (V/F): 70.7 ng/mL, Lp-PLA2 (F/F): 0.4 ng/mL] and activity [Lp-PLA2 (V/V): 164.3 nmol/min/mL, LpPLA2 (V/F): 100.9 nmol/min/mL, Lp-PLA2 (F/F): 11.6 nmol/min/mL] were significantly different between each genotype, although the basic clinical characteristics were similar. The percentage of apoptotic cells was significantly higher among the Lp-PLA2 (F/F) macrophages compared with that observed in the Lp-PLA2 (V/V) macrophages. This induction of apoptosis was independent of the actions of acetylated low-density lipoproteins. In addition, the transfection of the expression plasmid of V279F mutant Lp-PLA2 into Cos-7 cells or monocyte/macrophage-like U937 cells promoted apoptosis. The knockdown of Lp-PLA2 also increased the number of apoptotic cells. Among the cells expressing mutant Lp-PLA2, the caspase-7 activity was increased, while the activated Akt level was decreased. CONCLUSIONS The V279F mutation of Lp-PLA2 positively regulates the induction of apoptosis in macrophages and Cos-7 cells. An increase in the caspase-7 activity and a reduction in the activated Akt level are likely to be involved in this phenomenon.
Collapse
Affiliation(s)
- Toshinaga Maeda
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu W, Qin L, Yu H, Lv F, Wang Y. Apolipoprotein A-I and adenosine triphosphate-binding cassette transporter A1 expression alleviates lipid accumulation in hepatocytes. J Gastroenterol Hepatol 2014; 29:614-22. [PMID: 24219083 DOI: 10.1111/jgh.12430] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Abnormal lipid metabolism may contribute to the pathogenesis of non-alcoholic steatohepatitis. ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol and phospholipids from cells to high density lipoprotein apolipoproteins. The lipidation of apolipoprotein A-I (apoA-I) by ABCA1 is the rate-limiting step in reverse cholesterol transport and the generation of plasma high density lipoprotein. Here, we examined the effect of apoA-I or ABCA1 overexpression on hepatic lipid levels in BEL-7402 cells. METHODS Human ABCA1 or apoA-I was overexpressed in BEL-7402 hepatocytes by transfection and human apoA-I was overexpressed via adenoviral vector in C57BL/6J mice with MCD diet. RESULTS Overexpression of either apoA-I or ABCA1 resulted in an increase in cholesterol efflux and a decrease in cellular fatty acids and triglycerides. However, after repression of ABCA1 by its siRNA, overexpression of apoA-I failed to decrease both cellular fatty acids and triglycerides. ApoA-I or ABCA1 overexpression also resulted in a decrease in the expression of the endoplasmic reticulum stress-related proteins GRP78 and SREBP-1. Overexpression of apoA-I in mice also reduced hepatic lipid levels. CONCLUSIONS Expression of apoA-I or ABCA1 can reduce steatosis by decreasing lipid storage in hepatocytes through lipid transport and may also reduce endoplasmic reticulum stress, further lessening hepatic steatosis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
12
|
Chapuy-Regaud S, Subra C, Requena M, de Medina P, Amara S, Delton-Vandenbroucke I, Payre B, Cazabat M, Carriere F, Izopet J, Poirot M, Record M. Progesterone and a phospholipase inhibitor increase the endosomal bis(monoacylglycero)phosphate content and block HIV viral particle intercellular transmission. Biochimie 2013; 95:1677-88. [PMID: 23774297 DOI: 10.1016/j.biochi.2013.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
Progesterone, the cationic amphiphile U18666A and a phospholipase inhibitor (Methyl Arachidonyl Fluoro Phosphonate, MAFP) inhibited by 70%-90% HIV production in viral reservoir cells, i.e. human THP-1 monocytes and monocyte-derived macrophages (MDM). These compounds triggered an inhibition of fluid phase endocytosis (macropinocytosis) and modified cellular lipid homeostasis since endosomes accumulated filipin-stained sterols and Bis(Monoacylglycero)Phosphate (BMP). BMP was quantified using a new cytometry procedure and was increased by 1.25 times with MAFP, 1.7 times with U18666A and 2.5 times with progesterone. MAFP but not progesterone or U18666A inhibited the hydrolysis of BMP by the Pancreatic Lipase Related Protein 2 (PLRP2) as shown by in-vitro experiments. The possible role of sterol transporters in steroid-mediated BMP increase is discussed. Electron microscopy showed the accumulation of viral particles either into large intracellular viral-containing compartments or outside the cells, indicating that endosomal accumulation of BMP could block intracellular biogenesis of viral particles while inhibition of macropinocytosis would prevent viral particle uptake. This is the first report linking BMP metabolism with a natural steroid such as progesterone or with involvement of a phospholipase A1 activity. BMP cellular content could be used as a biomarker for efficient anti-viral drugs.
Collapse
Affiliation(s)
- Sabine Chapuy-Regaud
- INSERM, U1043, Equipe Infection virales: persistance, réponse de l'hôte et physiopathologie, Toulouse F-31300, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tuomainen AM, Hyvärinen K, Ehlers PI, Mervaala E, Leinonen M, Saikku P, Kovanen PT, Jauhiainen M, Pussinen PJ. The effect of proatherogenic microbes on macrophage cholesterol homeostasis in apoE-deficient mice. Microb Pathog 2011; 51:217-24. [PMID: 21421042 DOI: 10.1016/j.micpath.2011.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/11/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathogens such as Aggregatibacter actinomycetemcomitans (Aa) and Chlamydia pneumoniae (Cpn) associate with an increased risk for cardiovascular diseases by inducing inflammation. We hypothesized that the pathogens affect the vascular wall by disturbing cholesterol homeostasis and endothelial function. METHODS Aa- and Cpn-infections were induced in apoE-deficient mice by intravenous and intranasal applications, respectively. Cholesterol efflux from mouse peritoneal macrophages to apo(lipoprotein)A-I was assessed. The efflux capacity of mouse sera as acceptors of cholesterol from RAW264.7-macrophages was determined. Additionally, endothelial function was studied by following the relaxation capacity of rat mesenteric arteries after incubation in the conditioned culture media of the peritoneal macrophages isolated from the mice. RESULTS Infection increased serum phospholipid transfer protein (PLTP) and lipopolysaccharide (LPS) activity, as well as serum amyloid A (SAA) and TNF-α concentrations. Peritoneal macrophages of mice with Aa-infection showed increased cholesterol uptake and reduced cholesterol efflux. Sera of Cpn and Cpn + Aa-infected mice had reduced cholesterol efflux capacity from RAW264.7-macrophages. Conditioned macrophage medium from mice with chronic C. pneumoniae infection induced endothelial dysfunction. Additionally, concentrations of serum adhesion molecules, intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) in Cpn-groups and E-selectin in Cpn + Aa-group, were elevated. The serum markers of endothelial function correlated positively with SAA. CONCLUSIONS Aa- and Cpn-infections may generate proatherogenic changes in the vascular wall by affecting the macrophage cholesterol homeostasis and endothelial function.
Collapse
Affiliation(s)
- Anita M Tuomainen
- Institute of Dentistry, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee-Rueckert M, Lappalainen J, Leinonen H, Pihlajamaa T, Jauhiainen M, Kovanen PT. Acidic Extracellular Environments Strongly Impair ABCA1-Mediated Cholesterol Efflux From Human Macrophage Foam Cells. Arterioscler Thromb Vasc Biol 2010; 30:1766-72. [DOI: 10.1161/atvbaha.110.211276] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
In the deep microenvironments of advanced human atherosclerotic lesions, the intimal fluid becomes acidic. We examined the effect of an acidic extracellular pH on cholesterol removal (efflux) from primary human macrophages.
Methods and Results—
When cholesterol efflux from acetyl-low-density lipoprotein-loaded macrophages to various cholesterol acceptors was evaluated at pH 7.5, 6.5, or 5.5, the lower the pH the more was cholesterol efflux reduced. The reduction of efflux to lipid-free apolipoprotein A-I was stronger than to high-density lipoprotein
2
or to plasma. Cholesterol efflux to every acceptor was severely compromised also at neutral pH when the macrophages had been loaded with cholesterol at acidic pH, or when both loading and efflux were carried out at acidic pH. Compatible with these observations, the typical upregulation of ABCA1 and ABCG1 mRNA levels in macrophages loaded with cholesterol at neutral pH was rapidly attenuated in acidic medium. The secondary structure of apolipoprotein A-I did not changed over the pH range studied, supporting the notion that the inhibitory effect of acidic pH on cholesterol efflux rather impaired the ability of the foam cells to facilitate ABCA1-mediated cholesterol release. Secretion of apolipoprotein E from the foam cells was fully inhibited when the pH was 5.5, which further reduced cholesterol efflux.
Conclusion—
An acidic pH reduces cholesterol efflux via different pathways and particularly impairs the function of the ABCA1 transporter. The pH-sensitive function of human macrophage foam cells in releasing cholesterol may accelerate lipid accumulation in deep areas of advanced atherosclerotic plaques where the intimal fluid is acidic.
Collapse
Affiliation(s)
- Miriam Lee-Rueckert
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| | - Jani Lappalainen
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| | - Hannele Leinonen
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| | - Tero Pihlajamaa
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| | - Matti Jauhiainen
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| | - Petri T. Kovanen
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| |
Collapse
|
15
|
Netherland C, Thewke DP. Rimonabant is a dual inhibitor of acyl CoA:cholesterol acyltransferases 1 and 2. Biochem Biophys Res Commun 2010; 398:671-6. [PMID: 20609360 PMCID: PMC2918681 DOI: 10.1016/j.bbrc.2010.06.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 11/27/2022]
Abstract
Acyl coenzyme A:cholesterol acyltransferase (ACAT) catalyzes the intracellular synthesis of cholesteryl esters (CE). Both ACAT isoforms, ACAT1 and ACAT2, play key roles in the pathophysiology of atherosclerosis and ACAT inhibition retards atherosclerosis in animal models. Rimonabant, a type 1 cannabinoid receptor (CB1) antagonist, produces anti-atherosclerotic effects in humans and animals by mechanisms which are not completely understood. Rimonabant is structurally similar to two other cannabinoid receptor antagonists, AM251 and SR144528, recently identified as potent inhibitors of ACAT. Therefore, we examined the effects of Rimonabant on ACAT using both in vivo cell-based assays and in vitro cell-free assays. Rimonabant dose-dependently reduced ACAT activity in Raw 264.7 macrophages (IC(50)=2.9+/-0.38 microM) and isolated peritoneal macrophages. Rimonabant inhibited ACAT activity in intact CHO-ACAT1 and CHO-ACAT2 cells and in cell-free assays with approximately equal efficiency (IC(50)=1.5+/-1.2 microM and 2.2+/-1.1 microM for CHO-ACAT1 and CHO-ACAT2, respectively). Consistent with ACAT inhibition, Rimonabant treatment blocked ACAT-dependent processes in macrophages, oxysterol-induced apoptosis and acetylated-LDL induced foam cell formation. From these results we conclude that Rimonabant is an ACAT1/2 dual inhibitor and suggest that some of the atherosclerotic beneficial effects of Rimonabant are, at least partly, due to inhibition of ACAT.
Collapse
Affiliation(s)
- Courtney Netherland
- Department of Biochemistry and Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Douglas P. Thewke
- Department of Biochemistry and Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| |
Collapse
|
16
|
Yang Y, Jiang Y, Wang Y, An W. Suppression of ABCA1 by unsaturated fatty acids leads to lipid accumulation in HepG2 cells. Biochimie 2010; 92:958-63. [PMID: 20385201 DOI: 10.1016/j.biochi.2010.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022]
Abstract
Abnormal lipid metabolism may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol and phospholipids from cells to HDL apolipoproteins. We previously reported that unsaturated fatty acids destabilise ABCA1 in murine macrophages and ABCA1-transfected baby hamster kidney cells by increasing its protein degradation. Here, we examined the correlation between ABCA1 and hepatic lipids. In HepG2 cells, unsaturated but not saturated fatty acids suppressed ABCA1 protein levels by promoting its protein degradation. Over-expression of ABCA1 resulted in a decrease of cellular fatty acids and triglycerides, while repression by ABCA1 siRNA increased both cellular fatty acids and triglycerides. Rats with NASH also showed lower ABCA1 protein levels in liver cells, compared with that of the normal rats. These data indicate that steatosis is associated with a decrease in ABCA1 protein expression leading to an increase in lipid storage in hepatocytes. And it further suggests that this effect could be due to an excess of unsaturated fatty acids.
Collapse
Affiliation(s)
- Yanhong Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | | | | | | |
Collapse
|
17
|
Larrede S, Quinn CM, Jessup W, Frisdal E, Olivier M, Hsieh V, Kim MJ, Van Eck M, Couvert P, Carrie A, Giral P, Chapman MJ, Guerin M, Le Goff W. Stimulation of Cholesterol Efflux by LXR Agonists in Cholesterol-Loaded Human Macrophages Is ABCA1-Dependent but ABCG1-Independent. Arterioscler Thromb Vasc Biol 2009; 29:1930-6. [DOI: 10.1161/atvbaha.109.194548] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sandra Larrede
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Carmel M. Quinn
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Wendy Jessup
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Eric Frisdal
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Maryline Olivier
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Victar Hsieh
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Mi-Jurng Kim
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Miranda Van Eck
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Philippe Couvert
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Alain Carrie
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Philippe Giral
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - M. John Chapman
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Maryse Guerin
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| | - Wilfried Le Goff
- From INSERM, UMR S939 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), Paris, France; Université Pierre et Marie Curie–Paris6 (S.L., E.F., M.O., P.C., A.C., P.G., M.J.C., M.G., W.L.G.), UMR S939 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Biochimie Endocrinienne et Oncologique (P.C., A.C.) and Service d’Endocrinologie-Métabolisme (P.G.), Paris, France; the Centre for Vascular Research (C.M.Q., W.J., V.H., M.-J.K.), School of Medical Sciences, University of
| |
Collapse
|
18
|
Cignarella A. Animal and cellular models for hypolipidemic drugs. Expert Opin Drug Discov 2009; 4:61-9. [PMID: 23480337 DOI: 10.1517/17460440802624987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The development of effective and safe lipid-lowering agents should set out from and rely on robust preclinical investigation. OBJECTIVE To accomplish this aim, the selection of proper cellular and animal models is crucial. RESULTS Because lipid-lowering agents are ultimately supposed to reduce the atherosclerotic burden in the arterial wall, they need to tackle directly or indirectly the multifactorial nature of atherosclerotic disease. Hence, these drugs may essentially prevent triglyceride-rich lipoprotein assembly or enhance low-density lipoprotein (LDL) clearance through the LDL or related receptors in the liver. Established animal models such as the apolipoprotein E- and the LDL-receptor knockout mice are widely used to test drug actions on these pathways. A different approach is testing the ability of candidate drugs to increase plasma high-density lipoprotein (HDL) levels. More recently, the focus has shifted to drugs enhancing HDL function rather than just plasma HDL levels. This in turn requires in vitro and particularly in vivo models of reverse cholesterol transport, which have become available by now. CONCLUSION A positive outcome of preclinical studies is necessary but not sufficient for an investigational new drug to be eventually approved for clinical use.
Collapse
Affiliation(s)
- Andrea Cignarella
- University of Padova, Department of Pharmacology and Anaesthesiology, Largo Meneghetti 2, 35131 Padova, Italy +39 049 8275091 ; +39 049 8275093 ;
| |
Collapse
|
19
|
An S, Jang YS, Park JS, Kwon BM, Paik YK, Jeong TS. Inhibition of acyl-coenzyme A:cholesterol acyltransferase stimulates cholesterol efflux from macrophages and stimulates farnesoid X receptor in hepatocytes. Exp Mol Med 2008; 40:407-17. [PMID: 18779653 DOI: 10.3858/emm.2008.40.4.407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We investigated the mechanism of spontaneous cholesterol efflux induced by acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibition, and how an alteration of cholesterol metabolism in macrophages impacts on that in HepG2 cells. Oleic acid anilide (OAA), a known ACAT inhibitor reduced lipid storage substantially by promotion of cholesterol catabolism and repression of cholesteryl ester accumulation without further increase of cytotoxicity in acetylated low-density lipoprotein-loaded THP-1 macrophages. Analysis of expressed mRNA and protein revealed that cholesterol 7alpha-hydroxylase (CYP7A1), oxysterol 7alpha- hydroxylase (CYP7B1), and cholesterol 27-hydroxylase (CYP27) were highly induced by ACAT inhibition. The presence of a functional cytochrome P450 pathway was confirmed by quantification of the biliary cholesterol mass in cell monolayers and extracelluar medium. Notably, massively secreted biliary cholesterol from macrophages suppressed the expression of CYP7 proteins in a farnesoid X receptor (FXR)-dependent manner in HepG2 cells. The findings reported here provide new insight into mechanisms of spontaneous cholesterol efflux, and suggest that ACAT inhibition may stimulate cholesterol-catabolic (cytochrome P450) pathway in lesion-macrophages, in contrast, suppress it in hepatocyte via FXR induced by biliary cholesterol (BC).
Collapse
Affiliation(s)
- Sojin An
- National Research Laboratory of Lipid Metabolism and Atherosclerosis, KRIBB, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
20
|
α-Tocopherol disturbs macrophage LXRα regulation of ABCA1/G1 and cholesterol handling. Biochem Biophys Res Commun 2008; 369:868-72. [DOI: 10.1016/j.bbrc.2008.02.132] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 02/23/2008] [Indexed: 12/14/2022]
|
21
|
Buono C, Li Y, Waldo SW, Kruth HS. Liver X receptors inhibit human monocyte-derived macrophage foam cell formation by inhibiting fluid-phase pinocytosis of LDL. J Lipid Res 2007; 48:2411-8. [PMID: 17693624 DOI: 10.1194/jlr.m700170-jlr200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Liver X receptors (LXRs) are ligand-activated transcription factors involved in the control of lipid metabolism and inflammation. Several studies have recently shown that LXRs promote reverse cholesterol transport and inhibit atherosclerosis. Our study investigated whether LXRs affect macrophage uptake of LDL by human monocyte-derived macrophages. We have previously shown that human monocytes differentiated into macrophages with macrophage-colony-stimulating factor (M-CSF) constitutively take up large amounts of native LDL by receptor-independent, fluid-phase pinocytosis. In the research reported here, human monocytes were differentiated to macrophages in the presence of M-CSF with or without the LXR agonists T0901317 or 22(R)-hydroxycholesterol. Then, macrophages were incubated with native (125)I-LDL to determine LDL uptake. T0901317 and 22(R)-hydroxycholesterol inhibited (125)I-LDL uptake by 68 +/- 1% and 69 +/- 2%, respectively, and decreased pinocytotic vacuoles in the macrophages. (125)I-BSA uptake, a measure of fluid-phase pinocytosis, and (125)I-LDL uptake were the same, and T0901317 treatment inhibited uptake of both to the same degree. T0901317 did not affect receptor-mediated uptake of acetylated LDL, showing that the LXR effect is specific for fluid-phase pinocytosis of lipoproteins. Our results show that LXRs downregulate macrophage pinocytosis of LDL. The findings reveal an additional new mechanism by which LXR agonists may inhibit macrophage cholesterol accumulation and atherosclerosis, namely, by inhibiting macrophage uptake of LDL.
Collapse
Affiliation(s)
- Chiara Buono
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1422, USA
| | | | | | | |
Collapse
|
22
|
Schifferer R, Liebisch G, Bandulik S, Langmann T, Dada A, Schmitz G. ApoA-I induces a preferential efflux of monounsaturated phosphatidylcholine and medium chain sphingomyelin species from a cellular pool distinct from HDL(3) mediated phospholipid efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:853-63. [PMID: 17531529 DOI: 10.1016/j.bbalip.2007.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 04/16/2007] [Accepted: 04/19/2007] [Indexed: 11/30/2022]
Abstract
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used for a detailed analysis of cellular phospholipid and cholesterol efflux in free cholesterol (FC) loaded human primary fibroblasts and human monocyte-derived macrophages (HMDM) loaded with enzymatically modified LDL (E-LDL). Although both cell models differed significantly in their cellular lipid composition, a higher apoA-I specific efflux was found for monounsaturated phosphatidylcholine (PC) species together with a decreased contribution of polyunsaturated PC species in both cell types. Moreover, medium chain sphingomyelin (SPM) species SPM 14:0 and SPM 16:1 were translocated preferentially to apoA-I in both cell types. In contrast to fibroblasts, HMDM displayed a considerable proportion of cholesteryl esters (CE) in basal and apoA-I specific efflux media, most likely due to secretion of CE associated to apoE. Analysis of HDL(3) mediated lipid efflux from HMDM using D(9)-choline and (13)C(3)-FC stable isotope labeling revealed significantly different D(9)-PC and D(9)-SPM species pattern for apoA-I and HDL(3) specific efflux media, which indicates a contribution of distinct cellular phospholipid pools to apoA-I and HDL(3) mediated efflux. Together with a partial loading of fibroblasts and HMDM with HDL(3)-derived CE species, these data add further evidence for retroendocytosis of HDL. In summary, analysis of apoA-I/ABCA1 and HDL(3) mediated lipid efflux by ESI-MS/MS demonstrated a preferential efflux of monounsaturated PC and medium chain SPM to apoA-I. Moreover, this is the first study, which provides evidence for distinct cellular phospholipid pools used for lipid transfer to apoA-I and HDL(3) from the analysis of phospholipid species pattern in HMDM.
Collapse
Affiliation(s)
- Rainer Schifferer
- Institute of Clinical Chemistry, University of Regensburg, 93042 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
A hallmark of atherosclerotic cardiovascular disease (CVD) is the accumulation of cholesterol in arterial macrophages. Factors that modulate circulating and tissue cholesterol levels have major impacts on initiation, progression, and regression of CVD. Four members of the ATP-binding cassette (ABC) transporter family play important roles in this modulation. ABCA1 and ABCG1 export excess cellular cholesterol into the HDL pathway and reduce cholesterol accumulation in macrophages. ABCG5 and ABCG8 form heterodimers that limit absorption of dietary sterols in the intestine and promote cholesterol elimination from the body through hepatobiliary secretion. All 4 transporters are induced by the same sterol-sensing nuclear receptor system. ABCA1 expression and activity are also highly regulated posttranscriptionally by diverse processes. ABCA1 mutations can cause a severe HDL-deficiency syndrome characterized by cholesterol deposition in tissue macrophages and prevalent atherosclerosis. ABCG5 or ABCG8 mutations can cause sitosterolemia, in which patients accumulate cholesterol and plant sterols in the circulation and develop premature CVD. Disrupting Abca1 or Abcg1 in mice promotes accumulation of excess cholesterol in macrophages, and manipulating mouse macrophage ABCA1 expression affects atherogenesis. Overexpressing ABCG5 and ABCG8 in mice attenuates diet-induced atherosclerosis in association with reduced circulating and liver cholesterol. Metabolites elevated in individuals with the metabolic syndrome and diabetes destabilize ABCA1 protein and inhibit transcription of all 4 transporters. Thus, impaired ABC cholesterol transporters might contribute to the enhanced atherogenesis associated with common inflammatory and metabolic disorders. Their beneficial effects on cholesterol homeostasis have made these transporters important new therapeutic targets for preventing and reversing CVD.
Collapse
Affiliation(s)
- John F Oram
- Department of Medicine, Box 356426, University of Washington, Seattle, WA 98195-6426, USA.
| | | |
Collapse
|
24
|
Meuwese MC, Franssen R, Stroes ESG, Kastelein JJP. And then there were acyl coenzyme A:cholesterol acyl transferase inhibitors. Curr Opin Lipidol 2006; 17:426-30. [PMID: 16832167 DOI: 10.1097/01.mol.0000236369.50378.6e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The reputation of acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitors has changed profoundly from promising new drugs for cardiovascular prevention to drugs without clinical benefits or possibly even with adverse effects. RECENT FINDINGS ACAT inhibitors decrease the intracellular conversion of free cholesterol into cholesteryl ester in a number of tissues, including intestine, liver and macrophages. In contrast to promising results in experimental animal models, all subsequent clinical studies in humans with ACAT inhibitors failed to show lipid profile changes as well as reductions in surrogate markers for coronary artery disease. In fact, there was even a tendency towards an increase in atheroma burden in the most recent and well executed clinical trials. In addition, the inhibition of this pivotal enzyme in cholesterol esterification may interfere with reverse cholesterol transport. SUMMARY In our opinion, the consistent negative findings in recent clinical trials have virtually eliminated the chances for this class of drugs to be introduced for cardiovascular prevention. Possible strategies focused on selective ACAT 2 inhibition or the combination of ACAT inhibitors with compounds that stimulate reverse cholesterol transport may prove to have clinical benefit. This will have to await further clinical research in humans, however, as, obviously, rodent models cannot provide reliable data as to the efficacy of this class of drugs in humans.
Collapse
Affiliation(s)
- Marijn C Meuwese
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Guanosine effect on cholesterol efflux and apolipoprotein E expression in astrocytes. Purinergic Signal 2006; 2:637-49. [PMID: 18404467 PMCID: PMC2096658 DOI: 10.1007/s11302-006-9011-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 04/20/2006] [Indexed: 11/25/2022] Open
Abstract
The main source of cholesterol in the central nervous system (CNS) is represented by glial cells, mainly astrocytes, which also synthesise and secrete apolipoproteins, in particular apolipoprotein E (ApoE), the major apolipoprotein in the brain, thus generating cholesterol-rich high density lipoproteins (HDLs). This cholesterol trafficking, even though still poorly known, is considered to play a key role in different aspects of neuronal plasticity and in the stabilisation of synaptic transmission. Moreover, cell cholesterol depletion has recently been linked to a reduction in amyloid beta formation. Here we demonstrate that guanosine, which we previously reported to exert several neuroprotective effects, was able to increase cholesterol efflux from astrocytes and C6 rat glioma cells in the absence of exogenously added acceptors. In this effect the phosphoinositide 3 kinase/extracellular signal-regulated kinase 1/2 (PI3K/ERK1/2) pathway seems to play a pivotal role. Guanosine was also able to increase the expression of ApoE in astrocytes, whereas it did not modify the levels of ATP-binding cassette protein A1 (ABCA1), considered the main cholesterol transporter in the CNS. Given the emerging role of cholesterol balance in neuronal repair, these effects provide evidence for a role of guanosine as a potential pharmacological tool in the modulation of cholesterol homeostasis in the brain.
Collapse
|
26
|
Kobayashi A, Takanezawa Y, Hirata T, Shimizu Y, Misasa K, Kioka N, Arai H, Ueda K, Matsuo M. Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J Lipid Res 2006; 47:1791-802. [PMID: 16702602 DOI: 10.1194/jlr.m500546-jlr200] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesterol and phospholipids are essential to the body, but an excess of cholesterol or lipids is toxic and a risk factor for arteriosclerosis. ABCG1, one of the half-type ABC proteins, is thought to be involved in cholesterol homeostasis. To explore the role of ABCG1 in cholesterol homeostasis, we examined its subcellular localization and function. ABCG1 and ABCG1-K120M, a WalkerA lysine mutant, were localized to the plasma membrane in HEK293 cells stably expressing ABCG1 and formed a homodimer. A stable transformant expressing ABCG1 exhibited efflux of cholesterol and choline phospholipids in the presence of BSA, and the cholesterol efflux was enhanced by the presence of HDL, whereas cells expressing ABCG1-K120M did not, suggesting that ATP binding and/or hydrolysis is required for the efflux. Mass and TLC analyses revealed that ABCG1 and ABCA1 secrete several species of sphingomyelin (SM) and phosphatidylcholine (PC), and SMs were preferentially secreted by ABCG1, whereas PCs were preferentially secreted by ABCA1. These results suggest that ABCA1 and ABCG1 mediate the lipid efflux in different mechanisms, in which different species of phospholipids are secreted, and function coordinately in the removal of cholesterol and phospholipids from peripheral cells.
Collapse
Affiliation(s)
- Aya Kobayashi
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huang ZH, Fitzgerald ML, Mazzone T. Distinct Cellular Loci for the ABCA1-Dependent and ABCA1-Independent Lipid Efflux Mediated by Endogenous Apolipoprotein E Expression. Arterioscler Thromb Vasc Biol 2006; 26:157-62. [PMID: 16254198 DOI: 10.1161/01.atv.0000193627.12516.1d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Macrophage expression of both apolipoprotein E (apoE) and ABCA1 have been shown to modulate lipid efflux from these cells and to play an important atheroprotective role in vivo. We evaluated the relationship between apoE and ABCA1 for regulating cellular sterol efflux. METHODS AND RESULTS ApoE-mediated, but ABCA1-independent, lipid efflux was demonstrated in 3 model systems. First, adenoviral-mediated expression of apoE in dermal fibroblasts isolated from ABCA1(-/-) mice significantly increased both sterol and phospholipid efflux. Second, expression of human apoE in a macrophage cell line increased sterol efflux, and this increment in efflux was not reduced by suppressing ABCA1 expression. Third, reduction of apoE expression using an apoE small interfering RNA significantly reduced sterol efflux from ABCA1(-/-) mouse peritoneal macrophages. ApoE-mediated, but ABCA1-independent, lipid efflux could be differentiated from lipid efflux that was dependent on the extracellular accumulation of secreted apoE, because exogenous cell-derived apoE stimulated efflux only from cells expressing ABCA1. Sterol efflux was usually highest in cells expressing both ABCA1 and apoE, likely representing a summation of the ABCA1-dependent and -independent pathways for apoE-mediated sterol efflux. CONCLUSIONS ABCA1 expression is required for apoE-mediated efflux when endogenously synthesized apoE accumulates extracellularly. Our results, however, establish the existence of an ABCA1-independent pathway for lipid efflux that requires the intracellular synthesis and/or transport of apoE.
Collapse
Affiliation(s)
- Zhi H Huang
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | |
Collapse
|
28
|
Rigamonti E, Helin L, Lestavel S, Mutka AL, Lepore M, Fontaine C, Bouhlel MA, Bultel S, Fruchart JC, Ikonen E, Clavey V, Staels B, Chinetti-Gbaguidi G. Liver X Receptor Activation Controls Intracellular Cholesterol Trafficking and Esterification in Human Macrophages. Circ Res 2005; 97:682-9. [PMID: 16141411 DOI: 10.1161/01.res.0000184678.43488.9f] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liver X receptors (LXRs) are nuclear receptors that regulate macrophage cholesterol efflux by inducing ATP-binding cassette transporter A1 (ABCA1) and ABCG1/ABCG4 gene expression. The Niemann-Pick C (NPC) proteins NPC1 and NPC2 are located in the late endosome, where they control cholesterol trafficking to the plasma membrane. The mobilization of cholesterol from intracellular pools to the plasma membrane is a determinant governing its availability for efflux to extracellular acceptors. Here we investigated the influence of LXR activation on intracellular cholesterol trafficking in primary human macrophages. Synthetic LXR activators increase the amount of free cholesterol in the plasma membrane by inducing NPC1 and NPC2 gene expression. Moreover, ABCA1-dependent cholesterol efflux induced by LXR activators was drastically decreased in the presence of progesterone, which blocks postlysosomal cholesterol trafficking, and reduced when NPC1 and NPC2 mRNA expression was depleted using small interfering RNA. The stimulation of cholesterol mobilization to the plasma membrane by LXRs led to a decrease in cholesteryl ester formation and Acyl-coenzyme A cholesterol acyltransferase-1 activity. These data indicate that LXR activation enhances cholesterol trafficking to the plasma membrane, where it becomes available for efflux, at the expense of esterification, thus contributing to the overall effects of LXR agonists in the control of macrophage cholesterol homeostasis.
Collapse
Affiliation(s)
- E Rigamonti
- UR 545 Inserm, Institut Pasteur de Lille and Université de Lille 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|