1
|
Rho-kinase and the nitric oxide pathway modulate basilar arterial reactivity to acetylcholine and angiotensin II in streptozotocin-induced diabetic mice. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:929-938. [DOI: 10.1007/s00210-017-1396-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/16/2017] [Indexed: 12/11/2022]
|
2
|
Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology (Bethesda) 2017; 32:126-140. [PMID: 28202623 PMCID: PMC5337830 DOI: 10.1152/physiol.00031.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of endothelial cell (EC) metabolism and its regulatory role in the angiogenic behavior of ECs during vessel formation and in the function of different EC subtypes determined by different vascular beds has been recognized only in the last few years. Even more importantly, apart from a role of nitric oxide and reactive oxygen species in EC dysfunction, deregulations of EC metabolism in disease only recently received increasing attention. Although comprehensive metabolic characterization of ECs still needs further investigation, the concept of targeting EC metabolism to treat vascular disease is emerging. In this overview, we summarize EC-specific metabolic pathways, describe the current knowledge on their deregulation in vascular diseases, and give an outlook on how vascular endothelial metabolism can serve as a target to normalize deregulated endothelium.
Collapse
Affiliation(s)
- Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Targeting endothelial metabolism for anti-angiogenesis therapy: A pharmacological perspective. Vascul Pharmacol 2017; 90:8-18. [DOI: 10.1016/j.vph.2017.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 12/19/2022]
|
4
|
Ganoderma atrum polysaccharide improves aortic relaxation in diabetic rats via PI3K/Akt pathway. Carbohydr Polym 2014; 103:520-7. [DOI: 10.1016/j.carbpol.2013.12.080] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/19/2013] [Accepted: 12/28/2013] [Indexed: 11/18/2022]
|
5
|
Horáková L, Strosova MK, Spickett CM, Blaskovic D. Impairment of calcium ATPases by high glucose and potential pharmacological protection. Free Radic Res 2013; 47 Suppl 1:81-92. [PMID: 23710650 DOI: 10.3109/10715762.2013.807923] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The review deals with impairment of Ca(2+)-ATPases by high glucose or its derivatives in vitro, as well as in human diabetes and experimental animal models. Acute increases in glucose level strongly correlate with oxidative stress. Dysfunction of Ca(2+)-ATPases in diabetic and in some cases even in nondiabetic conditions may result in nitration of and in irreversible modification of cysteine-674. Nonenyzmatic protein glycation might lead to alteration of Ca(2+)-ATPase structure and function contributing to Ca(2+) imbalance and thus may be involved in development of chronic complications of diabetes. The susceptibility to glycation is probably due to the relatively high percentage of lysine and arginine residues at the ATP binding and phosphorylation domains. Reversible glycation may develop into irreversible modifications (advanced glycation end products, AGEs). Sites of SERCA AGEs are depicted in this review. Finally, several mechanisms of prevention of Ca(2+)-pump glycation, and their advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- L Horáková
- Institute of Experimental Pharmacology and Toxicology, SAS, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
6
|
Involvement of CaM kinase II in the impairment of endothelial function and eNOS activity in aortas of Type 2 diabetic rats. Clin Sci (Lond) 2012; 123:375-86. [PMID: 22494112 DOI: 10.1042/cs20110621] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the present sutdy, we have examined the relationship between the CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) pathway and endothelial dysfunction in aortas from GK (Goto-Kakizaki) Type 2 diabetic rats. The ACh (acetylcholine)-induced relaxation and NO production were each attenuated in diabetic aortas (compared with those from age-matched control rats). ACh-stimulated Ser(1177)-eNOS (endothelial NO synthase) phosphorylation was significantly decreased in diabetic aortas (compared with their controls). ACh markedly increased the CaMKII phosphorylation level within endothelial cells only in control aortas (as assessed by immunohistochemistry and Western blotting). ACh-stimulated Thr(286)-CaMKII phosphorylation within endothelial cells was significantly decreased in diabetic aortas (compared with their controls). The ACh-induced relaxations, NO production, eNOS phosphorylation, and CaMKII phosphorylation were inhibited by KN93 and/or by lavendustin C (inhibitors of CaMKII) in control aortas, but not in diabetic ones. Pre-incubation of aortic strips with a PP (protein phosphatase)-1 inhibitor, PPI2 (protein phosphatase inhibitor 2), or with a PP2A inhibitor, CA (cantharidic acid), corrected the above abnormalities in diabetic aortas. The expression of PP2A type A subunit was increased in diabetic aortas. The ACh-stimulated Thr(320)-phosphorylation level of PP1α was lower in diabetic aortas than in their controls, but the total PP1α protein level was not different. These results suggest that the aortic relaxation responses, NO production, and eNOS activity mediated by CaMKII phosphorylation are decreased in this Type 2 diabetic model, and that these impairments of CaMKII signalling may be, at least in part, due to enhancements of PP1α activity and PP2A expression.
Collapse
|
7
|
Nemoto S, Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Aminoguanidine normalizes ET-1-induced aortic contraction in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats by suppressing Jab1-mediated increase in ET(A)-receptor expression. Peptides 2012; 33:109-19. [PMID: 22154739 DOI: 10.1016/j.peptides.2011.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 01/08/2023]
Abstract
Circulating levels of endothelin (ET)-1 are increased in the diabetic state, as is endogenous ET(A)-receptor-mediated vasoconstriction. However, the responsible mechanisms remain unknown. We hypothesized that ET-1-induced vasoconstriction is augmented in type 2 diabetes with hyperglycemia through an increment in advanced glycation end-products (AGEs). So, we investigated whether treatment with aminoguanidine (AG), an inhibitor of AGEs, would normalize the ET-1-induced contraction induced by ET-1 in strips of thoracic aortas isolated from OLETF rats at the chronic stage of diabetes. In such aortas (vs. those from age-matched genetic control LETO rats): (1) the ET-1-induced contraction was enhanced, (2) the levels of HIF1α/ECE1/plasma ET-1 and plasma CML-AGEs were increased, (3) the ET-1-stimulated ERK phosphorylation mediated by ET(A)-R was increased, (4) the expression level of Jab1-modified ET(A)-R protein was reduced, and (5) the expression level of O-GlcNAcylated ET(A)-R protein was increased. Aortas isolated from such OLETF rats that had been treated with AG (50mg/kg/day for 10 weeks) exhibited reduced ET-1-induced contraction, suppressed ET-1-stimulated ERK phosphorylation accompanied by down-regulation of ET(A)-R, and increased modification of ET(A)-R by Jab1. Such AG-treated rats exhibited normalized plasma ET-1 and CML-AGE levels, and their aortas exhibited decreased HIF1α/ECE1 expression. However, such AG treatment did not alter the elevated levels of plasma glucose or insulin, or systolic blood pressure seen in OLETF rats. These data from the OLETF model suggest that within the timescale studied here, AG normalizes ET-1-induced aortic contraction by suppressing ET(A)-R/ERK activities and/or by normalizing the imbalance between Jab1 and O-GlcNAc in type 2 diabetes.
Collapse
Affiliation(s)
- Shingo Nemoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
8
|
Edgley AJ, Tare M, Evans RG, Skordilis C, Parkington HC. In vivo regulation of endothelium-dependent vasodilation in the rat renal circulation and the effect of streptozotocin-induced diabetes. Am J Physiol Regul Integr Comp Physiol 2008; 295:R829-39. [DOI: 10.1152/ajpregu.00861.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We assessed the relative contributions of endothelium-derived relaxing factors to renal vasodilation in vivo and determined whether these are altered in established streptozotocin-induced diabetes. In nondiabetic rats, stimulation of the endothelium by locally administered ACh or bradykinin-induced transient renal hyperemia. Neither basal renal blood flow (RBF) nor renal hyperemic responses to ACh or bradykinin were altered by blockade of prostanoid production (indomethacin) or by administration of charybdotoxin (ChTx) plus apamin to block endothelium-derived hyperpolarizing factor (EDHF). In contrast, combined blockade of nitric oxide (NO) synthase, Nω-nitro-l-arginine methyl ester (l-NAME), and prostanoid production reduced basal RBF and the duration of the hyperemic responses to ACh and bradykinin and revealed a delayed ischemic response to ACh. Accordingly, l-NAME and indomethacin markedly reduced integrated (area under the curve) hyperemic responses to ACh and bradykinin. Peak increases in RBF in response to ACh and bradykinin were not reduced by l-NAME and indomethacin but were reduced by subsequent blockade of EDHF. l-NAME plus indomethacin and ChTx plus apamin altered RBF responses to endothelium stimulation in a qualitatively similar fashion in diabetic and nondiabetic rats. The integrated renal hyperemic responses to ACh and bradykinin were blunted in diabetes, due to a diminished contribution of the component abolished by l-NAME plus indomethacin. We conclude that NO dominates integrated hyperemic responses to ACh and bradykinin in the rat kidney in vivo. After prior inhibition of NO synthase, EDHF mediates transient renal vasodilation in vivo. Renal endothelium-dependent vasodilation is diminished in diabetes due to impaired NO function.
Collapse
|
9
|
KOBAYASHI T. Possible Involvement of Insulin and Oxidative Stress in Vascular Dysfunction of Diabetic Mellitus. YAKUGAKU ZASSHI 2008; 128:1013-21. [DOI: 10.1248/yakushi.128.1013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tsuneo KOBAYASHI
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
10
|
Kamata K, Ozawa Y, Kobayashi T, Matsumoto T. Effect of long-term streptozotocin-induced diabetes on coronary vasoconstriction in isolated perfused rat heart. J Smooth Muscle Res 2008; 44:177-88. [DOI: 10.1540/jsmr.44.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Yuta Ozawa
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
11
|
Choudhary BP, Antoniades C, Brading AF, Galione A, Channon K, Taggart DP. Diabetes mellitus as a predictor for radial artery vasoreactivity in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol 2007; 50:1047-53. [PMID: 17825713 DOI: 10.1016/j.jacc.2007.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/02/2007] [Accepted: 06/03/2007] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Our purpose was to examine the impact of diabetes mellitus (DM) on vasoreactivity and endothelial function of radial artery (RA) grafts ex vivo. BACKGROUND The arteriopathy associated with DM may influence the surgeon's choice of conduits for revascularization. Arterial conduits and especially the RA are prone to vasospasm in the perioperative period. METHODS The study population consisted of 98 patients with coronary artery disease undergoing coronary artery bypass grafting by using RA grafts. The maximum contractions of RA segments induced by K+ (66 mmol/l) and clinically important vasoconstrictors such as adrenaline (5 x 10(-5) mol/l), angiotensin II (10(-6) mol/l), and prostaglandin F2alpha (PGF2alpha) (10(-6) mol/l) were recorded. Relaxation of RA rings to carbachol (10(-4) mol/l) was used as a measure of endothelial function. Multivariate analysis was then applied to determine the role of clinical characteristics on the vasomotor responses to these agents. RESULTS Vessels from patients with DM had greater contractions in response to adrenaline (p < 0.05), angiotensin (p < 0.05), and PGF2alpha (p < 0.01) compared with non-DM vessels, despite the similar vasoconstrictions induced by high K+ (p = NS). Diabetes mellitus was also associated with smaller vasorelaxations in response to carbachol (p < 0.001). In multivariate analysis, DM was an independent predictor of RA contractions in response to adrenaline (beta [SE] 3.085 [1.410], p = 0.031), angiotensin II (beta [SE] 3.838 [1.552], p = 0.015), and PGF2alpha (beta [SE] 4.609 [1.908], p = 0.018) but not K+ (p = NS). Diabetes mellitus was also independently associated with the vasorelaxations in response to carbachol (beta [SE] -15.645 [2.622], p = 0.0001). CONCLUSIONS Diabetes mellitus is associated with impaired endothelial function and greater contractions of RA grafts in response to all of the clinically relevant vasoconstrictors. These findings suggest that the RA of diabetic patients may be more prone to spasm in response to endogenous vasoconstrictors, an observation with important implications for surgeons' choice of conduits in this cohort of patients.
Collapse
Affiliation(s)
- Bikram P Choudhary
- Department of Cardiothoracic Surgery, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Kobayashi T, Taguchi K, Takenouchi Y, Matsumoto T, Kamata K. Insulin-induced impairment via peroxynitrite production of endothelium-dependent relaxation and sarco/endoplasmic reticulum Ca(2+)-ATPase function in aortas from diabetic rats. Free Radic Biol Med 2007; 43:431-43. [PMID: 17602959 DOI: 10.1016/j.freeradbiomed.2007.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 03/06/2007] [Accepted: 04/23/2007] [Indexed: 12/01/2022]
Abstract
We designed this study to determine whether a high insulin level and a diabetic state need to exist together to cause an impairment of endothelium-dependent relaxation. In diabetic rat aortas organ-cultured with insulin [vs both control rat aortas cultured with insulin and diabetic rat aortas cultured in serum-free medium]: (1) the relaxation responses to both acetylcholine (endothelium-dependent relaxation) and Angeli's salt (nitric oxide donor) were significantly weaker, (2) acetylcholine-stimulated nitric oxide production was significantly smaller, (3) superoxide and nitric oxide production into the culture medium was greater, and (4) the levels of both nitrotyrosine and tyrosine-nitrated sarco/endoplasmic reticulum calcium ATPase (SERCA) protein were greater. The insulin-induced effects were prevented by cotreatment with either a superoxide scavenger or a peroxynitrite scavenger. After preincubation with an irreversible SERCA inhibitor, the relaxation induced by the nitric oxide donor was significantly impaired in control aortas cultured with or without insulin and in diabetic aortas cultured without insulin, but not in diabetic aortas cultured with insulin. These results suggest that the coexistence of a high insulin level and an established diabetic state may lead to an excessive generation of peroxynitrite, and that this may in turn trigger an impairment of endothelium-dependent relaxation via a decrease in SERCA function.
Collapse
Affiliation(s)
- Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
13
|
Kamata K, Hosokawa M, Matsumoto T, Kobayashi T. Altered arachidonic acid-mediated responses in the perfused kidney of the streptozotocin-induced diabetic rat. J Smooth Muscle Res 2006; 42:171-87. [PMID: 17159333 DOI: 10.1540/jsmr.42.171] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using perfused kidneys isolated from age-matched controls and streptozotocin (STZ)-induced diabetic rats, we investigated the effects of arachidonic acid (AA) on perfusion pressure in the presence of methoxamine. AA elicited a transient contraction followed by a sustained relaxation in each group. The amplitude of contraction was smaller in the diabetic group than in the control group, whereas the amplitude of the sustained relaxation was greater in the former than in the latter group. In the diabetic group, the AA-induced sustained relaxation was completely inhibited by indomethacin [cyclooxygenase (COX) inhibitor], SKF525A [cytochrome P450 (CYP450) inhibitor], or clotrimazole (epoxygenase inhibitor), but not by furegrelate [thromboxane A(2) (TXA(2))-synthase inhibitor], SQ29548 (TXA(2)-receptor antagonist), or baicalein [lipoxygenase (LOX) inhibitor]. In the diabetic kidney, more-or-less additive inhibitions of the AA-induced relaxation were seen when indomethacin was given with either SKF525A or clotrimazole. These results suggest that in the STZ-induced diabetic perfused kidney, vasorelaxant metabolites derived from AA (probably COX and/or CYP450 metabolites) are increased, and may serve to regulate vascular tone.
Collapse
Affiliation(s)
- Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan.
| | | | | | | |
Collapse
|
14
|
Kobayashi T, Matsumoto T, Kamata K. The PI3-K/Akt pathway: roles related to alterations in vasomotor responses in diabetic models. J Smooth Muscle Res 2005; 41:283-302. [PMID: 16557003 DOI: 10.1540/jsmr.41.283] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Macro- and microvascular disease states currently represent the principal causes of morbidity and mortality in patients with type I or type II diabetes mellitus. Abnormal vasomotor responses and impaired endothelium-dependent vasodilation have been demonstrated in various beds in different animal models of diabetes and in humans with type I or type II diabetes. Several mechanisms leading to endothelial dysfunction have been reported, including changes in substrate avail ability, impaired release of NO, and increased destruction of NO. The principal mediators of diabetes-associated endothelial dysfunction are (a) increases in oxidized low density lipoprotein, endothelin-1, angiotensin II, oxidative stress, and (b) decreases in the actions of insulin or growth factors in endothelial cells. An accumulating body of evidence indicates that abnormal regulation of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway may be one of several factors contributing to vascular dysfunction in diabetes. The PI3-K pathway, which activates serine/threonine protein kinase Akt, enhances NO synthase phosphorylation and NO production. Several studies suggest that in diabetes the relative ineffectiveness of insulin and the hyperglycemia act together to reduce activity in the insulin-receptor substrates (IRS)/PI3-K/Akt pathway, resulting in impairments of both IRS/PI3-K/Akt-mediated endothelial function and NO production. This article summarizes the PI3-K/Akt pathway-mediated contraction and relaxation responses induced by various agents in the blood vessels of diabetic animals.
Collapse
Affiliation(s)
- Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan.
| | | | | |
Collapse
|