1
|
More S, Priyaa GH. Antioxidant, anti-proliferative, and anti-atherosclerotic effect of phytochemicals isolated from Trachyspermum ammi with honey in RAW 264.7 and THP-1 cells. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_436_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
2
|
Ahmadi A, Panahi Y, Johnston TP, Sahebkar A. Antidiabetic drugs and oxidized low-density lipoprotein: A review of anti-atherosclerotic mechanisms. Pharmacol Res 2021; 172:105819. [PMID: 34400317 DOI: 10.1016/j.phrs.2021.105819] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is one of the leading causes of mortality globally. Atherosclerosis is an important step towards different types of cardiovascular disease. The role of oxidized low-density lipoprotein (oxLDL) in the initiation and progression of atherosclerosis has been thoroughly investigated in recent years. Moreover, clinical trials have established that diabetic patients are at a greater risk of developing atherosclerotic plaques. Hence, we aimed to review the clinical and experimental impacts of various classes of antidiabetic drugs on the circulating levels of oxLDL. Metformin, pioglitazone, and dipeptidyl peptidase-4 inhibitors were clinically associated with a suppressive effect on oxLDL in patients with impaired glucose tolerance. However, there is an insufficient number of studies that have clinically evaluated the relationship between oxLDL and newer agents such as agonists of glucagon-like peptide 1 receptor or inhibitors of sodium-glucose transport protein 2. Next, we attempted to explore the multitude of mechanisms that antidiabetic agents exert to counter the undesirable effects of oxLDL in macrophages, endothelial cells, and vascular smooth muscle cells. In general, antidiabetic drugs decrease the uptake of oxLDL by vascular cells and reduce subsequent inflammatory signaling, which prevents macrophage adhesion and infiltration. Moreover, these agents suppress the oxLDL-induced transformation of macrophages into foam cells by either inhibiting oxLDL entrance, or by facilitating its efflux. Thus, the anti-inflammatory, anti-oxidant, and anti-apoptotic properties of antidiabetic agents abrogate changes induced by oxLDL, which can be extremely beneficial in controlling atherosclerosis in diabetic patients.
Collapse
Affiliation(s)
- Ali Ahmadi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Asutralia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948567, Iran.
| |
Collapse
|
3
|
Tripolino C, Ciaffi J, Pucino V, Ruscitti P, van Leeuwen N, Borghi C, Giacomelli R, Meliconi R, Ursini F. Insulin Signaling in Arthritis. Front Immunol 2021; 12:672519. [PMID: 33995414 PMCID: PMC8119635 DOI: 10.3389/fimmu.2021.672519] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammatory arthritis is burdened by an increased risk of metabolic disorders. Cytokines and other mediators in inflammatory diseases lead to insulin resistance, diabetes and hyperlipidemia. Accumulating evidence in the field of immunometabolism suggests that the cause-effect relationship between arthritis and metabolic abnormalities might be bidirectional. Indeed, the immune response can be modulated by various factors such as environmental agents, bacterial products and hormones. Insulin is produced by pancreatic cells and regulates glucose, fat metabolism and cell growth. The action of insulin is mediated through the insulin receptor (IR), localized on the cellular membrane of hepatocytes, myocytes and adipocytes but also on the surface of T cells, macrophages, and dendritic cells. In murine models, the absence of IR in T-cells coincided with reduced cytokine production, proliferation, and migration. In macrophages, defective insulin signaling resulted in enhanced glycolysis affecting the responses to pathogens. In this review, we focalize on the bidirectional cause-effect relationship between impaired insulin signaling and arthritis analyzing how insulin signaling may be involved in the aberrant immune response implicated in arthritis and how inflammatory mediators affect insulin signaling. Finally, the effect of glucose-lowering agents on arthritis was summarized.
Collapse
Affiliation(s)
- Cesare Tripolino
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy
| | - Jacopo Ciaffi
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy
| | - Valentina Pucino
- Institute of Inflammation and Ageing, University of Birmingham and Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nina van Leeuwen
- Rheumatology Department, Leiden University Medical Center, Leiden, Netherlands
| | - Claudio Borghi
- Unità Operativa Medicina Interna Cardiovascolare-IRCCS Azienda Ospedaliera-Universitaria, Bologna, Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome "Campus Biomedico", Rome, Italy
| | - Riccardo Meliconi
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesco Ursini
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Song J, Yang S, Yin R, Xiao Q, Ma A, Pan X. MicroRNA-181a regulates the activation of the NLRP3 inflammatory pathway by targeting MEK1 in THP-1 macrophages stimulated by ox-LDL. J Cell Biochem 2019; 120:13640-13650. [PMID: 30938884 DOI: 10.1002/jcb.28637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that is characterized by the deposition of lipids in the vascular wall and the formation of foam cells. Macrophages play a critical role in the development of this chronic inflammation. An increasing amount of research shows that microRNAs affect many steps of inflammation. The goal of our study was to investigate the regulatory effect of miR-181a on the NLRP3 inflammasome pathway and explore its possible mechanism. Compared with the control group, the expression of miR-181a was downregulated in the carotid tissue of AS group mice, while the expression of MEK1 and NLRP3-related proteins was upregulated significantly. In vitro, when THP-1 macrophages were stimulated with oxidized low-density lipoprotein (ox-LDL), the expression of miR-181a was decreased, the MEK/ERK/NF-κB inflammatory pathways were activated and the expression of NLRP3 inflammasome-related proteins was upregulated. Exogenous overexpression of miR-181a downregulated the activation of the MEK/ERK/NF-κB pathway and decreased the expression of NLRP3 inflammasome-related proteins (such as NLRP3, caspase-1, interleukin-18 [IL-18], IL-1β, etc). Exogenous miR-181a knockdown showed the opposite results to those of overexpression group. A luciferase reporter assay proved that miR-181a inhibited the expression of MEK1 by binding to its 3'-untranslated region. When we knocked down miR-181a and then treated cells with U0126 before ox-LDL stimulation, we found that U0126 reversed the increased activation of the MEK/ERK/NF-κB pathway and upregulation of NLRP3 inflammasome-related proteins (NLRP3, caspase-1, IL-18, IL-1β) that resulted from miR-181a knockdown. Our study suggests that miR-181a regulates the activation of the NLRP3 inflammatory pathway by altering the activity of the MEK/ERK/NF-κB pathway via targeting of MEK1.
Collapse
Affiliation(s)
- Jinyang Song
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Aijun Ma
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Murakami-Nishida S, Matsumura T, Senokuchi T, Ishii N, Kinoshita H, Yamada S, Morita Y, Nishida S, Motoshima H, Kondo T, Komohara Y, Araki E. Pioglitazone suppresses macrophage proliferation in apolipoprotein-E deficient mice by activating PPARγ. Atherosclerosis 2019; 286:30-39. [PMID: 31096071 DOI: 10.1016/j.atherosclerosis.2019.04.229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Local macrophage proliferation is linked to enhanced atherosclerosis progression. Our previous study found that troglitazone, a thiazolidinedione (TZD), suppressed oxidized low-density lipoprotein (Ox-LDL)-induced macrophage proliferation. However, its effects and mechanisms are unclear. Therefore, we investigated the effects of pioglitazone, another TZD, on macrophage proliferation. METHODS Normal chow (NC)- or high-fat diet (HFD)-fed apolipoprotein E-deficient (Apoe-/-) mice were treated orally with pioglitazone (10 mg/kg/day) or vehicle (water) as a control. Mouse peritoneal macrophages were used in in vitro assays. RESULTS Atherosclerosis progression was suppressed in aortic sinuses of pioglitazone-treated Apoe-/- mice, which showed fewer proliferating macrophages in plaques. Pioglitazone suppressed Ox-LDL-induced macrophage proliferation in a dose-dependent manner. However, treatment with peroxisome proliferator-activated receptor-γ (PPARγ) siRNA ameliorated pioglitazone-induced suppression of macrophage proliferation. Low concentrations (less than 100 μmol/L) of pioglitazone, which can suppress macrophage proliferation, activated PPARγ in macrophages, but did not induce macrophage apoptosis. Pioglitazone treatment did not induce TUNEL-positive cells in atherosclerotic plaques of aortic sinuses in Apoe-/- mice. CONCLUSIONS Pioglitazone suppressed macrophage proliferation through PPARγ without inducing macrophage apoptosis. These findings imply that pioglitazone could prevent macrovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saiko Murakami-Nishida
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Takafumi Senokuchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Norio Ishii
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Kinoshita
- Department of Diabetes and Endocrinology, National Hospital Organization, Kumamoto Medical Center, Kumamoto, Japan
| | - Sarie Yamada
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaro Morita
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuhei Nishida
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Yamada S, Senokuchi T, Matsumura T, Morita Y, Ishii N, Fukuda K, Murakami-Nishida S, Nishida S, Kawasaki S, Motoshima H, Furukawa N, Komohara Y, Fujiwara Y, Koga T, Yamagata K, Takeya M, Araki E. Inhibition of Local Macrophage Growth Ameliorates Focal Inflammation and Suppresses Atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38:994-1006. [PMID: 29496659 DOI: 10.1161/atvbaha.117.310320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/18/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Macrophages play a central role in various stages of atherosclerotic plaque formation and progression. The local macrophages reportedly proliferate during atherosclerosis, but the pathophysiological significance of macrophage proliferation in this context remains unclear. Here, we investigated the involvement of local macrophage proliferation during atherosclerosis formation and progression using transgenic mice, in which macrophage proliferation was specifically suppressed. APPROACH AND RESULTS Inhibition of macrophage proliferation was achieved by inducing the expression of cyclin-dependent kinase inhibitor 1B, also known as p27kip, under the regulation of a scavenger receptor promoter/enhancer. The macrophage-specific human p27kip Tg mice were subsequently crossed with apolipoprotein E-deficient mice for the atherosclerotic plaque study. Results showed that a reduced number of local macrophages resulted in marked suppression of atherosclerotic plaque formation and inflammatory response in the plaque. Moreover, fewer local macrophages in macrophage-specific human p27kip Tg mice helped stabilize the plaque, as evidenced by a reduced necrotic core area, increased collagenous extracellular matrix, and thickened fibrous cap. CONCLUSIONS These results provide direct evidence of the involvement of local macrophage proliferation in formation and progression of atherosclerotic plaques and plaque stability. Thus, control of macrophage proliferation might represent a therapeutic target for treating atherosclerotic diseases.
Collapse
Affiliation(s)
- Sarie Yamada
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Takafumi Senokuchi
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Takeshi Matsumura
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Yutaro Morita
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Norio Ishii
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Kazuki Fukuda
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Saiko Murakami-Nishida
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Shuhei Nishida
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Shuji Kawasaki
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Hiroyuki Motoshima
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Noboru Furukawa
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | | | | | - Tomoaki Koga
- Department of Medical Cell Biology (T.K.), Faculty of Life Sciences, Kumamoto University, Japan
| | | | | | - Eiichi Araki
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| |
Collapse
|
7
|
Matsumura T, Taketa K, Shimoda S, Araki E. Thiazolidinedione-independent activation of peroxisome proliferator-activated receptor γ is a potential target for diabetic macrovascular complications. J Diabetes Investig 2014; 3:11-23. [PMID: 24843540 PMCID: PMC4014927 DOI: 10.1111/j.2040-1124.2011.00182.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Macrovascular complications are responsible for the high morbidity and mortality in patients with diabetes. Peroxisome proliferator‐activated receptor γ (PPARγ) plays a central role in the process of adipocyte differentiation and insulin sensitization, and also possesses anti‐atherogenic effects. Recently, some statins, angiotensin II type 1 receptor blockers and calcium channel blockers have been reported to activate PPARγ. However, the impact of PPARγ activation on diabetic macrovascular complications is not fully understood. It has been reported that the activation of PPARγ by thiazolidinediones induces anti‐atherogenic effects in vascular cells, including monocytes/macrophages, endothelial cells and smooth muscle cells, in atherosclerotic animal models and in clinical studies. We have reported that hydroxymethylglutaryl coenzyme A reductase inhibitors (statins), which are used for treatment of hypercholesterolemia, activate PPARγ and mediate anti‐atherogenic effects through PPARγ activation in macrophages. Also, telmisartan, an angiotensin type I receptor blocker, has been reported to have anti‐atherogenic effects through PPARγ activation. Furthermore, we have reported that nifedipine, a dihydropyridine calcium channel blocker, can activate PPARγ, thereby mediating anti‐atherogenic effects in macrophages. Therefore, statin therapy and part of anti‐hypertensive therapy might produce beneficial effects through PPARγ activation in hypercholesterolemic and/or hypertensive patients with diabetes, and PPARγ might be a therapeutic target for diabetic macrovascular complications. In the present review, we focus on the anti‐atherogenic effects of PPARγ and suggest potential therapeutic approaches to prevent diabetic macrovascular complications. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00182.x, 2012)
Collapse
Affiliation(s)
- Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayo Taketa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiya Shimoda
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
Kinoshita H, Matsumura T, Ishii N, Fukuda K, Senokuchi T, Motoshima H, Kondo T, Taketa K, Kawasaki S, Hanatani S, Takeya M, Nishikawa T, Araki E. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages. Biochem Biophys Res Commun 2013; 431:124-30. [PMID: 23318172 DOI: 10.1016/j.bbrc.2013.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 10/27/2022]
Abstract
Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE(-/-)) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE(-/-) mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE(-/-) mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.
Collapse
Affiliation(s)
- Hiroyuki Kinoshita
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dong S, Furutani Y, Suto Y, Furutani M, Zhu Y, Yoneyama M, Kato T, Itabe H, Nishikawa T, Tomimatsu H, Tanaka T, Kasanuki H, Masaki T, Kiyama R, Matsuoka R. Estrogen-like activity and dual roles in cell signaling of an Agaricus blazei Murrill mycelia-dikaryon extract. Microbiol Res 2011; 167:231-7. [PMID: 22015258 DOI: 10.1016/j.micres.2011.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 09/23/2011] [Accepted: 09/24/2011] [Indexed: 10/16/2022]
Abstract
Agaricus blazei (A. blazei) Murrill mycelia-dikaryon has attracted the attention of scientists and clinicians worldwide owing to its potential for the treatment of cancer. However, little is known about its effect on other pathologies. This study sought to extend the potential medical usefulness of A. blazei for preventing vascular damage and to unravel its mechanism of action. The A. blazei extract showed estrogen-like activity in both gene expression profiling and a luciferase assay. Indeed, the extract inhibited oxidized low-density lipoprotein-stimulated activation of Erk1/2, Akt and p38 in HUVECs and macrophage-derived TIB-67 cells. Moreover, the extract enhanced transcription of the glutathione peroxidase 3 (GPX3), α-synuclein (SNCA) and endothelial nitrogen-oxide synthase (eNOS) genes. Furthermore, atherosclerotic lesions in rabbits were reduced by intake of A. blazei powder. Therefore, A. blazei may be useful for preventing atherosclerosis via dual roles in cell signaling, suppression of macrophage development and the recovery of endothelial cells from vascular damage.
Collapse
Affiliation(s)
- Sijun Dong
- International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tiwari R, Singh V, Barthwal M. Macrophages: An elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev 2008; 28:483-544. [DOI: 10.1002/med.20118] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Yano M, Matsumura T, Senokuchi T, Ishii N, Murata Y, Taketa K, Motoshima H, Taguchi T, Sonoda K, Kukidome D, Takuwa Y, Kawada T, Brownlee M, Nishikawa T, Araki E. Statins activate peroxisome proliferator-activated receptor gamma through extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages. Circ Res 2007; 100:1442-51. [PMID: 17463321 DOI: 10.1161/01.res.0000268411.49545.9c] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both statins and peroxisome proliferator-activated receptor (PPAR)gamma ligands have been reported to protect against the progression of atherosclerosis. In the present study, we investigated the effects of statins on PPARgamma activation in macrophages. Statins increased PPARgamma activity, which was inhibited by mevalonate, farnesylpyrophosphate, or geranylgeranylpyrophosphate. Furthermore, a farnesyl transferase inhibitor and a geranylgeranyl transferase inhibitor mimicked the effects of statins. Statins inhibited the membrane translocations of Ras, RhoA, Rac, and Cdc42, and overexpression of dominant-negative mutants of RhoA (DN-RhoA) and Cdc42 (DN-Cdc42), but not of Ras or Rac, increased PPARgamma activity. Statins induced extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activation. However, DN-RhoA and DN-Cdc42 activated p38 MAPK, but not ERK1/2. ERK1/2- or p38 MAPK-specific inhibitors abrogated statin-induced PPARgamma activation. Statins induced cyclooxygenase (COX)-2 expression and increased intracellular 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) levels through ERK1/2- and p38 MAPK-dependent pathways, and inhibitors or small interfering RNA of COX-2 inhibited statin-induced PPARgamma activation. Statins also activate PPARalpha via COX-2-dependent increases in 15d-PGJ(2) levels. We further demonstrated that statins inhibited lipopolysaccharide-induced tumor necrosis factor alpha or monocyte chemoattractant protein-1 mRNA expression, and these effects by statins were abrogated by the PPARgamma antagonist T0070907 or by small interfering RNA of PPARgamma or PPARalpha. Statins also induced ATP-binding cassette protein A1 or CD36 mRNA expression, and these effects were suppressed by small interfering RNAs of PPARgamma or PPARalpha. In conclusion, statins induce COX-2-dependent increase in 15d-PGJ(2) level through a RhoA- and Cdc42-dependent p38 MAPK pathway and a RhoA- and Cdc42-independent ERK1/2 pathway, thereby activating PPARgamma. Statins also activate PPARalpha via COX-2-dependent pathway. These effects of statins may explain their antiatherogenic actions.
Collapse
Affiliation(s)
- Miyuki Yano
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|