1
|
Dias IHK, Milic I, Heiss C, Ademowo OS, Polidori MC, Devitt A, Griffiths HR. Inflammation, Lipid (Per)oxidation, and Redox Regulation. Antioxid Redox Signal 2020; 33:166-190. [PMID: 31989835 DOI: 10.1089/ars.2020.8022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Inflammation increases during the aging process. It is linked to mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Mitochondrial macromolecules are critical targets of oxidative damage; they contribute to respiratory uncoupling with increased ROS production, redox stress, and a cycle of senescence, cytokine production, and impaired oxidative phosphorylation. Targeting the formation or accumulation of oxidized biomolecules, particularly oxidized lipids, in immune cells and mitochondria could be beneficial for age-related inflammation and comorbidities. Recent Advances: Inflammation is central to age-related decline in health and exhibits a complex relationship with mitochondrial redox state and metabolic function. Improvements in mass spectrometric methods have led to the identification of families of oxidized phospholipids (OxPLs), cholesterols, and fatty acids that increase during inflammation and which modulate nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), activator protein 1 (AP1), and NF-κB redox-sensitive transcription factor activity. Critical Issues: The kinetic and spatial resolution of the modified lipidome has profound and sometimes opposing effects on inflammation, promoting initiation at high concentration and resolution at low concentration of OxPLs. Future Directions: There is an emerging opportunity to prevent or delay age-related inflammation and vascular comorbidity through a resolving (oxy)lipidome that is dependent on improving mitochondrial quality control and restoring redox homeostasis.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Ivana Milic
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Christian Heiss
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Opeyemi S Ademowo
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Cologne Center for Molecular Medicine Cologne, and CECAD, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andrew Devitt
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
2
|
Oskolkova OV, Bochkov VN. Gain of function mechanisms triggering biological effects of oxidized phospholipids. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Pariente A, Peláez R, Pérez-Sala Á, Larráyoz IM. Inflammatory and cell death mechanisms induced by 7-ketocholesterol in the retina. Implications for age-related macular degeneration. Exp Eye Res 2019; 187:107746. [DOI: 10.1016/j.exer.2019.107746] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
|
4
|
Köppert S, Büscher A, Babler A, Ghallab A, Buhl EM, Latz E, Hengstler JG, Smith ER, Jahnen-Dechent W. Cellular Clearance and Biological Activity of Calciprotein Particles Depend on Their Maturation State and Crystallinity. Front Immunol 2018; 9:1991. [PMID: 30233585 PMCID: PMC6131296 DOI: 10.3389/fimmu.2018.01991] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background: The liver-derived plasma protein fetuin-A is a systemic inhibitor of ectopic calcification. Fetuin-A stabilizes saturated mineral solutions by forming colloidal protein-mineral complexes called calciprotein particles (CPP). CPP are initially spherical, amorphous and soft, and are referred to as primary CPP. These particles spontaneously convert into secondary CPP, which are larger, oblongate, more crystalline, and less soluble. CPP mediate excess mineral transport and clearance from circulation. Methods: We studied by intravital two-photon microscopy the clearance of primary vs. secondary CPP by injecting i.v. synthetic fluorescent CPP in mice. We analyzed CPP organ distribution and identified CPP endocytosing cells by immunofluorescence. Cellular clearance was studied using bone marrow-derived mouse wildtype and scavenger receptor A (SRA)-deficient macrophages, as well as human umbilical cord endothelial cells (HUVEC), monocyte-derived macrophages (hMDM), and human aortic endothelial cells (haEC). We employed mouse wildtype and mutant immortalized macrophages to analyze CPP-induced inflammasome activation and cytokine secretion. Results: In live mice, only primary CPP were rapidly cleared by liver sinusoidal endothelial cells (LSEC), whereas primary and secondary CPP were cleared by Kupffer cells. Scavenger receptor A (SRA)-deficient bone marrow macrophages endocytosed secondary CPP less well than did wildtype macrophages. In contrast, primary CPP endocytosis did not depend on the presence of SRA, suggesting involvement of an alternative clearance pathway. CPP triggered TLR4 dependent TNFα and IL-1β secretion in cultured macrophages. Calcium content-matched primary CPP caused twice more IL-1β secretion than did secondary CPP, which was associated with increased calcium-dependent inflammasome activation, suggesting that intracellular CPP dissolution and calcium overload may cause this inflammation. Conclusions: Secondary CPP are endocytosed by macrophages in liver and spleen via SRA. In contrast, our results suggest that primary CPP are cleared by LSEC via an alternative pathway. CPP induced TLR4-dependent TNFα and inflammasome-dependent IL-1β secretion in macrophages suggesting that inflammation and calcification may be considered consequences of prolonged CPP presence and clearance.
Collapse
Affiliation(s)
- Sina Köppert
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Hospital, Aachen, Germany
| | - Andrea Büscher
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Hospital, Aachen, Germany
| | - Anne Babler
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Hospital, Aachen, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, >Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Eva M. Buhl
- Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, >Dortmund, Germany
| | - Edward R. Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
5
|
Bochkov V, Gesslbauer B, Mauerhofer C, Philippova M, Erne P, Oskolkova OV. Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med 2017; 111:6-24. [PMID: 28027924 DOI: 10.1016/j.freeradbiomed.2016.12.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized to play a role in a variety of normal and pathological states. OxPLs were implicated in regulation of inflammation, thrombosis, angiogenesis, endothelial barrier function, immune tolerance and other important processes. Rapidly accumulating evidence suggests that OxPLs are biomarkers of atherosclerosis and other pathologies. In addition, successful application of experimental drugs based on structural scaffold of OxPLs in animal models of inflammation was recently reported. This review briefly summarizes current knowledge on generation, methods of quantification and biological activities of OxPLs. Furthermore, receptor and cellular mechanisms of these effects are discussed. The goal of the review is to give a broad overview of this class of lipid mediators inducing pleiotropic biological effects.
Collapse
Affiliation(s)
- Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Christina Mauerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Maria Philippova
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Paul Erne
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| |
Collapse
|
6
|
Serbulea V, DeWeese D, Leitinger N. The effect of oxidized phospholipids on phenotypic polarization and function of macrophages. Free Radic Biol Med 2017; 111:156-168. [PMID: 28232205 PMCID: PMC5511074 DOI: 10.1016/j.freeradbiomed.2017.02.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/26/2022]
Abstract
Oxidized phospholipids are products of lipid oxidation that are found on oxidized low-density lipoproteins and apoptotic cell membranes. These biologically active lipids were shown to affect a variety of cell types and attributed pro-as well as anti-inflammatory effects. In particular, macrophages exposed to oxidized phospholipids drastically change their gene expression pattern and function. These 'Mox,'macrophages were identified in atherosclerotic lesions, however, it remains unclear how lipid oxidation products are sensed by macrophages and how they influence their biological function. Here, we review recent developments in the field that provide insight into the structure, recognition, and downstream signaling of oxidized phospholipids in macrophages.
Collapse
Affiliation(s)
- Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Dory DeWeese
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| |
Collapse
|
7
|
Popat RJ, Hakki S, Thakker A, Coughlan AM, Watson J, Little MA, Spickett CM, Lavender P, Afzali B, Kemper C, Robson MG. Anti-myeloperoxidase antibodies attenuate the monocyte response to LPS and shape macrophage development. JCI Insight 2017; 2:e87379. [PMID: 28138552 PMCID: PMC5256146 DOI: 10.1172/jci.insight.87379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA) vasculitis is characterized by the presence of autoantibodies to myeloperoxidase and proteinase-3, which bind monocytes in addition to neutrophils. While a pathological effect on neutrophils is acknowledged, the impact of ANCA on monocyte function is less well understood. Using IgG from patients we investigated the effect of these autoantibodies on monocytes and found that anti-myeloperoxidase antibodies (MPO-ANCA) reduced both IL-10 and IL-6 secretion in response to LPS. This reduction in IL-10 and IL-6 depended on Fc receptors and enzymatic myeloperoxidase and was accompanied by a significant reduction in TLR-driven signaling pathways. Aligning with changes in TLR signals, oxidized phospholipids, which function as TLR4 antagonists, were increased in monocytes in the presence of MPO-ANCA. We further observed that MPO-ANCA increased monocyte survival and differentiation to macrophages by stimulating CSF-1 production. However, this was independent of myeloperoxidase enzymatic activity and TLR signaling. Macrophages differentiated in the presence of MPO-ANCA secreted more TGF-β and further promoted the development of IL-10– and TGF-β–secreting CD4+ T cells. Thus, MPO-ANCA may promote inflammation by reducing the secretion of antiinflammatory IL-10 from monocytes, and MPO-ANCA can alter the development of macrophages and T cells to potentially promote fibrosis. Anti-myeloperoxidase antibodies from patients with anti-neutrophil cytoplasmic antibody (ANCA) vasculitis alter monocyte function in addition to previously described effects on neutrophils.
Collapse
Affiliation(s)
- Reena J Popat
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, Great Maze Pond, London, United Kingdom
| | - Seran Hakki
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, Great Maze Pond, London, United Kingdom
| | - Alpesh Thakker
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | - Alice M Coughlan
- Trinity Health Kidney Centre, Department of Clinical Medicine, Trinity College Dublin, St. James' Hospital Campus, Dublin, Ireland
| | - Julie Watson
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, Great Maze Pond, London, United Kingdom
| | - Mark A Little
- Trinity Health Kidney Centre, Department of Clinical Medicine, Trinity College Dublin, St. James' Hospital Campus, Dublin, Ireland
| | - Corinne M Spickett
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | - Paul Lavender
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, Great Maze Pond, London, United Kingdom
| | - Behdad Afzali
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, Great Maze Pond, London, United Kingdom
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, Great Maze Pond, London, United Kingdom
| | - Michael G Robson
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, Great Maze Pond, London, United Kingdom
| |
Collapse
|
8
|
Bromberg PA. Mechanisms of the acute effects of inhaled ozone in humans. Biochim Biophys Acta Gen Subj 2016; 1860:2771-81. [PMID: 27451958 DOI: 10.1016/j.bbagen.2016.07.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
Abstract
Ambient air ozone (O3) is generated photochemically from oxides of nitrogen and volatile hydrocarbons. Inhaled O3 causes remarkably reversible acute lung function changes and inflammation. Approximately 80% of inhaled O3 is deposited on the airways. O3 reacts rapidly with CC double bonds in hydrophobic airway and alveolar surfactant-associated phospholipids and cholesterol. Resultant primary ozonides further react to generate bioactive hydrophilic products that also initiate lipid peroxidation leading to eicosanoids and isoprostanes of varying electrophilicity. Airway surface liquid ascorbate and urate also scavenge O3. Thus, inhaled O3 may not interact directly with epithelial cells. Acute O3-induced lung function changes are dominated by involuntary inhibition of inspiration (rather than bronchoconstriction), mediated by stimulation of intraepithelial nociceptive vagal C-fibers via activation of transient receptor potential (TRP) A1 cation channels by electrophile (e.g., 4-oxo-nonenal) adduction of TRPA1 thiolates enhanced by PGE2-stimulated sensitization. Acute O3-induced neutrophilic airways inflammation develops more slowly than the lung function changes. Surface macrophages and epithelial cells are involved in the activation of epithelial NFkB and generation of proinflammatory mediators such as IL-6, IL-8, TNFa, IL-1b, ICAM-1, E-selectin and PGE2. O3-induced partial depolymerization of hyaluronic acid and the release of peroxiredoxin-1 activate macrophage TLR4 while oxidative epithelial cell release of EGFR ligands such as TGFa or EGFR transactivation by activated Src may also be involved. The ability of lipid ozonation to generate potent electrophiles also provides pathways for Nrf2 activation and inhibition of canonical NFkB activation. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, and Division of Pulmonary and Critical Care Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
9
|
Hormetic and anti-inflammatory properties of oxidized phospholipids. Mol Aspects Med 2016; 49:78-90. [DOI: 10.1016/j.mam.2016.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 12/15/2022]
|
10
|
Makarev E, Cantor C, Zhavoronkov A, Buzdin A, Aliper A, Csoka AB. Pathway activation profiling reveals new insights into age-related macular degeneration and provides avenues for therapeutic interventions. Aging (Albany NY) 2015; 6:1064-75. [PMID: 25543336 PMCID: PMC4298366 DOI: 10.18632/aging.100711] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness in older people and is caused by loss of the central region of the retinal pigment epithelium (RPE). Conventional methods of gene expression analysis have yielded important insights into AMD pathogenesis, but the precise molecular pathway alterations are still poorly understood. Therefore we developed a new software program, “AMD Medicine”, and discovered differential pathway activation profiles in samples of human RPE/choroid from AMD patients and controls. We identified 29 pathways in RPE-choroid AMD phenotypes: 27 pathways were activated in AMD compared to controls, and 2 pathways were activated in controls compared to AMD. In AMD, we identified a graded activation of pathways related to wound response, complement cascade, and cell survival. Also, there was downregulation of two pathways responsible for apoptosis. Furthermore, significant activation of pro-mitotic pathways is consistent with dedifferentiation and cell proliferation events, which occur early in the pathogenesis of AMD. Significantly, we discovered new global pathway activation signatures of AMD involved in the cell-based inflammatory response: IL-2, STAT3, and ERK. The ultimate aim of our research is to achieve a better understanding of signaling pathways involved in AMD pathology, which will eventually lead to better treatments.
Collapse
Affiliation(s)
- Evgeny Makarev
- Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charles Cantor
- Boston University, Boston, MA 02215, USA. Retrotope, Inc, Los Altos Hills, CA 94022, USA
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD 21218, USA. The Biogerontology Research Foundation, London, UK
| | - Anton Buzdin
- Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD 21218, USA. Pathway Pharmaceutivals, Ltd, Hong Kong
| | - Alexander Aliper
- Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anotonei Benjamin Csoka
- Vision Genomics, LLC, Washington, DC 20010, USA. Epigenetics Laboratory, Dept. of Anatomy, Howard University, Washington, DC 20059, USA
| |
Collapse
|
11
|
Manček-Keber M, Frank-Bertoncelj M, Hafner-Bratkovič I, Smole A, Zorko M, Pirher N, Hayer S, Kralj-Iglič V, Rozman B, Ilc N, Horvat S, Jerala R. Toll-like receptor 4 senses oxidative stress mediated by the oxidation of phospholipids in extracellular vesicles. Sci Signal 2015; 8:ra60. [PMID: 26082436 DOI: 10.1126/scisignal.2005860] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress produced in response to infection or sterile injury activates the innate immune response. We found that extracellular vesicles (EVs) isolated from the plasma of patients with rheumatoid arthritis or secreted from cells subjected to oxidative stress contained oxidized phospholipids that stimulated cells expressing Toll-like receptor 4 (TLR4) in a manner dependent on its co-receptor MD-2. EVs from healthy subjects or reconstituted synthetic EVs subjected to limited oxidation gained the ability to stimulate TLR4-expressing cells, whereas prolonged oxidation abrogated this property. Furthermore, we found that 15-lipoxygenase generated hydro(pero)xylated phospholipids that stimulated TLR4-expressing cells. Molecular modeling suggested that the mechanism of activation of TLR4 by oxidized phospholipids in EVs was structurally similar to that of the TLR4 ligand lipopolysaccharide (LPS). This was supported by experiments showing that EV-mediated stimulation of cells required MD-2, that mutations that block LPS binding to TLR4 abrogated the stimulatory effect of EVs, and that EVs induced TLR4 dimerization. On the other hand, analysis of gene expression profiles showed that genes encoding factors that resolve inflammation were more abundantly expressed in responses to EVs than in response to LPS. Together, these data suggest that EVs act as an oxidative stress-induced endogenous danger signal that underlies the pervasive role of TLR4 in inflammatory diseases.
Collapse
Affiliation(s)
- Mateja Manček-Keber
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia. Excellent NMR Future Innovation for Sustainable Technologies, Centre of Excellence, 1000 Ljubljana, Slovenia.
| | - Mojca Frank-Bertoncelj
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia. Excellent NMR Future Innovation for Sustainable Technologies, Centre of Excellence, 1000 Ljubljana, Slovenia
| | - Anže Smole
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Mateja Zorko
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Nina Pirher
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Silvia Hayer
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Veronika Kralj-Iglič
- Laboratoryof Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Blaž Rozman
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Nejc Ilc
- Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia. Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia. Excellent NMR Future Innovation for Sustainable Technologies, Centre of Excellence, 1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
Spickett C, Fedorova M, Hoffmann R, Forman H. An Introduction to Redox Balance and Lipid Oxidation. OXIDATIVE STRESS AND DISEASE 2015. [DOI: 10.1201/b18138-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Manček-Keber M, Jerala R. Postulates for validating TLR4 agonists. Eur J Immunol 2015; 45:356-70. [DOI: 10.1002/eji.201444462] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 10/20/2014] [Accepted: 12/01/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Mateja Manček-Keber
- Department of Biotechnology; National Institute of Chemistry; Ljubljana Slovenia
- EN-FIST Centre of Excellence; Ljubljana Slovenia
| | - Roman Jerala
- Department of Biotechnology; National Institute of Chemistry; Ljubljana Slovenia
- EN-FIST Centre of Excellence; Ljubljana Slovenia
| |
Collapse
|
14
|
Sock-Jin L, Kumolosasi E, Azmi N, Bukhari SNA, Jasamai M, Fauzi NM. Effects of synthetic chalcone derivatives on oxidised palmitoyl arachidonoyl phosphorylcholine-induced proinflammatory chemokines production. RSC Adv 2015. [DOI: 10.1039/c5ra11073d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidised 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) induces the production of proinflammatory chemokines has been widely studied for its role in vascular inflammation.
Collapse
Affiliation(s)
- Lim Sock-Jin
- Drug and Herbal Research Centre
- Faculty of Pharmacy
- Universiti Kebangsaan Malaysia
- 50300 Kuala Lumpur
- Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre
- Faculty of Pharmacy
- Universiti Kebangsaan Malaysia
- 50300 Kuala Lumpur
- Malaysia
| | - Norazrina Azmi
- Drug and Herbal Research Centre
- Faculty of Pharmacy
- Universiti Kebangsaan Malaysia
- 50300 Kuala Lumpur
- Malaysia
| | - Syed Nasir Abbas Bukhari
- Drug and Herbal Research Centre
- Faculty of Pharmacy
- Universiti Kebangsaan Malaysia
- 50300 Kuala Lumpur
- Malaysia
| | - Malina Jasamai
- Drug and Herbal Research Centre
- Faculty of Pharmacy
- Universiti Kebangsaan Malaysia
- 50300 Kuala Lumpur
- Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre
- Faculty of Pharmacy
- Universiti Kebangsaan Malaysia
- 50300 Kuala Lumpur
- Malaysia
| |
Collapse
|
15
|
Davies SS, Guo L. Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids. Chem Phys Lipids 2014; 181:1-33. [PMID: 24704586 DOI: 10.1016/j.chemphyslip.2014.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/25/2022]
Abstract
Peroxidation of membranes and lipoproteins converts "inert" phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease.
Collapse
Affiliation(s)
- Sean S Davies
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, United States.
| | - Lilu Guo
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, United States
| |
Collapse
|
16
|
Augmented atherogenesis in ApoE-null mice co-exposed to polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 2014; 276:136-46. [DOI: 10.1016/j.taap.2014.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/27/2014] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
|
17
|
Bzowska M, Nogieć A, Skrzeczyńska-Moncznik J, Mickowska B, Guzik K, Pryjma J. Oxidized LDLs inhibit TLR-induced IL-10 production by monocytes: a new aspect of pathogen-accelerated atherosclerosis. Inflammation 2013; 35:1567-84. [PMID: 22556042 PMCID: PMC3397235 DOI: 10.1007/s10753-012-9472-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is widely accepted that oxidized low-density lipoproteins and local infections or endotoxins in circulation contribute to chronic inflammatory process at all stages of atherosclerosis. The hallmark cells of atherosclerotic lesions-monocytes and macrophages-are able to detect and integrate complex signals derived from lipoproteins and pathogens, and respond with a spectrum of immunoregulatory cytokines. In this study, we show strong inhibitory effect of oxLDLs on anti-inflammatory interleukin-10 production by monocytes responding to TLR2 and TLR4 ligands. In contrast, pro-inflammatory tumor necrosis factor secretion was even slightly increased, when stimulated with lipopolysaccharide from Porphyromonas gingivalis-an oral pathogen associated with atherosclerosis. The oxLDLs modulatory activity may be explained by altered recognition of pathogen-associated molecular patterns, which involves serum proteins, particularly vitronectin. We also suggest an interaction between vitronectin receptor, CD11b, and TLR2. The presented data support a novel pathway for pathogen-accelerated atherosclerosis, which relies on oxidized low-density lipoprotein-mediated modulation of anti-inflammatory response to TLR ligands.
Collapse
Affiliation(s)
- Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Nogieć
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Joanna Skrzeczyńska-Moncznik
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Barbara Mickowska
- Malopolska Centre of Food Monitoring and Certification, Faculty of Food Technology, Agricultural University, Balicka 122, 30-149 Kraków, Poland
| | - Krzysztof Guzik
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Juliusz Pryjma
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
18
|
Oxidized LDLs inhibit TLR-induced IL-10 production by monocytes: a new aspect of pathogen-accelerated atherosclerosis. Inflammation 2013. [PMID: 22556042 DOI: 10.1007/s110753-012-9472-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is widely accepted that oxidized low-density lipoproteins and local infections or endotoxins in circulation contribute to chronic inflammatory process at all stages of atherosclerosis. The hallmark cells of atherosclerotic lesions-monocytes and macrophages-are able to detect and integrate complex signals derived from lipoproteins and pathogens, and respond with a spectrum of immunoregulatory cytokines. In this study, we show strong inhibitory effect of oxLDLs on anti-inflammatory interleukin-10 production by monocytes responding to TLR2 and TLR4 ligands. In contrast, pro-inflammatory tumor necrosis factor secretion was even slightly increased, when stimulated with lipopolysaccharide from Porphyromonas gingivalis-an oral pathogen associated with atherosclerosis. The oxLDLs modulatory activity may be explained by altered recognition of pathogen-associated molecular patterns, which involves serum proteins, particularly vitronectin. We also suggest an interaction between vitronectin receptor, CD11b, and TLR2. The presented data support a novel pathway for pathogen-accelerated atherosclerosis, which relies on oxidized low-density lipoprotein-mediated modulation of anti-inflammatory response to TLR ligands.
Collapse
|
19
|
Perrin-Cocon L, Diaz O, André P, Lotteau V. Modified lipoproteins provide lipids that modulate dendritic cell immune function. Biochimie 2012; 95:103-8. [PMID: 22959067 DOI: 10.1016/j.biochi.2012.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022]
Abstract
Both physiological and pathological situations can result in biochemical changes of low-density lipoproteins (LDL). Because they can deliver signals to dendritic cells (DC), these modified lipoproteins now appear as regulators of the immune response. Among these modified lipoproteins, oxidized LDL (oxLDL) that accumulate during inflammatory conditions have been extensively studied. Numerous studies have shown that oxLDL induce the maturation of DC, enhancing their ability to activate IFNγ secretion by T cells. LDL treated by secreted phospholipase A(2) also promote DC maturation. Among the bioactive lipids generated by oxidation or phospholipase treatment of LDL, lysophosphatidylcholine (LPC) and some saturated fatty acids induce DC maturation whereas some unsaturated fatty acids or oxidized derivatives have opposite effects. Among other factors, the nuclear receptor peroxisome-proliferator activated receptor γ (PPARγ) plays a crucial role in this regulation. Non-modified lipoproteins also contribute to the regulation of DC function, suggesting that the balance between native and modified lipoproteins, as well as the biochemical nature of the LDL modifications, can regulate the activation threshold of DC. Here we discuss two pathological situations in which the impact of LDL modifications on inflammation and immunity could play an important role. During atherosclerosis, modified LDL accumulating in the arterial intima may interfere with DC maturation and function, promoting a Th1 immune response and a local inflammation favoring the development of the pathology. In patients chronically infected, the hepatitis C virus (HCV) interferes with lipoprotein metabolism resulting in the production of infectious modified lipoproteins. These lipo-viral-particles (LVP) are modified low-density lipoproteins containing viral material that can alter DC maturation and affect specific toll-like receptor signaling. In conclusion, lipoprotein modifications play an important role in the regulation of immunity by delivering signals of danger to DC and modulating their function.
Collapse
|
20
|
Schwartz EA, Reaven PD. Lipolysis of triglyceride-rich lipoproteins, vascular inflammation, and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:858-66. [DOI: 10.1016/j.bbalip.2011.09.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/23/2023]
|
21
|
Analysis of oxidized and chlorinated lipids by mass spectrometry and relevance to signalling. Biochem Soc Trans 2012; 39:1233-9. [PMID: 21936795 DOI: 10.1042/bst0391233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidized and chlorinated phospholipids are generated under inflammatory conditions and are increasingly understood to play important roles in diseases involving oxidative stress. MS is a sensitive and informative technique for monitoring phospholipid oxidation that can provide structural information and simultaneously detect a wide variety of oxidation products, including chain-shortened and -chlorinated phospholipids. MSn technologies involve fragmentation of the compounds to yield diagnostic fragment ions and thus assist in identification. Advanced methods such as neutral loss and precursor ion scanning can facilitate the analysis of specific oxidation products in complex biological samples. This is essential for determining the contributions of different phospholipid oxidation products in disease. While many pro-inflammatory signalling effects of oxPLs (oxidized phospholipids) have been reported, it has more recently become clear that they can also have anti-inflammatory effects in conditions such as infection and endotoxaemia. In contrast with free radical-generated oxPLs, the signalling effects of chlorinated lipids are much less well understood, but they appear to demonstrate mainly pro-inflammatory effects. Specific analysis of oxidized and chlorinated lipids and the determination of their molecular effects are crucial to understanding their role in disease pathology.
Collapse
|
22
|
Greig FH, Kennedy S, Spickett CM. Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation. Free Radic Biol Med 2012; 52:266-80. [PMID: 22080084 DOI: 10.1016/j.freeradbiomed.2011.10.481] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/31/2022]
Abstract
Oxidized phospholipids, such as the products of the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by nonenzymatic radical attack, are known to be formed in a number of inflammatory diseases. Interest in the bioactivity and signaling functions of these compounds has increased enormously, with many studies using cultured immortalized and primary cells, tissues, and animals to understand their roles in disease pathology. Initially, oxidized phospholipids were viewed largely as culprits, in line with observations that they have proinflammatory effects, enhancing inflammatory cytokine production, cell adhesion and migration, proliferation, apoptosis, and necrosis, especially in vascular endothelial cells, macrophages, and smooth muscle cells. However, evidence has emerged that these compounds also have protective effects in some situations and cell types; a notable example is their ability to interfere with signaling by certain Toll-like receptors (TLRs) induced by microbial products that normally leads to inflammation. They also have protective effects via the stimulation of small GTPases and induce up-regulation of antioxidant enzymes and cytoskeletal rearrangements that improve endothelial barrier function. Oxidized phospholipids interact with several cellular receptors, including scavenger receptors, platelet-activating factor receptors, peroxisome proliferator-activated receptors, and TLRs. The various and sometimes contradictory effects that have been observed for oxidized phospholipids depend on their concentration, their specific structure, and the cell type investigated. Nevertheless, the underlying molecular mechanisms by which oxidized phospholipids exert their effects in various pathologies are similar. Although our understanding of the actions and mechanisms of these mediators has advanced substantially, many questions do remain about their precise interactions with components of cell signaling pathways.
Collapse
Affiliation(s)
- Fiona H Greig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | |
Collapse
|
23
|
Wang F, Xia W, Liu F, Li J, Wang G, Gu J. Interferon regulator factor 1/retinoic inducible gene I (IRF1/RIG-I) axis mediates 25-hydroxycholesterol-induced interleukin-8 production in atherosclerosis. Cardiovasc Res 2012; 93:190-9. [PMID: 21979142 DOI: 10.1093/cvr/cvr260] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
AIMS In this study, the role of retinoic inducible gene I (RIG-I)-mediated signalling in the inflammation of atherosclerosis was investigated to explain the pathology of atherosclerosis. METHODS AND RESULTS Human and mouse primary cells were exposed to 25-hydroxycholesterol followed by examination of gene expression and activation of the signal pathway with biochemical and molecular biological techniques. A mouse atherosclerotic model was also used. We found that RIG-I was induced in macrophages and endothelium by 25-hydroxycholesterol. Interferon regulatory factor 1 is a key transcription factor for the induction of RIG-I by 25-hydroxycholesterol. The induction of interleukin-8 and growth-regulated protein α, the mouse interleukin-8 homologue, by 25-hydroxycholesterol is mediated by RIG-I signalling. RIG-I transduces the signal to downstream molecules, mitochondrial antiviral-signalling protein, transforming growth factor-β-activated kinase 1, and mitogen-activated protein kinase, leading to the activation of nuclear factor κB, activator protein-1, and nuclear factor interleukin-6, all of which are required for the expression of interleukin-8. Finally, we observed that RIG-I is highly expressed in atherosclerotic lesions. CONCLUSION Our data demonstrate that RIG-I signalling mediates atherosclerotic inflammation. Targeting RIG-I signalling should provide a way to inhibit atherosclerotic inflammation, which holds potential for the therapy of atherosclerosis.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The accumulation of macrophages in the vascular wall is a hallmark of atherosclerosis. The biological properties of atherosclerotic plaque macrophages determine lesion size, composition, and stability. In atherosclerotic plaques, macrophages encounter a microenvironment that comprises a variety of lipid oxidation products, each of which has diverse biological effects. In this review, we summarize recent advances in our understanding of the effects of plaque lipids on macrophage phenotypic polarization. RECENT FINDINGS Atherosclerotic lesions in mice and in humans contain various macrophage phenotypes, which play different roles in mediating inflammation, the clearance of dead cells, and possibly resolution. Macrophages alter their phenotype and biological function in response to plaque lipids through the upregulation of specific sets of genes. Interaction of oxidized lipids with pattern recognition receptors and activation of the inflammasome by cholesterol crystals drive macrophages toward an inflammatory M1 phenotype. A new phenotype, Mox, develops when oxidized phospholipids activate stress response genes via Nrf2. Other lipid mediators such as nitrosylated-fatty acids and omega-3 fatty acid-derived products polarize plaque macrophages toward anti-inflammatory and proresolving phenotypes. SUMMARY A deeper understanding of how lipids that accumulate in atherosclerotic plaques affect macrophage phenotype and function and thus atherosclerotic lesion development and stability will help to devise novel strategies for intervention.
Collapse
Affiliation(s)
| | - Norbert Leitinger
- Corresponding author: University of Virginia, Department of Pharmacology; 1340 Jefferson Park Avenue, Jordan Hall, 5th Floor, Rm 5036/5039, P.O. Box 800735, Charlottesville, VA 22908; Tel: 434-243-6363, Fax: 434-924-0149;
| |
Collapse
|
25
|
Rodríguez IR, Larrayoz IM. Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J Lipid Res 2010; 51:2847-62. [PMID: 20567027 DOI: 10.1194/jlr.r004820] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review will discuss the formation and potential implications of 7-ketocholesterol (7KCh) in the retina. 7KCh is a proinflammatory oxysterol known to be present in high amounts in oxidized LDL deposits associated with atheromatous plaques. 7KCh is generated in situ in these lipoprotein deposits where it can accumulate and reach very high concentrations. In normal primate retina, 7KCh has been found associated with lipoprotein deposits in the choriocapillaris, Bruch's membrane, and the retinal pigment epithelium (RPE). In photodamaged rats, 7KCh has been found in the neural retina in areas of high mitochondrial content, ganglion cells, photoreceptor inner segments and synapses, and the RPE. Intermediates found by LCMS indicate 7KCh is formed via a free radical-mediated mechanism catalyzed by iron. 7KCh seems to activate several kinase signaling pathways that work via nuclear factor κB and cause the induction of vascular endothelial growth factor, interleukin (IL)-6, and IL-8. There seems to be little evidence of 7KCh metabolism in the retina, although some form of efflux mechanism may be active. The chronic mode of formation and the potent inflammatory properties of 7KCh indicate it may be an "age-related" risk factor in aging diseases such as atherosclerosis, Alzheimer's, and age-related macular degeneration.
Collapse
Affiliation(s)
- Ignacio R Rodríguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
26
|
Larrayoz IM, Huang JD, Lee JW, Pascual I, Rodríguez IR. 7-ketocholesterol-induced inflammation: involvement of multiple kinase signaling pathways via NFκB but independently of reactive oxygen species formation. Invest Ophthalmol Vis Sci 2010; 51:4942-55. [PMID: 20554621 DOI: 10.1167/iovs.09-4854] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE 7-Ketocholesterol (7KCh) accumulates in oxidized lipoprotein deposits and is known to be involved in macrophage foam cell formation and atherosclerosis. 7-KCh is present in the primate retina and is associated with oxidized lipoprotein deposits located in the choriocapillaris, Bruch's membrane, and retinal pigment epithelium (RPE). 7-KCh can also be formed in the retina as a consequence of light-induced iron release. The purpose of this study was to examine the signaling pathways involved in the 7KCh-mediated inflammatory response focusing on three cytokines, VEGF, IL-6, and IL-8. METHODS ARPE-19 cells were treated with 7KCh solubilized in hydroxypropyl-β-cyclodextrin. Cytokines were quantified by qRT-PCR (mRNA) and ELISA (protein) using commercially available products. NFκB activation was determined by IκBα mRNA induction. RESULTS Treatment of ARPE-19 cells with 15 μM 7KCh markedly induced the expression of VEGF, IL-6, and IL-8. No increase in NOX-4 expression or ROS formation was detected. 7KCh induced the phosphorylation of ERK1/2 and p38MAPK, and inhibitors to these kinases markedly reduced the cytokine expression but did not affect the IκBα mRNA expression. By contrast, inhibition of PI3K and PKCζ significantly decreased the cytokine and IκBα mRNA expression. Inhibition of the IκB kinase complex essentially ablated all cytokine induction. CONCLUSIONS 7KCh induces cytokines via three kinase signaling pathways, AKT-PKCζ-NFκB, p38 MAPK, and ERK. The MAPK/ERK pathways seem to preferentially enhance cytokine induction downstream from NFκB activation. The results of this study suggest that 7KCh activates these pathways through interactions in the plasma membrane, but the mechanism(s) remains unknown.
Collapse
Affiliation(s)
- Ignacio M Larrayoz
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
The mammalian TLRs serve as key sensors of PAMPs, such as bacterial LPS, lipopeptides, and flagellins, which are present in microbial cells but not host cells. TLRs have therefore been considered to play a central role in the discrimination between "self" and "non-self". However, since the discovery of their microbial ligands, many studies have provided evidence that host-derived molecules may also stimulate TLR2- or TLR4-dependent signaling. To date, more than 20 of these endogenous TLR ligands have been proposed, which have tended to fall into the categories of released intracellular proteins, ECM components, oxidatively modified lipids, and other soluble mediators. This review aims to summarize the evidence supporting the intrinsic TLR-stimulating capacity of each of these proposed endogenous ligands with a particular emphasis on the measures taken to exclude contaminating LPS and lipopeptides from experimental systems. The emerging evidence that many of these molecules may be more accurately described as PAMP-binding molecules (PBMs) or PAMP-sensitizing molecules (PSMs), rather than genuine ligands of TLR2 or TLR4, is also summarized. The relevance of this possibility to the pathogenesis of chronic inflammatory diseases, tumor surveillance, and autoimmunity is discussed.
Collapse
Affiliation(s)
- Clett Erridge
- Department of Cardiovascular Sciences, Glenfield General Hospital, University of Leicester, Leicester, UK, LE3 9QP.
| |
Collapse
|
28
|
Discrimination and evaluation of lactoferrin and delta-lactoferrin gene expression levels in cancer cells and under inflammatory stimuli using TaqMan real-time PCR. Biometals 2010; 23:441-52. [DOI: 10.1007/s10534-010-9305-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/03/2010] [Indexed: 01/11/2023]
|
29
|
Erridge C, Duncan SH, Bereswill S, Heimesaat MM. The induction of colitis and ileitis in mice is associated with marked increases in intestinal concentrations of stimulants of TLRs 2, 4, and 5. PLoS One 2010; 5:e9125. [PMID: 20161736 PMCID: PMC2817728 DOI: 10.1371/journal.pone.0009125] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 01/22/2010] [Indexed: 12/13/2022] Open
Abstract
Background Inflammatory bowel diseases (IBDs) appear to be modulated by the interaction of pathogen-associated molecular patterns (PAMPs) derived from intestinal bacteria with their respective innate immune receptors, including Toll-like receptors (TLRs). We aimed to establish if intestinal concentrations of proinflammatory bacterial ligands of TLR2, TLR4, or TLR5 may be altered in murine IBD models, and to characterize which of the major bacterial groups may contribute to each signal. Methodology/Principal Findings PAMPs specific for TLR2 (lipopeptide equivalents), TLR4 (lipopolysaccharide equivalents), and TLR5 (flagellin equivalents) in human and murine fecal and intestinal samples were quantified using HEK-293 cells transfected with respective TLRs and calibrated with defined standard PAMPs. The induction of colitis in mice by dextran-sodium-sulphate treatment significantly increased colonic lipopeptide (fourfold) and LPS equivalent (550-fold) concentrations, while flagellin equivalent concentrations remained similar. The induction of ileitis by oral infection with Toxoplasma gondii dramatically increased ileal concentrations of lipopeptide (370-fold), LPS (3,300-fold), and flagellin equivalents (38-fold), all P<0.01. Analysis of representative strains of the major bacterial groups of the human intestine revealed that enterobacterial species are likely to be more significant contributors of soluble TLR2 and TLR4 stimulants to the intestinal milieu than Bacteroides species or Gram-positive Firmicutes. Conclusions/Significance We conclude that the induction of colitis or ileitis in mice is associated with significant disease-specific alterations to the PAMP profile of the gut microbiota.
Collapse
Affiliation(s)
- Clett Erridge
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.
| | | | | | | |
Collapse
|
30
|
Schulthess FT, Paroni F, Sauter NS, Shu L, Ribaux P, Haataja L, Strieter RM, Oberholzer J, King CC, Maedler K. CXCL10 impairs beta cell function and viability in diabetes through TLR4 signaling. Cell Metab 2009; 9:125-39. [PMID: 19187771 DOI: 10.1016/j.cmet.2009.01.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 11/05/2008] [Accepted: 01/14/2009] [Indexed: 12/20/2022]
Abstract
In type 1 and type 2 diabetes (T1/T2DM), beta cell destruction by apoptosis results in decreased beta cell mass and progression of the disease. In this study, we found that the interferon gamma-inducible protein 10 plays an important role in triggering beta cell destruction. Islets isolated from patients with T2DM secreted CXCL10 and contained 33.5-fold more CXCL10 mRNA than islets from control patients. Pancreatic sections from obese nondiabetic individuals and patients with T2DM and T1DM expressed CXCL10 in beta cells. Treatment of human islets with CXCL10 decreased beta cell viability, impaired insulin secretion, and decreased insulin mRNA. CXCL10 induced sustained activation of Akt, JNK, and cleavage of p21-activated protein kinase 2 (PAK-2), switching Akt signals from proliferation to apoptosis. These effects were not mediated by the commonly known CXCL10 receptor CXCR3 but through TLR4. Our data suggest CXCL10 as a binding partner for TLR4 and as a signal toward beta cell failure in diabetes.
Collapse
Affiliation(s)
- Fabienne T Schulthess
- Larry L. Hillblom Islet Research Center, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
von Schlieffen E, Oskolkova OV, Schabbauer G, Gruber F, Blüml S, Genest M, Kadl A, Marsik C, Knapp S, Chow J, Leitinger N, Binder BR, Bochkov VN. Multi-hit inhibition of circulating and cell-associated components of the toll-like receptor 4 pathway by oxidized phospholipids. Arterioscler Thromb Vasc Biol 2008; 29:356-62. [PMID: 19112167 DOI: 10.1161/atvbaha.108.173799] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Oxidized phospholipids (OxPLs) that are abundant in atherosclerotic lesions are increasingly recognized as context-dependent lipid mediators demonstrating both pro- and antiinflammatory activities. Molecular mechanisms of their effects are largely unknown. Here we present novel information on the mechanisms whereby OxPLs modulate activation of TLR4 by lipopolysaccharide (LPS). METHODS AND RESULTS We show, using several cell types and various inflammatory genes as readouts, that different classes and molecular species of OxPLs do not stimulate TLR4 but exert prominent inhibitory effects on LPS-induced reactions. Our data demonstrate that binding of OxPLs to the LPS-binding protein (LBP) and CD14 prevents recognition of LPS by these proteins, thus impairing activation of TLR4. In addition, OxPLs inhibited LBP- and CD14-independent activation of TLR4 by the synthetic TLR4 agonist E6020 indicating that in parallel with LBP and CD14, OxPLs target cell-associated steps in TLR4 cascade. CONCLUSIONS Our data suggest that OxPLs inhibit action of LPS via a multi-hit mechanism. These results support the notion that OxPLs are endogenous inhibitors of TLR4 produced in response to oxidative stress.
Collapse
Affiliation(s)
- Elena von Schlieffen
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Berliner JA, Leitinger N, Tsimikas S. The role of oxidized phospholipids in atherosclerosis. J Lipid Res 2008; 50 Suppl:S207-12. [PMID: 19059906 DOI: 10.1194/jlr.r800074-jlr200] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence that oxidized phospholipids (OxPLs) play an important role in atherosclerosis. These phospholipids accumulate in human and mouse lesions. Specific OxPLs have been identified as major regulators of many cell types present in the vessel wall. In endothelial cells, >1,000 genes are regulated. Some of these genes are pro-atherogenic and others anti-atherogenic. The anti-atherogenic effects are likely important in slowing the atherogenic process. Several receptors and signaling pathways associated with OxPL action have been identified and shown to be upregulated in human lesions. A structural model of the mechanism by which specific OxPLs serve as CD36 ligands has been identified. Specific oxidized phospholipids are also present in plasma and associated with Lp(a) particles. In humans, OxPL/apolipoprotein B has been shown to be a prognostic indicator and a separate risk factor for coronary events. Levels of OxPL in plasma have been shown to be correlated with platelet activation. The results of these studies suggest an important role for OxPL in all stages of atherosclerosis.
Collapse
Affiliation(s)
- Judith A Berliner
- Department of Pathology, University of California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
33
|
Statins inhibit toll-like receptor 4-mediated lipopolysaccharide signaling and cytokine expression. Pharmacogenet Genomics 2008; 18:803-13. [PMID: 18698233 DOI: 10.1097/fpc.0b013e3283050aff] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Toll-like receptor 4 (TLR4) is the main receptor for Lipopolysaccharide (LPS). Two relatively common variants of the TLR4 gene are present, resulting in changes from aspartic acid (D) to glycine (G) at residue 299 and from threonine (T) to isoleucine (I) at residue 399, respectively. It has been shown that statins have a greater effect on lowering risk of cardiovascular events in individuals carrying the 299G allele than in those not carrying this allele. We investigated possible mechanisms underlying this synergy of statin treatment and TLR4 genotype. METHODS AND RESULTS In cells expressing the 299D-399T TLR4, LPS activated the transcription factor NFkappaB and increased the expression of interleukin-6 and tumor necrosis factor-alpha, and these effects were reduced by pretreatment of the cells with pravastatin or simvastatin. LPS-induced NFkappaB activation and interleukin-6 and tumor necrosis factor-alpha expression were substantially reduced in cell expressing the 299G-399T or 299D-399I variant, and undetectable in cells expressing the 299G-399I TLR4. The 3-hydroxy-3-methylglutaryl coenzyme A pathway inhibitors, Y27632 and GGTI-286, exhibited a similar effect to statins, suggesting that the inhibitory effect of statins was mediated by the 3-hydroxy-3-methylglutaryl coenzyme A pathway. CONCLUSION The results of this study indicate that the TLR4 variations and statins have an additive inhibitory effect on TLR4-mediated inflammatory response, providing a potential explanation for the finding that the beneficial effect of statins on cardiovascular risk is dependent on TLR4 genotype.
Collapse
|
34
|
Hypo-responsiveness of interleukin-8 production in human embryonic epithelial intestine 407 cells independent of NF-κB pathway: New lessons from endotoxin and ribotoxic deoxynivalenol. Toxicol Appl Pharmacol 2008; 231:94-102. [DOI: 10.1016/j.taap.2008.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/04/2008] [Accepted: 03/25/2008] [Indexed: 11/19/2022]
|
35
|
Erridge C, Kennedy S, Spickett CM, Webb DJ. Oxidized phospholipid inhibition of toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J Biol Chem 2008; 283:24748-59. [PMID: 18559343 DOI: 10.1074/jbc.m800352200] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysaccharide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor-alpha production, IkappaBalpha degradation, p38 MAPK phosphorylation, and NF-kappaB-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I.C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from approximately 30 microm. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.
Collapse
Affiliation(s)
- Clett Erridge
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Univesity of Strathclyde, 204 George St., Glasgow G1 1XW, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Erridge C. The Roles of Pathogen-Associated Molecular Patterns in Atherosclerosis. Trends Cardiovasc Med 2008; 18:52-6. [DOI: 10.1016/j.tcm.2007.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/23/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
|