1
|
Liu Y, Li P, Yang Y. Advancements in utilizing CD34 + stem cells for repairing diabetic vascular damage. Biochem Biophys Res Commun 2025; 750:151411. [PMID: 39889623 DOI: 10.1016/j.bbrc.2025.151411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Diabetes-related vascular damage is a frequent complication of diabetes that results in structural and functional impairment of blood vessels. This damage significantly heightens the risk of cardiovascular events. CD34+ stem cells have shown great potential in the treatment of diabetes-related vascular damage due to their differentiation and vascular repair capabilities. This article provides a review of the research hotspots on the role and mechanisms of CD34+ stem cells in the repair of diabetes-related vascular damage, including changes in cell quantity and function during diabetes, as well as the latest research on activating, protecting, or repairing these cells to prevent or treat vascular damage. The article also summarizes the impact of diabetes on the mobilization and function of CD34+ stem cells, emphasizing how diabetes negatively affects their ability to promote angiogenesis. These deficits can result in various complications, including issues with small blood vessels, coronary heart disease, foot problems, and retinal complications. On the clinical side, the article highlights the positive effects of CD34+ stem cell therapy in improving vascular function and tissue repair in diabetic patients, while also mentioning the inconsistencies in results between diabetes models and clinical studies, which necessitate further research to optimize treatment strategies. It emphasizes the importance of enhancing the mobilization, homing, and repair capabilities of CD34+ stem cells, as well as combining them with other treatment methods, to develop more effective strategies for treating diabetes-related vascular damage.
Collapse
Affiliation(s)
- Yiting Liu
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Rehak L, Giurato L, Monami M, Meloni M, Scatena A, Panunzi A, Manti GM, Caravaggi CMF, Uccioli L. The Immune-Centric Revolution Translated into Clinical Application: Peripheral Blood Mononuclear Cell (PBMNC) Therapy in Diabetic Patients with No-Option Critical Limb-Threatening Ischemia (NO-CLTI)-Rationale and Meta-Analysis of Observational Studies. J Clin Med 2024; 13:7230. [PMID: 39685690 DOI: 10.3390/jcm13237230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic limb-threatening ischemia (CLTI), the most advanced form of peripheral arterial disease (PAD), is the comorbidity primarily responsible for major lower-limb amputations, particularly for diabetic patients. Autologous cell therapy has been the focus of efforts over the past 20 years to create non-interventional therapeutic options for no-option CLTI to improve limb perfusion and wound healing. Among the different available techniques, peripheral blood mononuclear cells (PBMNC) appear to be the most promising autologous cell therapy due to physio-pathological considerations and clinical evidence, which will be discussed in this review. A meta-analysis of six clinical studies, including 256 diabetic patients treated with naive, fresh PBMNC produced via a selective filtration point-of-care device, was conducted. PBMNC was associated with a mean yearly amputation rate of 15.7%, a mean healing rate of 62%, and a time to healing of 208.6 ± 136.5 days. Moreover, an increase in TcPO2 and a reduction in pain were observed. All-cause mortality, with a mean rate of 22.2% and a yearly mortality rate of 18.8%, was reported. No serious adverse events were reported. Finally, some practical and financial considerations are provided, which point to the therapy's recommendation as the first line of treatment for this particular and crucial patient group.
Collapse
Affiliation(s)
- Laura Rehak
- Athena Cell Therapy Technologies, 50126 Florence, Italy
| | - Laura Giurato
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Matteo Monami
- Department of Diabetology Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy
| | - Marco Meloni
- Diabetic Foot Unit, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Alessia Scatena
- Diabetology Unit, San Donato Hospital Arezzo, Local Health Authorities Southeast Tuscany, 52100 Arezzo, Italy
| | - Andrea Panunzi
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
- PhD School of Applied Medical and Surgical Sciences, University of Rome Tor Vergata Italy, 00133 Rome, Italy
| | | | | | - Luigi Uccioli
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
| |
Collapse
|
3
|
Patel AS, Ludwinski FE, Mondragon A, Nuthall K, Saha P, Lyons O, Squadrito ML, Siow R, De Palma M, Smith A, Modarai B. HTATIP2 regulates arteriogenic activity in monocytes from patients with limb ischemia. JCI Insight 2023; 8:e131419. [PMID: 37847559 PMCID: PMC10807724 DOI: 10.1172/jci.insight.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Use of autologous cells isolated from elderly patients with multiple comorbidities may account for the modest efficacy of cell therapy in patients with chronic limb threatening ischemia (CLTI). We aimed to determine whether proarteriogenic monocyte/macrophages (Mo/MΦs) from patients with CLTI were functionally impaired and to demonstrate the mechanisms related to any impairment. Proarteriogenic Mo/MΦs isolated from patients with CLTI were found to have an impaired capacity to promote neovascularization in vitro and in vivo compared with those isolated from healthy controls. This was associated with increased expression of human HIV-1 TAT interactive protein-2 (HTATIP2), a transcription factor known to suppress angiogenesis/arteriogenesis. Silencing HTATIP2 restored the functional capacity of CLTI Mo/MΦs, which was associated with increased expression of arteriogenic regulators Neuropilin-1 and Angiopoietin-1, and their ability to enhance angiogenic (endothelial tubule formation) and arteriogenic (smooth muscle proliferation) processes in vitro. In support of the translational relevance of our findings, silencing HTATIP2 in proarteriogenic Mo/MΦs isolated from patients with CLTI rescued their capacity to enhance limb perfusion in the ischemic hindlimb by effecting greater angiogenesis and arteriogenesis. Ex vivo modulation of HTATIP2 may offer a strategy for rescuing the functional impairment of pro-angio/arteriogenic Mo/MΦs prior to autologous delivery and increase the likelihood of clinical efficacy.
Collapse
Affiliation(s)
- Ashish S. Patel
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Francesca E. Ludwinski
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Angeles Mondragon
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Katherine Nuthall
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Prakash Saha
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Oliver Lyons
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Mario Leonardo Squadrito
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Richard Siow
- Department of Vascular Biology and Inflammation, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alberto Smith
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Bijan Modarai
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| |
Collapse
|
4
|
Soria B, Escacena N, Gonzaga A, Soria-Juan B, Andreu E, Hmadcha A, Gutierrez-Vilchez AM, Cahuana G, Tejedo JR, De la Cuesta A, Miralles M, García-Gómez S, Hernández-Blasco L. Cell Therapy of Vascular and Neuropathic Complications of Diabetes: Can We Avoid Limb Amputation? Int J Mol Sci 2023; 24:17512. [PMID: 38139339 PMCID: PMC10743405 DOI: 10.3390/ijms242417512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, a leg is amputated approximately every 30 seconds, with an estimated 85 percent of these amputations being attributed to complications arising from diabetic foot ulcers (DFU), as stated by the American Diabetes Association. Peripheral arterial disease (PAD) is a risk factor resulting in DFU and can, either independently or in conjunction with diabetes, lead to recurring, slow-healing ulcers and amputations. According to guidelines amputation is the recommended treatment for patients with no-option critical ischemia of the limb (CTLI). In this article we propose cell therapy as an alternative strategy for those patients. We also suggest the optimal time-frame for an effective therapy, such as implanting autologous mononuclear cells (MNCs), autologous and allogeneic mesenchymal stromal cells (MSC) as these treatments induce neuropathy relief, regeneration of the blood vessels and tissues, with accelerated ulcer healing, with no serious side effects, proving that advanced therapy medicinal product (ATMPs) application is safe and effective and, hence, can significantly prevent limb amputation.
Collapse
Affiliation(s)
- Bernat Soria
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- CIBERDEM Network Research Center for Diabetes and Associated Metabolic Diseases, Carlos III Health Institute, 28029 Madrid, Spain
| | - Natalia Escacena
- Fresci Consultants, Human Health Innovation, 08025 Barcelona, Spain
| | - Aitor Gonzaga
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
| | - Barbara Soria-Juan
- Reseaux Hôpitalieres Neuchatelois et du Jura, 2000 Neuchâtel, Switzerland
| | - Etelvina Andreu
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Department of Applied Physics, University Miguel Hernández Elche, 03202 Elche, Spain
| | - Abdelkrim Hmadcha
- Biosanitary Research Institute (IIB-VIU), Valencian International University (VIU), 46002 Valencia, Spain
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | - Ana Maria Gutierrez-Vilchez
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Department of Pharmacology, Pediatrics and Organic Chemistry, University Miguel Hernández, 03202 Elche, Spain
| | - Gladys Cahuana
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan R. Tejedo
- CIBERDEM Network Research Center for Diabetes and Associated Metabolic Diseases, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | | | - Manuel Miralles
- University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | | | - Luis Hernández-Blasco
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
| |
Collapse
|
5
|
Liu Z, Ning W, Liang J, Zhang T, Yang Q, Zhang J, Xie M. Top 100 cited articles in the thromboangiitis obliterans: a bibliometric analysis and visualized study. Eur J Med Res 2023; 28:551. [PMID: 38042838 PMCID: PMC10693135 DOI: 10.1186/s40001-023-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
OBJECTIVE Thromboangiitis obliterans (TAO) is one of the most common types of peripheral arterial disease (PAD). This study aimed to explore the characteristics of the top 100 most cited articles in the TAO. METHODS A bibliometric analysis based on the Web of Science (WOS) database was performed. Literature was retrieved and ranked by the citations. Listed below are the top 100 citations, including original articles, reviews, full-length proceeding papers, and case reports that were included for analysis. The type of literature, research areas, and languages were recorded. The trends of citations including the total citations, an analysis of publication and citation numbers were conducted each year. We analyzed citations from highly cited countries, authors, institutions, and journals. Research hotspots were gathered by a visualized analysis of author keywords. RESULTS Most of the highly cited literature was original articles. A rising trend was observed in the number of citations per year. The peaks in the number of highly cited articles appeared in the year 1998 and 2006. The majority of the articles focused on the cardiovascular system and surgery. Journal of Vascular Surgery published most of the highly cited articles. The USA and Japan contributed nearly half the number of highly cited articles. Mayo Clinic and Nagoya University were highly cited institutions. Shionoya S and Olin JW were both the author with the largest number of citations and the most highly cited author in the reference. Articles that were highly cited most often addressed the following topics: "vasculitis", "autoimmune disease", and "critical limb ischemia". Keywords that were mostly used in recent years were "stem cell therapy", "progenitor therapy", and "immunoadsorption". The detection of bursts of author keywords showed the following: "permeability", "differentiation", and "critical limb ischemia" are recent keywords that have burst. CONCLUSIONS In this study, the highly cited contributors in the field of TAO research were identified. Most cited articles in the top 100 focused on the cardiovascular system and surgery. Treatment and pathophysiology including stem cell therapy, progenitor therapy, genetics, autoimmunity, and inflammation are the hotspots of TAO.
Collapse
Affiliation(s)
- Zhenxing Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Weiwei Ning
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jinlong Liang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingxu Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ming Xie
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
6
|
Liu Z, Zhou C, Guo H, Wang M, Liang J, Zhang Y. Knowledge Mapping of Global Status and Trends for Thromboangiitis Obliterans: A Bibliometrics and Visual Analysis. J Pain Res 2023; 16:4071-4087. [PMID: 38054111 PMCID: PMC10695024 DOI: 10.2147/jpr.s437521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Objective Thromboangiitis obliterans (TAO) is a segmental nonatherosclerotic inflammatory vascular disease characterized by recurrent progressive inflammatory reactions and thrombosis in the small and medium-sized arteries and veins of the extremities. However, there are few bibliometric studies on TAO. Therefore, this study was employed to generalize the research status, hotspots and development trends of TAO-related research. Methods The data from 1999 to 2022 were collected from the Web of Science core collection database, and analyzed through bibliometrics software. VOSviewer was utilized to carry out academic collaboration between different countries/regions, institutions, and authors, visualization map of co-cited authors, journals, reference, and co-occurring keywords. CiteSpace was used to analyze the dual-map of journals, keyword bursts, and timeline of keywords. Bar and pie charts in this study were statistically analyzed and graphed through Microsoft Excel 2021. Scimago Graphica was applied to map the academic collaboration between different countries/regions. Results A total of 553 literatures were involved in this study. Japan at the leading global position not only in the number of publications, but also total citations, average citations and H-index. Institution with the major contribution to TAO research is Mashhad University of Medical Sciences, and Nagoya University. Annals of Vascular Surgery, Angiology, Journal of Vascular Surgery are the main publication channel for articles related to TAO. Fazeli, B., Iwai, T., and Kihara, Y. are major contributors in this field. The studies on TAO keywords could be grouped into four clusters: Etiology, Mechanism, Cell therapy and Clinical therapy. Conclusion Although the number of TAO publications has fluctuated over the past 20 years, it has generally shown a steady upward trend. Etiology and treatment research on TAO and some keywords such as trail, therapy, outcome, management, stem cells, angioplasty, and activation will become a hot spot in the future.
Collapse
Affiliation(s)
- Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Chenhan Zhou
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Min Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
7
|
Dubský M, Husáková J, Sojáková D, Fejfarová V, Jude EB. Cell Therapy of Severe Ischemia in People with Diabetic Foot Ulcers-Do We Have Enough Evidence? Mol Diagn Ther 2023; 27:673-683. [PMID: 37740111 PMCID: PMC10590286 DOI: 10.1007/s40291-023-00667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 09/24/2023]
Abstract
This current opinion article critically evaluates the efficacy of autologous cell therapy (ACT) for chronic limb-threatening ischemia (CLTI), especially in people with diabetes who are not candidates for standard revascularization. This treatment approach has been used in 'no-option' CLTI in the last two decades and more than 1700 patients have received ACT worldwide. Here we analyze the level of published evidence of ACT as well as our experience with this treatment method. Many studies have shown that ACT is safe and an effective method for patients with the most severe lower limb ischemia. However, some trials did not show any benefit of ACT, and there is some heterogeneity in the types of injected cells, route of administration and assessed endpoints. Nevertheless, we believe that ACT plays an important role in a comprehensive treatment of patients with diabetic foot and severe ischemia.
Collapse
Affiliation(s)
- Michal Dubský
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic.
| | - Jitka Husáková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic
| | - Dominika Sojáková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic
| | | | - Edward B Jude
- Diabetes Center, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton Under Lyne, UK.
- University of Manchester, Lancashire, UK.
| |
Collapse
|
8
|
Mohamad Yusoff F, Higashi Y. Mesenchymal Stem/Stromal Cells for Therapeutic Angiogenesis. Cells 2023; 12:2162. [PMID: 37681894 PMCID: PMC10486439 DOI: 10.3390/cells12172162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are known to possess medicinal properties to facilitate vascular regeneration. Recent advances in the understanding of the utilities of MSCs in physiological/pathological tissue repair and technologies in isolation, expansion, and enhancement strategies have led to the use of MSCs for vascular disease-related treatments. Various conditions, including chronic arterial occlusive disease, diabetic ulcers, and chronic wounds, cause significant morbidity in patients. Therapeutic angiogenesis by cell therapy has led to the possibilities of treatment options in promoting angiogenesis, treating chronic wounds, and improving amputation-free survival. Current perspectives on the options for the use of MSCs for therapeutic angiogenesis in vascular research and in medicine, either as a monotherapy or in combination with conventional interventions, for treating patients with peripheral artery diseases are discussed in this review.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
- Division of Regeneration and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
9
|
Fujita Y, Kawamoto A. Therapeutic Angiogenesis Using Autologous CD34-Positive Cells for Vascular Diseases. Ann Vasc Dis 2022; 15:241-252. [PMID: 36644256 PMCID: PMC9816028 DOI: 10.3400/avd.ra.22-00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 12/25/2022] Open
Abstract
CD34 is a cell surface marker, which is expressed in various somatic stem/progenitor cells such as bone marrow (BM)-derived hematopoietic stem cells and endothelial progenitor cells (EPCs), skeletal muscle satellite cells, epithelial hair follicle stem cells, and adipose tissue mesenchymal stem cells. CD34+ cells in BM and peripheral blood are known as a rich source of EPCs. Thus, vascular regeneration therapy using granulocyte colony stimulating factor (G-CSF) mobilized- or BM CD34+ cells has been carried out in patients with various vascular diseases such as chronic severe lower limb ischemia, acute myocardial infarction, refractory angina, ischemic cardiomyopathy, and dilated cardiomyopathy as well as ischemic stroke. Pilot and randomized clinical trials demonstrated the safety, feasibility, and effectiveness of the CD34+ cell therapy in peripheral arterial, cardiovascular, and cerebrovascular diseases. This review provides an overview of the preclinical and clinical reports of CD34+ cell therapy for vascular regeneration.
Collapse
Affiliation(s)
- Yasuyuki Fujita
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Atsuhiko Kawamoto
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan,Corresponding author: Atsuhiko Kawamoto, MD, PhD. Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Tel: +81-78-304-5772, Fax: +81-78-304-5263, E-mail:
| |
Collapse
|
10
|
Shirbaghaee Z, Hassani M, Heidari Keshel S, Soleimani M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res Ther 2022; 13:462. [PMID: 36068595 PMCID: PMC9449296 DOI: 10.1186/s13287-022-03148-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Critical limb ischemia (CLI), the terminal stage of peripheral arterial disease (PAD), is characterized by an extremely high risk of amputation and vascular issues, resulting in severe morbidity and mortality. In patients with severe limb ischemia with no alternative therapy options, such as endovascular angioplasty or bypass surgery, therapeutic angiogenesis utilizing cell-based therapies is vital for increasing blood flow to ischemic regions. Mesenchymal stem cells (MSCs) are currently considered one of the most encouraging cells as a regenerative alternative for the surgical treatment of CLI, including restoring tissue function and repairing ischemic tissue via immunomodulation and angiogenesis. The regenerative treatments for limb ischemia based on MSC therapy are still considered experimental. Despite recent advances in preclinical and clinical research studies, it is not recommended for regular clinical use. In this study, we review the immunomodulatory features of MSC besides the current understanding of different sources of MSC in the angiogenic treatment of CLI subjects and their potential applications as therapeutic agents. Specifically, this paper concentrates on the most current clinical application issues, and several recommendations are provided to improve the efficacy of cell therapy for CLI patients.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Applied Cell Science and Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Mahmud S, Alam S, Emon NU, Boby UH, Kamruzzaman, Ahmed F, Monjur-Al-Hossain ASM, Tahamina A, Rudra S, Ajrin M. Opportunities and challenges in stem cell therapy in cardiovascular diseases: Position standing in 2022. Saudi Pharm J 2022; 30:1360-1371. [PMID: 36249945 PMCID: PMC9563042 DOI: 10.1016/j.jsps.2022.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/17/2022] [Indexed: 10/29/2022] Open
Abstract
This study intends to evaluate the development, importance, pre-clinical and clinical study evaluation of stem cell therapy for the treatment of cardiovascular disease. Cardiovascular disease is one of the main causes of fatality in the whole world. Though there are great progressions in the pharmacological and other interventional treatment options, heart diseases remain a common disorder that causes long-term warnings. Recent accession promotes the symptoms and slows down the adverse effects regarding cardiac remodelling. But they cannot locate the problems of immutable loss of cardiac tissues. In this case, stem cell treatment holds a promising challenge. Stem cells are the cells that are capable of differentiating into many cells according to their needs. So, it is assumed that these cells can distinguish into many cells and if these cells can be individualized into cardiac cells then they can be used to replace the damaged tissues of the heart. There is some abridgment in this therapy, none the less stem cell therapy remains a hopeful destination in the treatment of heart disease.
Collapse
Affiliation(s)
- Shabnur Mahmud
- School of Health and Life Sciences, Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Safaet Alam
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Umme Habiba Boby
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Kamruzzaman
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - A S M Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - Afroza Tahamina
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sajib Rudra
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Marzina Ajrin
- Department of Pharmacy, University of Science and Technology Chittagong, Chittagong 4202, Bangladesh
| |
Collapse
|
12
|
Lozano Navarro LV, Chen X, Giratá Viviescas LT, Ardila-Roa AK, Luna-Gonzalez ML, Sossa CL, Arango-Rodríguez ML. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res Ther 2022; 13:345. [PMID: 35883198 PMCID: PMC9327195 DOI: 10.1186/s13287-022-03043-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Peripheral arterial disease is atherosclerotic occlusive disease of the lower extremity arteries and afflicts hundreds of millions of individuals worldwide. Its most severe manifestation is chronic limb-threatening ischemia (Petersen et al. (Science 300(5622):1140–2, 2003)), which is associated with severe pain at rest in the limbs, which progresses to necrosis, limb amputation, and/or death of the patient. Consequently, the care of these patients is considered a financial burden for both patients and health systems. Multidisciplinary endeavors are required to address this refractory disease and to find definitive solutions that lead to improved living conditions. Revascularization is the cornerstone of therapy for preventing limb amputation, and both open vascular surgery and endovascular therapy play a key role in the treatment of patients with CLI. Around one-third of these patients are not candidates for conventional surgical treatment, however, leading to higher amputation rates (approaching 20–25% at one year) with high morbidity and lower quality of life. Advances in regenerative medicine have enabled the development of cell-based therapies that promote the formation of new blood vessels. Particularly, mesenchymal stem cells (MSCs) have emerged as an attractive therapeutic agent in various diseases, including CLI, due to their role in tissue regeneration and immunomodulation. This review discusses the characteristics of MSCs, as well as their regenerative properties and their action mechanisms on CLI.
Collapse
Affiliation(s)
- Laura V Lozano Navarro
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia
| | - Xueyi Chen
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia
| | - Lady Tatiana Giratá Viviescas
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia
| | - Andrea K Ardila-Roa
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia
| | - Maria L Luna-Gonzalez
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia.,Programa Para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia
| | - Claudia L Sossa
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia.,Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia.,Programa Para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia.,Universidad de Valencia, Valencia, Spain
| | - Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia.
| |
Collapse
|
13
|
Implantation of Hypoxia-Induced Mesenchymal Stem Cell Advances Therapeutic Angiogenesis. Stem Cells Int 2022; 2022:6795274. [PMID: 35355589 PMCID: PMC8958070 DOI: 10.1155/2022/6795274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia preconditioning enhances the paracrine abilities of mesenchymal stem cells (MSCs) for vascular regeneration and tissue healing. Implantation of hypoxia-induced mesenchymal stem cells (hi-MSCs) may further improve limb perfusion in a murine model of hindlimb ischemia. This study is aimed at determining whether implantation of hi-MSCs is an effective modality for improving outcomes of treatment of ischemic artery diseases. We evaluated the effects of human bone marrow-derived MSC implantation on limb blood flow in an ischemic hindlimb model. hi-MSCs were prepared by cell culture under 1% oxygen for 24 hours prior to implantation. A total of 1 × 105 MSCs and hi-MSCs and phosphate-buffered saline (PBS) were intramuscularly implanted into ischemic muscles at 36 hours after surgery. Restoration of blood flow and muscle perfusion was evaluated by laser Doppler perfusion imaging. Blood perfusion recovery, enhanced vessel densities, and improvement of function of the ischemia limb were significantly greater in the hi-MSC group than in the MSC or PBS group. Immunochemistry revealed that hi-MSCs had higher expression levels of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor A than those in MSCs. In addition, an endothelial cell-inducing medium showed high expression levels of vascular endothelial growth factor, platelet endothelial cell adhesion molecule-1, and von Willebrand factor in hi-MSCs compared to those in MSCs. These findings suggest that pretreatment of MSCs with a hypoxia condition and implantation of hi-MSCs advances neovascularization capability with enhanced therapeutic angiogenic effects in a murine hindlimb ischemia model.
Collapse
|
14
|
Gui L, Chen Y, Diao Y, Chen Z, Duan J, Liang X, Li H, Liu K, Miao Y, Gao Q, Li Z, Yang J, Li Y. ROS-responsive nanoparticle-mediated delivery of CYP2J2 gene for therapeutic angiogenesis in severe hindlimb ischemia. Mater Today Bio 2022; 13:100192. [PMID: 34988419 PMCID: PMC8695365 DOI: 10.1016/j.mtbio.2021.100192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
With critical limb ischemia (CLI) being a multi-factorial disease, it is becoming evident that gene therapy with a multiple bio-functional growth factor could achieve better therapeutic outcomes. Cytochrome P450 epoxygenase-2J2 (CYP2J2) and its catalytic products epoxyeicosatrienoic acids (EETs) exhibit pleiotropic biological activities, including pro-angiogenic, anti-inflammatory and cardiovascular protective effects, which are considerably beneficial for reversing ischemia and restoring local blood flow in CLI. Here, we designed a nanoparticle-based pcDNA3.1-CYP2J2 plasmid DNA (pDNA) delivery system (nanoparticle/pDNA complex) composed of a novel three-arm star block copolymer (3S-PLGA-po-PEG), which was achieved by conjugating three-armed PLGA to PEG via the peroxalate ester bond. Considering the multiple bio-functions of CYP2J2-EETs and the sensitivity of the peroxalate ester bond to H2O2, this nanoparticle-based gene delivery system is expected to exhibit excellent pro-angiogenic effects while improving the high oxidative stress and inflammatory micro-environment in ischemic hindlimb. Our study reports the first application of CYP2J2 in the field of therapeutic angiogenesis for CLI treatment and our findings demonstrated good biocompatibility, stability and sustained release properties of the CYP2J2 nano-delivery system. In addition, this nanoparticle-based gene delivery system showed high transfection efficiency and efficient VEGF expression in vitro and in vivo. Intramuscular injection of nanoparticle/pDNA complexes into mice with hindlimb ischemia resulted in significant rapid blood flow recovery and improved muscle repair compared to mice treated with naked pDNA. In summary, 3S-PLGA-po-PEG/CYP2J2-pDNA complexes have tremendous potential and provide a practical strategy for the treatment of limb ischemia. Moreover, 3S-PLGA-po-PEG nanoparticles might be useful as a potential non-viral carrier for other gene delivery applications. Cytochrome P450 epoxygenase-2J2 (CYP2J2) was first applied in the field of therapeutic angiogenesis for critical limb ischemia treatment. The ROS-responsive three-arm star block copolymer (3S-PLGA-po-PEG) was synthesized with peroxalate ester as H2O2-responsive linkages through the esterification reaction of oxalyl chloride and hydroxyl group. The CYP2J2 nano-delivery system achieved high transfection efficiency and significant therapeutic angiogenesis effect.
Collapse
Affiliation(s)
- Liang Gui
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China.,Graduate School of Peking Union Medical College, Beijing, 100730, PR China.,Department of Vascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongpeng Diao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Kaijing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yuqing Miao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Qing Gao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Zhichao Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| |
Collapse
|
15
|
Dubský M, Husáková J, Bem R, Jirkovská A, Němcová A, Fejfarová V, Sutoris K, Kahle M, Jude EB. Comparison of the impact of autologous cell therapy and conservative standard treatment on tissue oxygen supply and course of the diabetic foot in patients with chronic limb-threatening ischemia: A randomized controlled trial. Front Endocrinol (Lausanne) 2022; 13:888809. [PMID: 36105404 PMCID: PMC9464922 DOI: 10.3389/fendo.2022.888809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autologous cell therapy (ACT) is a new treatment method for patients with diabetes and no-option chronic limb-threatening ischemia (NO-CLTI). We aimed to assess the impact of ACT on NO-CLTI in comparison with standard treatment (ST) in a randomized controlled trial. METHODS Diabetic patients with NO-CLTI were randomized to receive either ACT (n=21) or ST (n=19). After 12 weeks, those in the ST group, who did not improve were treated with ACT. The effect of ACT on ischemia and wound healing was assessed by changes in transcutaneous oxygen pressure (TcPO2) and the number of healed patients at 12 weeks. Pain was evaluated by Visual Analogue Scale (VAS). Amputation rates and amputation-free survival (AFS) were assessed in both groups. RESULTS During the first 12 weeks, TcPO2 increased in the ACT group from 20.8 ± 9.6 to 41.9 ± 18.3 mm Hg (p=0.005) whereas there was no change in the ST group (from 21.2 ± 11.4 to 23.9 ± 13.5 mm Hg). Difference in TcPO2 in the ACT group compared to ST group was 21.1 mm Hg (p=0.034) after 12 weeks. In the period from week 12 to week 24, when ST group received ACT, the TcPO2 in this group increased from 20.1 ± 13.9 to 41.9 ± 14.8 (p=0.005) while it did not change significantly in the ACT in this period. At 24 weeks, there was no significant difference in mean TcPO2 between the two groups. Wound healing was greater at 12 weeks in the ACT group compared to the ST group (5/16 vs. 0/13, p=0.048). Pain measured using VAS was reduced in the ACT group after 12 weeks compared to the baseline, and the difference in scores was again significant (p<0.001), but not in the ST group. There was no difference in rates of major amputation and AFS between ACT and ST groups at 12 weeks. CONCLUSIONS This study has showed that ACT treatment in patients with no-option CLTI and diabetic foot significantly improved limb ischemia and wound healing after 12 weeks compared to conservative standard therapy. Larger randomized controlled trials are needed to study the benefits of ACT in patients with NO-CLTI and diabetic foot disease. TRIAL REGISTRATION The trial was registered in the National Board of Health (EudraCT 2016-001397-15).
Collapse
Affiliation(s)
- Michal Dubský
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Michal Dubský,
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Robert Bem
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Alexandra Jirkovská
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Andrea Němcová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Karol Sutoris
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Clinic of Transplant Surgery, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Michal Kahle
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Department of Data Analysis, Statistics and Artificial Intelligence, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Edward B. Jude
- Tameside and Glossop Integrated Care NHS Foundation Trust and University of Manchester, Ashton under Lyne, United Kingdom
| |
Collapse
|
16
|
A Meta-Analysis of Randomized Controlled Trials on Therapeutic Efficacy and Safety of Autologous Cell Therapy for Atherosclerosis Obliterans. J Vasc Surg 2021; 75:1440-1449.e5. [PMID: 34788653 DOI: 10.1016/j.jvs.2021.10.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atherosclerosis obliterans (ASO) is a chronic occlusive arterial disease and the most common type of peripheral arterial disease. Current treatment options like medication and vascularization have limited effects for "no-option" patients, and stem cell therapy is considered a viable option although its application and efficacy have not been standardized. The objective of this review was to assess the safety and efficacy of autologous stem cell therapy in patients with ASO. METHODS We performed a literature search of published RCTs for ASO patients receiving stem cell therapy without a revascularization option. PubMed, Embase, and the Cochrane Library were searched. This study was conducted by a pair of authors independently and audited by a third author. Data were synthesized with a random-effect model. RESULTS 630 patients in 12 RCTs were included. The results showed that cell therapy significantly improved total amputation (RR: 0.64, p = 0.004, 95% CI: [0.47, 0.87]), major amputation (RR: 0.69, p = 0.02, 95% CI: [0.50, 0.94]), ankle-brachial index (ABI) (MD = 0.08, p = 0.004, 95% CI: [0.02, 0.13]), transcutaneous oxygen tension (TcO2) (MD = 11.52, p = 0.004, 95% CI: [3.60, 19.43]) and rest pain score (MD = -0.64, p = 0.007, 95% CI: [-1.10, -0.17]) compared to placebo or standard care. However, current studies showed cell therapy was not superior to placebo or standard care in all-cause death (RR: 0.75, p = 0.34, 95% CI: [0.41, 1.36]) and ulcer size (MD = -8.85, p = 0.39, CI: [-29.05,11.36]). LIMITATION The number of trials included was limited. Moreover, most trials were designed for "no-option" patients and thus the results should be applied with caution to other PAD patients. CONCLUSION ASO patients can benefit from autologous cell therapy in limb salvage, limb blood perfusion, and rest pain alleviation.
Collapse
|
17
|
The Management of Ischemic Limb in Thromboangiitis Obliterans (Buerger’s Disease). Indian J Surg 2021. [DOI: 10.1007/s12262-021-02748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
18
|
Helfer BM, Ponomarev V, Patrick PS, Blower PJ, Feitel A, Fruhwirth GO, Jackman S, Pereira Mouriès L, Park MVDZ, Srinivas M, Stuckey DJ, Thu MS, van den Hoorn T, Herberts CA, Shingleton WD. Options for imaging cellular therapeutics in vivo: a multi-stakeholder perspective. Cytotherapy 2021; 23:757-773. [PMID: 33832818 PMCID: PMC9344904 DOI: 10.1016/j.jcyt.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Cell-based therapies have been making great advances toward clinical reality. Despite the increase in trial activity, few therapies have successfully navigated late-phase clinical trials and received market authorization. One possible explanation for this is that additional tools and technologies to enable their development have only recently become available. To support the safety evaluation of cell therapies, the Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee, a multisector collaborative committee, polled the attendees of the 2017 International Society for Cell & Gene Therapy conference in London, UK, to understand the gaps and needs that cell therapy developers have encountered regarding safety evaluations in vivo. The goal of the survey was to collect information to inform stakeholders of areas of interest that can help ensure the safe use of cellular therapeutics in the clinic. This review is a response to the cellular imaging interests of those respondents. The authors offer a brief overview of available technologies and then highlight the areas of interest from the survey by describing how imaging technologies can meet those needs. The areas of interest include imaging of cells over time, sensitivity of imaging modalities, ability to quantify cells, imaging cellular survival and differentiation and safety concerns around adding imaging agents to cellular therapy protocols. The Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee believes that the ability to understand therapeutic cell fate is vital for determining and understanding cell therapy efficacy and safety and offers this review to aid in those needs. An aim of this article is to share the available imaging technologies with the cell therapy community to demonstrate how these technologies can accomplish unmet needs throughout the translational process and strengthen the understanding of cellular therapeutics.
Collapse
Affiliation(s)
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - P Stephen Patrick
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alexandra Feitel
- Formerly, Health and Environmental Sciences Institute, US Environmental Protection Agency, Washington, DC, USA
| | - Gilbert O Fruhwirth
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shawna Jackman
- Charles River Laboratories, Shrewsbury, Massachusetts, USA
| | | | - Margriet V D Z Park
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, the Netherlands; Cenya Imaging BV, Amsterdam, the Netherlands
| | - Daniel J Stuckey
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Mya S Thu
- Visicell Medical Inc, La Jolla, California, USA
| | | | | | | |
Collapse
|
19
|
Mohamad Yusoff F, Kajikawa M, Yamaji T, Takaeko Y, Hashimoto Y, Mizobuchi A, Han Y, Kishimoto S, Maruhashi T, Nakashima A, Higashi Y. Low-intensity pulsed ultrasound decreases major amputation in patients with critical limb ischemia: 5-year follow-up study. PLoS One 2021; 16:e0256504. [PMID: 34411183 PMCID: PMC8376014 DOI: 10.1371/journal.pone.0256504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Various therapeutic strategies for angiogenesis are performed to improve symptoms in patients with critical limb ischemia (CLI). Pre-clinical studies have shown that low-intensity pulsed ultrasound (LIPUS) exposure induces angiogenesis. LIPUS may be a new stratergy for treatment of CLI. The purpose of this pilot trial was to evaluate outcomes in patients with CLI who were treated with LIPUS. Fourteen patients with CLI, who were not candidates for angioplasty or surgical revascularization, were enrolled in this study. Historical control data were obtained from the Hiroshima University PAD database. The primary endpoints were major amputation and death. The outcomes were compared in 16 lower limbs of the 14 patients with CLI who were treated with LIPUS and in 14 lower limbs of 14 patients with CLI as historical controls. All patients were followed for after 5 years after treatment with LIPUS. The mean duration of LIPUS exposure in the LIPUS group was 381± 283 days. During the 5-year follow-up periods, there were 3 major amputations and 7 deaths in the LIPUS group and there were 14 major amputations and 7 deaths in the historical control group. The overall amputation-free survival rate was significantly higher in patients who were treated with LIPUS than in historical controls. There was no significant difference between overall mortality-free survival rates in the LIPUS group and historical control group. LIPUS is a noninvasive option for therapeutic angiogenesis with the potential to reduce the incidence of major amputations in patients with CLI.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Takayuki Yamaji
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yu Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Aya Mizobuchi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yiming Han
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
20
|
Greenspan LJ, Weinstein BM. To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis 2021; 24:251-269. [PMID: 33449300 PMCID: PMC8205957 DOI: 10.1007/s10456-020-09761-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Endothelial cells display an extraordinary plasticity both during development and throughout adult life. During early development, endothelial cells assume arterial, venous, or lymphatic identity, while selected endothelial cells undergo additional fate changes to become hematopoietic progenitor, cardiac valve, and other cell types. Adult endothelial cells are some of the longest-lived cells in the body and their participation as stable components of the vascular wall is critical for the proper function of both the circulatory and lymphatic systems, yet these cells also display a remarkable capacity to undergo changes in their differentiated identity during injury, disease, and even normal physiological changes in the vasculature. Here, we discuss how endothelial cells become specified during development as arterial, venous, or lymphatic endothelial cells or convert into hematopoietic stem and progenitor cells or cardiac valve cells. We compare findings from in vitro and in vivo studies with a focus on the zebrafish as a valuable model for exploring the signaling pathways and environmental cues that drive these transitions. We also discuss how endothelial plasticity can aid in revascularization and repair of tissue after damage- but may have detrimental consequences under disease conditions. By better understanding endothelial plasticity and the mechanisms underlying endothelial fate transitions, we can begin to explore new therapeutic avenues.
Collapse
Affiliation(s)
- Leah J Greenspan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Chen T, Ye B, Tan J, Yang H, He F, Khalil RA. CD146+Mesenchymal stem cells treatment improves vascularization, muscle contraction and VEGF expression, and reduces apoptosis in rat ischemic hind limb. Biochem Pharmacol 2021; 190:114530. [PMID: 33891966 DOI: 10.1016/j.bcp.2021.114530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
Peripheral arterial disease (PAD) is an increasingly common narrowing of the peripheral arteries that can lead to lower limb ischemia, muscle weakness and gangrene. Surgical vein or arterial grafts could improve PAD, but may not be suitable in elderly patients, prompting research into less invasive approaches. Mesenchymal stem cells (MSCs) have been proposed as potential therapy, but their effectiveness and underlying mechanisms in limb ischemia are unclear. We tested the hypothesis that treatment with naive MSCs (nMSCs) or MSCs expressing CD146 (CD146+MSCs) could improve vascularity and muscle function in rat model of hind-limb ischemia. Sixteen month old Sprague-Dawley rats were randomly assigned to 4 groups: sham-operated control, ischemia, ischemia + nMSCs and ischemia+CD146+MSCs. After 4 weeks of respective treatment, rat groups were assessed for ischemic clinical score, Tarlov score, muscle capillary density, TUNEL apoptosis assay, contractile force, and vascular endothelial growth factor (VEGF) mRNA expression. CD146+MSCs showed greater CD146 mRNA expression than nMSCs. Treatment with nMSCs or CD146+MSCs improved clinical and Tarlov scores, muscle capillary density, contractile force and VEGF mRNA expression in ischemic limbs as compared to non-treated ischemia group. The improvements in muscle vascularity and function were particularly greater in ischemia+CD146+MSCs than ischemia + nMSCs group. TUNEL positive apoptotic cells were least abundant in ischemia+CD146+MSCs compared with ischemia + nMSCs and non-treated ischemia groups. Thus, MSCs particularly those expressing CD146 improve vascularity, muscle function and VEGF expression and reduce apoptosis in rat ischemic limb, and could represent a promising approach to improve angiogenesis and muscle function in PAD.
Collapse
Affiliation(s)
- Tao Chen
- Department of Vascular Surgery, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China; Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
| | - Bo Ye
- Department of Vascular Surgery, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Jing Tan
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Haifeng Yang
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Faming He
- Department of Vascular Surgery, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Gu Y, Rampin A, Alvino VV, Spinetti G, Madeddu P. Cell Therapy for Critical Limb Ischemia: Advantages, Limitations, and New Perspectives for Treatment of Patients with Critical Diabetic Vasculopathy. Curr Diab Rep 2021; 21:11. [PMID: 33651185 PMCID: PMC7925447 DOI: 10.1007/s11892-021-01378-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW To provide a highlight of the current state of cell therapy for the treatment of critical limb ischemia in patients with diabetes. RECENT FINDINGS The global incidence of diabetes is constantly growing with consequent challenges for healthcare systems worldwide. In the UK only, NHS costs attributed to diabetic complications, such as peripheral vascular disease, amputation, blindness, renal failure, and stroke, average £10 billion each year, with cost pressure being estimated to get worse. Although giant leaps forward have been registered in the scope of early diagnosis and optimal glycaemic control, an effective treatment for critical limb ischemia is still lacking. The present review aims to provide an update of the ongoing work in the field of regenerative medicine. Recent advancements but also limitations imposed by diabetes on the potential of the approach are addressed. In particular, the review focuses on the perturbation of non-coding RNA networks in progenitor cells and the possibility of using emerging knowledge on molecular mechanisms to design refined protocols for personalized therapy. The field of cell therapy showed rapid progress but has limitations. Significant advances are foreseen in the upcoming years thanks to a better understanding of molecular bottlenecks associated with the metabolic disorders.
Collapse
Affiliation(s)
- Y Gu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - A Rampin
- Laboratory of Cardiovascular Research, IRCCS, MultiMedica, Milan, Italy
| | - V V Alvino
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - G Spinetti
- Laboratory of Cardiovascular Research, IRCCS, MultiMedica, Milan, Italy
| | - P Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
23
|
Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. Int J Mol Sci 2021; 22:ijms22052335. [PMID: 33652743 PMCID: PMC7956816 DOI: 10.3390/ijms22052335] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Critical limb ischemia (CLI) constitutes the most severe form of peripheral arterial disease (PAD), it is characterized by progressive blockade of arterial vessels, commonly correlated to atherosclerosis. Currently, revascularization strategies (bypass grafting, angioplasty) remain the first option for CLI patients, although less than 45% of them are eligible for surgical intervention mainly due to associated comorbidities. Moreover, patients usually require amputation in the short-term. Angiogenic cell therapy has arisen as a promising alternative for these "no-option" patients, with many studies demonstrating the potential of stem cells to enhance revascularization by promoting vessel formation and blood flow recovery in ischemic tissues. Herein, we provide an overview of studies focused on the use of angiogenic cell therapies in CLI in the last years, from approaches testing different cell types in animal/pre-clinical models of CLI, to the clinical trials currently under evaluation. Furthermore, recent alternatives related to stem cell therapies such as the use of secretomes, exosomes, or even microRNA, will be also described.
Collapse
|
24
|
Niven M, Sivak G, Baytner S, Liberson R, Bulvik S, Porat Y, Frogel M, Shenkman L, Grajower M, Veith F, Belkin M. Changing the Course of Peripheral Arterial Disease Using Adult Stem Progenitor Cells. STEM CELL THERAPY FOR VASCULAR DISEASES 2021:245-280. [DOI: 10.1007/978-3-030-56954-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
25
|
Kim W, Choi D, Jang Y, Nam CM, Hur SH, Hong MK. Effect of intentional restriction of venous return on tissue oxygenation in a porcine model of acute limb ischemia. PLoS One 2020; 15:e0243033. [PMID: 33318709 PMCID: PMC7735909 DOI: 10.1371/journal.pone.0243033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION A sufficient oxygen supply to ischemic limb tissue is the most important requirement for wound healing and limb salvage. We investigated whether partial venous occlusion in the common iliac vein (CIV) causes a further increase of venous oxygenation in a porcine model of acute hindlimb ischemia. MATERIALS AND METHODS In 7 pigs, the model of acute hindlimb ischemia was created with intra-vascular embolization of the common iliac artery (CIA). The arterial and venous oxygen saturation was evaluated at different moments. Oxygen saturation was evaluated at baseline (T0), just after the arterial embolization (T1), at 10 minutes (T2), at 20 minutes (T3), and at 40 minutes (T4). Next, an intentional partial venous occlusion was achieved by inflating the vascular balloon at the level of the right CIV. Then, blood sampling was repeated at 5 minutes (T5), at 15 minutes (T6), and at 25 minutes (T7). RESULTS The arterial oxygen saturation in the right SFA was similar during all phases. In contrast, after arterial embolization, an immediate reduction of venous oxygen saturation was observed (from 85.57 ± 1.72 at T0 to 71.86 ± 7.58 at T4). After the partial venous occlusion, interestingly, the venous oxygen saturations (T5-T7) were significantly increased, again. The venous oxygen saturations evaluated in the hindlimb ischemia with partial venous occlusion and in the control limb (without partial venous occlusion) were significantly over time. Venous oxygen saturations in the experimental limbs were higher than those in the control limbs (79.28 ± 4.82 vs 59.00 ± 2.82, p-value <0.001, 79.71 ± 4.78 vs 60.00 ± 4.24 at T7, p-value <0.001). CONCLUSIONS Partial venous occlusion results in an increase of venous oxygen saturation in the ischemic limb, while significant changes in venous oxygen saturation are not observed in the control limb. An explanation for this may be that the oxygen consumption in the limb tissue is increased because it gets congested with the partial venous occlusion in the right CIV.
Collapse
Affiliation(s)
- Wonho Kim
- Department of Internal Medicine, Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Cardiology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Donghoon Choi
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Yangsoo Jang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Chung Mo Nam
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ho Hur
- Division of Cardiology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | - Myeong-Ki Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, Republic of Korea
| |
Collapse
|
26
|
Rojas-Torres M, Jiménez-Palomares M, Martín-Ramírez J, Beltrán-Camacho L, Sánchez-Gomar I, Eslava-Alcon S, Rosal-Vela A, Gavaldá S, Durán-Ruiz MC. REX-001, a BM-MNC Enriched Solution, Induces Revascularization of Ischemic Tissues in a Murine Model of Chronic Limb-Threatening Ischemia. Front Cell Dev Biol 2020; 8:602837. [PMID: 33363160 PMCID: PMC7755609 DOI: 10.3389/fcell.2020.602837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Bone Marrow Mononuclear Cells (BM-MNC) constitute a promising alternative for the treatment of Chronic Limb-Threatening ischemia (CLTI), a disease characterized by extensive blockade of peripheral arteries, clinically presenting as excruciating pain at rest and ischemic ulcers which may lead to gangrene and amputation. BM-MNC implantation has shown to be efficient in promoting angiogenesis and ameliorating ischemic symptoms in CLTI patients. However, the variability seen between clinical trials makes necessary a further understanding of the mechanisms of action of BM-MNC, and moreover, to improve trial characteristics such as endpoints, inclusion/exclusion criteria or drug product compositions, in order to implement their use as stem-cell therapy. Materials: Herein, the effect of REX-001, a human-BM derived cell suspension enriched for mononuclear cells, granulocytes and CD34+ cells, has been assessed in a murine model of CLTI. In addition, a REX-001 placebo solution containing BM-derived red blood cells (BM-RBCs) was also tested. Thus, 24 h after double ligation of the femoral artery, REX-001 and placebo were administrated intramuscularly to Balb-c nude mice (n:51) and follow-up of ischemic symptoms (blood flow perfusion, motility, ulceration and necrosis) was carried out for 21 days. The number of vessels and vascular diameter sizes were measured within the ischemic tissues to evaluate neovascularization and arteriogenesis. Finally, several cell-tracking assays were performed to evaluate potential biodistribution of these cells. Results: REX-001 induced a significant recovery of blood flow by increasing vascular density within the ischemic limbs, with no cell translocation to other organs. Moreover, cell tracking assays confirmed a decrease in the number of infused cells after 2 weeks post-injection despite on-going revascularization, suggesting a paracrine mechanism of action. Conclusion: Overall, our data supported the role of REX-001 product to improve revascularization and ischemic reperfusion in CLTI.
Collapse
Affiliation(s)
- Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jiménez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | | | - Lucía Beltrán-Camacho
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Sara Eslava-Alcon
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Sandra Gavaldá
- R&D Department at Rexgenero Biosciences Sociedad Limitada (SL), Seville, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| |
Collapse
|
27
|
Current Status of Cell-Based Therapy in Patients with Critical Limb Ischemia. Int J Mol Sci 2020; 21:ijms21238999. [PMID: 33256237 PMCID: PMC7731417 DOI: 10.3390/ijms21238999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: The treatment of peripheral arterial disease (PAD) is focused on improving perfusion and oxygenation in the affected limb. Standard revascularization methods include bypass surgery, endovascular interventional procedures, or hybrid revascularization. Cell-based therapy can be an alternative strategy for patients with no-option critical limb ischemia who are not eligible for endovascular or surgical procedures. (2) Aims: The aim of this narrative review was to provide an up-to-date critical overview of the knowledge and evidence-based medicine data on the position of cell therapy in the treatment of PAD. The current evidence on the cell-based therapy is summarized and future perspectives outlined, emphasizing the potential of exosomal cell-free approaches in patients with critical limb ischemia. (3) Methods: Cochrane and PubMed databases were searched for keywords “critical limb ischemia and cell therapy”. In total, 589 papers were identified, 11 of which were reviews and 11 were meta-analyses. These were used as the primary source of information, using cross-referencing for identification of additional papers. (4) Results: Meta-analyses focusing on cell therapy in PAD treatment confirm significantly greater odds of limb salvage in the first year after the cell therapy administration. Reported odds ratio estimates of preventing amputation being mostly in the region 1.6–3, although with a prolonged observation period, it seems that the odds ratio can grow even further. The odds of wound healing were at least two times higher when compared with the standard conservative therapy. Secondary endpoints of the available meta-analyses are also included in this review. Improvement of perfusion and oxygenation parameters in the affected limb, pain regression, and claudication interval prolongation are discussed. (5) Conclusions: The available evidence-based medicine data show that this technique is safe, associated with minimum complications or adverse events, and effective.
Collapse
|
28
|
Sharma S, Pandey NN, Sinha M, Kumar S, Jagia P, Gulati GS, Gond K, Mohanty S, Bhargava B. Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous Bone Marrow-Derived Stem Cells in Patients with Severe Peripheral Arterial Disease. J Vasc Interv Radiol 2020; 32:157-163. [PMID: 33248918 DOI: 10.1016/j.jvir.2020.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To evaluate safety and efficacy of angiogenesis induced by intraarterial autologous bone marrow-derived stem cell (BMSC) injection in patients with severe peripheral arterial disease (PAD). MATERIALS AND METHODS Eighty-one patients with severe PAD (77 men), including 56 with critical limb ischemia (CLI) and 25 with severe claudication, were randomized to receive sham injection (group A) or intraarterial BMSC injection at the site of occlusion (group B). Primary endpoints included improvement in ankle-brachial index (ABI) of > 0.1 and transcutaneous pressure of oxygen (TcPO2) of > 15% at mid- and lower foot at 6 mo. Secondary endpoints included relief from rest pain, > 30% reduction in ulcer size, and reduction in major amputation in patients with CLI and > 50% improvement in pain-free walking distance in patients with severe claudication. RESULTS Technical success was achieved in all patients, without complications. At 6 mo, group B showed more improvements in ABI of > 0.1 (35 of 41 [85.37%] vs 13 of 40 [32.50%]; P < .0001) and TcPO2 of > 15% at the midfoot (35 of 41 [85.37%] vs 17 of 40 [42.50%]; P = .0001] and lower foot (37 of 41 [90.24%] vs 19 of 40 [47.50%]; P < .0001). No patients with CLI underwent major amputation in group B, compared with 4 in group A (P = .0390). No significant difference was observed in relief from rest pain or > 30% reduction in ulcer size among patients with CLI or in > 50% improvement in pain-free walking distance among patients with severe claudication. CONCLUSIONS Intraarterial delivery of autologous BMSCs is safe and effective in the management of severe PAD.
Collapse
Affiliation(s)
- Sanjiv Sharma
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Niraj Nirmal Pandey
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Mumun Sinha
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sanjeev Kumar
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Priya Jagia
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Gurpreet Singh Gulati
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Kalpnath Gond
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Balram Bhargava
- Department of Cardiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
29
|
Yusoff FM, Kajikawa M, Takaeko Y, Kishimoto S, Hashimoto H, Maruhashi T, Nakashima A, Wahid SFSA, Higashi Y. Relationship between cell number and clinical outcomes of autologous bone-marrow mononuclear cell implantation in critical limb ischemia. Sci Rep 2020; 10:19891. [PMID: 33199760 PMCID: PMC7669841 DOI: 10.1038/s41598-020-76886-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022] Open
Abstract
Cell therapy using intramuscular injections of autologous bone-marrow mononuclear cells (BM-MNCs) improves clinical symptoms and can prevent limb amputation in atherosclerotic peripheral arterial disease (PAD) patients with critical limb ischemia (CLI). The purpose of this study was to evaluate the effects of the number of implanted BM-MNCs on clinical outcomes in atherosclerotic PAD patients with CLI who underwent cell therapy. This study was a retrospective observational study with median follow-up period of 13.5 years (range, 6.8–15.5 years) from BM-MNC implantation procedure. The mean number of implanted cells was 1.2 ± 0.7 × 109 per limb. There was no significant difference in number of BM-MNCs implanted between the no major amputation group and major amputation group (1.1 ± 0.7 × 109 vs. 1.5 ± 0.8 × 109 per limb, P = 0.138). There was also no significant difference in number of BM-MNCs implanted between the no death group and death group (1.5 ± 0.9 × 109 vs. 1.8 ± 0.8 × 109 per patient, P = 0.404). Differences in the number of BM-MNCs (mean number, 1.2 ± 0.7 × 109 per limb) for cell therapy did not alter the major amputation-free survival rate or mortality rate in atherosclerotic PAD patients with CLI. A large number of BM-MNCs will not improve limb salvage outcome or mortality.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - S Fadilah S Abdul Wahid
- Pusat Terapi Sel (Cell Therapy Centre), Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. .,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|
30
|
Uçkay I, Imhof BA, Kressmann B, Lew D, Lipsky BA, Sidibe A. Characterization of Proangiogenic Monocytes from Blood in Patients with Chronic Ischemic Diabetic Foot Ulcers and Controls. Stem Cells Dev 2020; 29:911-918. [PMID: 32423362 DOI: 10.1089/scd.2019.0266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many persons with diabetes mellitus have limb ischemia, which is a major clinical problem. A subset of human monocytes that expresses TIE-2 may enhance neovascularization. We performed 179 phlebotomies on 142 patients (or donors), including 61 patients/donors without diabetes or ischemia (controls), 39 diabetic nonischemic patients (controls), and 42 diabetic patients with severe limb ischemia requiring amputation. We compared these groups for the presence of TIE-2-positive proangiogenic monocytes. The proportion of proangiogenic monocytes in the venous blood (on hospital admission) was significantly increased in diabetic patients without ischemia (9.22% ± 1.19%), compared to controls (6.53% ± 0.58%) or ischemic diabetic patients (5.44% ± 0.56%) (P < 0.05). In this pilot evaluation, we succeeded in extracting potential proangiogenic TIE-2 monocytes from the blood of diabetic patients without ischemia, but less in patients with ischemia. The implications for therapeutic neoangiogenesis require further studies.
Collapse
Affiliation(s)
- Ilker Uçkay
- Service of Infectious Diseases, Department of Specialities in Medicine, University of Geneva, Geneva, Switzerland.,Infectiology, Balgrist University Hospital, Zurich, Switzerland
| | - Beat A Imhof
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Benjamin Kressmann
- Service of Infectious Diseases, Department of Specialities in Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Lew
- Service of Infectious Diseases, Department of Specialities in Medicine, University of Geneva, Geneva, Switzerland
| | - Benjamin A Lipsky
- Service of Infectious Diseases, Department of Specialities in Medicine, University of Geneva, Geneva, Switzerland
| | - Adama Sidibe
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Medical Faculty, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Joshi S, Mahoney S, Jahan J, Pitts L, Hackney KJ, Jarajapu YP. Blood flow restriction exercise stimulates mobilization of hematopoietic stem/progenitor cells and increases the circulating ACE2 levels in healthy adults. J Appl Physiol (1985) 2020; 128:1423-1431. [PMID: 32324479 DOI: 10.1152/japplphysiol.00109.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adult CD34+ hematopoietic stem/progenitor cells (HSPC) in the systemic circulation are bone marrow-derived and have the propensity of maintaining cardiovascular health. Activation of angiotensin-converting enzyme-2 (ACE2)-angiotensin-(1-7)-Mas receptor pathway, the vascular protective axis of the renin-angiotensin system (RAS), stimulates vasculogenic functions of HSPCs. In a previous study, exposure to hypoxia increased the expressions of ACE2 and Mas, and stimulated ACE2 shedding. The current study tested if blood flow restriction exercise (BFR)-induced regional hypoxia recapitulates the in vitro observations in healthy adults. Hypoxia was induced by 80% limb occlusion pressure (LOP) via inflation cuff. Muscle oxygen saturation was determined using near-infrared spectroscopy. Peripheral blood was collected 30 min after quiet sitting (control) or after BFR. Lin-CD45lowCD34+ HSPCs were enumerated by flow cytometry, and ACE and ACE2 activities were determined in plasma and cell lysates and supernatants. Regional hypoxia resulted in muscle oxygen saturation of 17.5% compared with 49.7% in the control condition (P < 0.0001, n = 9). Circulating HSPCs were increased following BFR (834.8 ± 62.1/mL) compared with control (365 ± 59, P < 0.001, n = 7), which was associated with increased stromal-derived factor 1α and vascular endothelial growth factor receptor levels by four- and threefold, respectively (P < 0.001). ACE2 activity was increased in the whole cell lysates of HSPCs, resulting in an ACE2-to-ACE ratio of 11.7 ± 0.5 in BFR vs 9.1 ± 0.9 in control (P < 0.05). Cell supernatants have threefold increase in the ACE2-to-ACE ratio following BFR compared with control (P < 0.001). Collectively, these findings provide strong evidence for the upregulation of ACE2 by acute regional hypoxia in vivo. Hypoxic exercise regimens appear to be promising means of enhancing vascular regenerative capacity.NEW & NOTEWORTHY Although many studies have explored the mechanisms of skeletal muscle growth and adaptation with hypoxia exercise interventions, less attention has been given to the potential for vascular adaptation and regenerative capacity. This study shows for the first time an acute upregulation of the angiotensin-converting enzyme 2 and increase in CD34+ vasculogenic cells following an acute bout of blood flow restriction with low-intensity exercise. These rapid changes collectively promote skeletal muscle angiogenesis. Therefore, this study supports the potential of hypoxic exercise interventions with low intensity for vascular and muscle health.
Collapse
Affiliation(s)
- Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Sean Mahoney
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, North Dakota
| | - Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Logan Pitts
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, North Dakota
| | - Kyle J Hackney
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, North Dakota
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
32
|
|
33
|
Gemery JM, Forauer AR, Hoffer EK. Activation of stem cell up-regulation/mobilization: a cardiovascular risk in both mice and humans with implications for liver disease, psoriasis and SLE. Vasc Health Risk Manag 2019; 15:309-316. [PMID: 31692533 PMCID: PMC6716581 DOI: 10.2147/vhrm.s207161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Experimentally induced injury triggers up-regulation and mobilization of stem cells in Apoe -/- mice that causes accelerated atherosclerosis. Abca1 -/- Abcg1-/- mice have chronic activation of stem cell up-regulation/mobilization and accelerated atherosclerosis. In addition, the Abca1 -/- Abcg1-/- mice have elevation of serum cytokines G-CSF, IL-17 and IL-23, each necessary for stem cell mobilization. IL-17 and IL-23 are elevated in two human illnesses that have cardiovascular (CV) risk independent of traditional risk factors—SLE and psoriasis. Serum G-CSF, which can be elevated in liver disease, predicts major adverse cardiovascular events in humans. These serum cytokine elevations suggest activation of the stem cell mobilization mechanism in humans that results, as in mice, in accelerated atherosclerosis. Efforts to reduce CV disease in these patient populations should include mitigation of the diseases that trigger stem cell mobilization. Since activation of the stem cell up-regulation/mobilization mechanism appears to accelerate human atherosclerosis, use of stem cells as therapy for arterial occlusive disease should distinguish between direct administration of stem cells and activation of the stem cell up-regulation/mobilization mechanism.
Collapse
Affiliation(s)
- John M Gemery
- Geisel School of Medicine, Dartmouth, Hanover, NH 03755, USA.,Dartmouth-Hitchcock Medical Center, Department of Radiology, Division of Interventional Radiology, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Andrew R Forauer
- Geisel School of Medicine, Dartmouth, Hanover, NH 03755, USA.,Dartmouth-Hitchcock Medical Center, Department of Radiology, Division of Interventional Radiology, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Eric K Hoffer
- Geisel School of Medicine, Dartmouth, Hanover, NH 03755, USA.,Dartmouth-Hitchcock Medical Center, Department of Radiology, Division of Interventional Radiology, One Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|
34
|
Dubský M, Jirkovská A, Bem R, Němcová A, Fejfarová V, Hazdrová J, Sutoris K, Chlupáč J, Skibová J, Jude EB. Impact of severe diabetic kidney disease on the clinical outcome of autologous cell therapy in people with diabetes and critical limb ischaemia. Diabet Med 2019; 36:1133-1140. [PMID: 31077439 DOI: 10.1111/dme.13985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
AIM To assess the impact of autologous cell therapy on critical limb ischaemia in people with diabetes and diabetic kidney disease. METHODS A total of 59 people with diabetes (type 1 or type 2) and critical limb ischaemia, persisting after standard revascularization, were treated with cell therapy in our foot clinic over 7 years; this group comprised 17 people with and 42 without severe diabetic kidney disease. The control group had the same inclusion criteria, but was treated conservatively and comprised 21 people with and 23 without severe diabetic kidney disease. Severe diabetic kidney disease was defined as chronic kidney disease stages 4-5 (GFR <30 ml/min/1.73 m²). Death and amputation-free survival were assessed during the 18-month follow-up; changes in transcutaneous oxygen pressure were evaluated at 6 and 12 months after cell therapy. RESULTS Transcutaneous oxygen pressure increased significantly in both groups receiving cell therapy compared to baseline (both P<0.01); no significant change in either of the control groups was observed. The cell therapy severe diabetic kidney disease group had a significantly longer amputation-free survival time compared to the severe diabetic kidney disease control group (hazard ratio 0.36, 95% CI 0.14-0.91; P=0.042); there was no difference in the non-severe diabetic kidney disease groups. The severe diabetic kidney disease control group had a tendency to have higher mortality (hazard ratio 2.82, 95% CI 0.81-9.80; P=0.062) than the non-severe diabetic kidney disease control group, but there was no difference between the severe diabetic kidney disease and non-severe diabetic kidney disease cell therapy groups. CONCLUSIONS The present study shows that autologous cell therapy in people with severe diabetic kidney disease significantly improved critical limb ischaemia and lengthened amputation-free survival in comparison with conservative treatment; however, the treatment did not influence overall survival.
Collapse
Affiliation(s)
- M Dubský
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - A Jirkovská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - R Bem
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - A Němcová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - V Fejfarová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - J Hazdrová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - K Sutoris
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - J Chlupáč
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - J Skibová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - E B Jude
- Diabetes Centre, Tameside Hospital NHS Foundation Trust and University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Miceli M, Baldi D, Cavaliere C, Soricelli A, Salvatore M, Napoli C. Peripheral artery disease: the new frontiers of imaging techniques to evaluate the evolution of regenerative medicine. Expert Rev Cardiovasc Ther 2019; 17:511-532. [PMID: 31220944 DOI: 10.1080/14779072.2019.1635012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Stem cells (ESC, iPSC, MSC) are known to have intrinsic regenerative properties. In the last decades numerous findings have favored the development of innovative therapeutic protocols based on the use of stem cells (Regenerative Medicine/Cell Therapy) for the treatment of numerous diseases including PAD, with promising results in preclinical studies. So far, several clinical studies have shown a general improvement of the patient's clinical outcome, however they possess many critical issues caused by the non-randomized design of the limited number of patients examined, the type cells to be used, their dosage, the short duration of treatment and also their delivery strategy. Areas covered: In this context, the use of the most advanced molecular imaging techniques will allow the visualization of very important physio-pathological processes otherwise invisible with conventional techniques, such as angiogenesis, also providing important structural and functional data. Expert opinion: The new frontier of cell therapy applied to PAD, potentially able to stop or even the process that causes the disease, with particular emphasis on the clinical aspects that different types of cells involve and on the use of more innovative molecular imaging techniques now available.
Collapse
Affiliation(s)
| | | | | | - Andrea Soricelli
- a IRCCS SDN , Naples , Italy.,b Department of Exercise and Wellness Sciences , University of Naples Parthenope , Naples , Italy
| | | | - Claudio Napoli
- a IRCCS SDN , Naples , Italy.,c University Department of Advanced Medical and Surgical Sciences, Clinical Department of Internal Medicine and Specialty Medicine , Università degli Studi della Campania 'Luigi Vanvitelli' , Napes , Italy
| |
Collapse
|
36
|
Yusoff FM, Kajikawa M, Matsui S, Hashimoto H, Kishimoto S, Maruhashi T, Chowdhury M, Noma K, Nakashima A, Kihara Y, Sueda T, Higashi Y. Review of the Long-term Effects of Autologous Bone-Marrow Mononuclear Cell Implantation on Clinical Outcomes in Patients with Critical Limb Ischemia. Sci Rep 2019; 9:7711. [PMID: 31118440 PMCID: PMC6531470 DOI: 10.1038/s41598-019-44176-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/10/2019] [Indexed: 11/23/2022] Open
Abstract
Critical limb ischemia (CLI) is associated with a high risk of limb amputation. It has been shown that cell therapy is safe and has beneficial effects on ischemic clinical symptoms in patients with CLI. The aim of this study was to further investigate the outcomes of intramuscular injection of autologous bone-marrow mononuclear cells (BM-MNCs) in a long-term follow-up period in atherosclerotic peripheral arterial disease (PAD) patients who have no optional therapy. This study was a retrospective and observational study that was carried out to evaluate long-term clinical outcomes in 42 lower limbs of 30 patients with atherosclerotic PAD who underwent BM-MNC implantation. The median follow-up period was 9.25 (range, 6–16) years. The overall amputation-free rates were 73.0% at 5 years after BM-MNC implantation and 70.4% at 10 years in patients with atherosclerotic PAD. The overall amputation-free rates at 5 years and at 10 years after implantation of BM-MNCs were significantly higher in atherosclerotic PAD patients than in internal controls and historical controls. There were no significant differences in amputation rates between the internal control group and historical control group. The rate of overall survival was not significantly different between the BM-MNC implantation group and the historical control group. Implantation of autologous BM-MNCs is feasible for a long-term follow-up period in patients with CLI who have no optional therapy.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Masato Kajikawa
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shogo Matsui
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Moniruddin Chowdhury
- Department of Medicine & Centre for Research on Non-Communicable Diseases, Faculty of Medicine & Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Kensuke Noma
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Ayumu Nakashima
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Taijiro Sueda
- Department of Surgery, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan. .,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|
37
|
Augustine R, Prasad P, Khalaf IMN. Therapeutic angiogenesis: From conventional approaches to recent nanotechnology-based interventions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:994-1008. [DOI: 10.1016/j.msec.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022]
|
38
|
Ludwinski FE, Patel AS, Damodaran G, Cho J, Furmston J, Xu Q, Jayasinghe SN, Smith A, Modarai B. Encapsulation of macrophages enhances their retention and angiogenic potential. NPJ Regen Med 2019; 4:6. [PMID: 30911410 PMCID: PMC6426993 DOI: 10.1038/s41536-019-0068-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/19/2018] [Indexed: 02/02/2023] Open
Abstract
Cell therapies to treat critical limb ischaemia have demonstrated only modest results in clinical trials, and this has been partly attributed to poor cell retention following their delivery directly into the ischaemic limb. The aim of this study was to determine whether alginate encapsulation of therapeutic pro-angio/arteriogenic macrophages enhances their retention and ultimately improves limb perfusion. A reproducible GMP-compliant method for generating 300 µm alginate capsules was developed to encapsulate pro-angio/arteriogenic macrophages. Longitudinal analysis revealed no detrimental effect of encapsulation on cell number or viability in vitro, and macrophages retained their pro-angio/arteriogenic phenotype. Intramuscular delivery of encapsulated macrophages into the murine ischaemic hindlimb demonstrated increased cell retention compared with injection of naked cells (P = 0.0001), and that this was associated both enhanced angiogenesis (P = 0.02) and arteriogenesis (P = 0.03), and an overall improvement in limb perfusion (P = 0.0001). Alginate encapsulation of pro-angio/arteriogenic macrophages enhances cell retention and subsequent limb reperfusion in vivo. Encapsulation may therefore represent a means of improving the efficacy of cell-based therapies currently under investigation for the treatment of limb ischaemia. Blood vessel-promoting immune cells stay longer in the body and help promote blood flow to the feet and toes of mice with critical limb ischemia when the therapeutic cells are packaged inside tiny bubbles of a biocompatible seaweed derivative called alginate. A team led by Bijan Modarai from King’s College London, UK, developed a reliable method for placing artery-stimulating macrophage cells inside alginate capsules measuring 300 micrometres in diameter, about the thickness of a postcard. In culture, the alginate coating had no effect on the macrophage viability; and when injected into the muscles of mice with artery blockages to their hindlimbs, the encapsulated cells were retained longer and offered greater therapeutic benefit than uncoated cells. This encapsulation strategy may improve the efficacy of comparable cell-based therapies for humans with limb ischemia.
Collapse
Affiliation(s)
- Francesca E Ludwinski
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Ashish S Patel
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Gopinath Damodaran
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Jun Cho
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Joanna Furmston
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Qingbo Xu
- 2King's College London, Vascular Biology Section, School of Cardiovascular Medicine & Sciences, BHF Centre of Excellence, King's College London, London, UK
| | - Suwan N Jayasinghe
- 3BioPhysics Group, UCL Centre for Stem Cells and Regenerative Medicine, UCL Department of Mechanical Engineering and UCL Institute of Healthcare Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - Alberto Smith
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Bijan Modarai
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
39
|
Claudicación intermitente de causa no ateroesclerótica en mujer joven. ANGIOLOGIA 2019. [DOI: 10.20960/angiologia.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
40
|
Endothelial Progenitor Cells Biology in Diabetes Mellitus and Peripheral Arterial Disease and their Therapeutic Potential. Stem Cell Rev Rep 2018; 15:157-165. [DOI: 10.1007/s12015-018-9863-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Ryan TE, Yamaguchi DJ, Schmidt CA, Zeczycki TN, Shaikh SR, Brophy P, Green TD, Tarpey MD, Karnekar R, Goldberg EJ, Sparagna GC, Torres MJ, Annex BH, Neufer PD, Spangenburg EE, McClung JM. Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants. JCI Insight 2018; 3:123235. [PMID: 30385731 DOI: 10.1172/jci.insight.123235] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The most severe manifestation of peripheral arterial disease (PAD) is critical limb ischemia (CLI). CLI patients suffer high rates of amputation and mortality; accordingly, there remains a clear need both to better understand CLI and to develop more effective treatments. Gastrocnemius muscle was obtained from 32 older (51-84 years) non-PAD controls, 27 claudicating PAD patients (ankle-brachial index [ABI] 0.65 ± 0.21 SD), and 19 CLI patients (ABI 0.35 ± 0.30 SD) for whole transcriptome sequencing and comprehensive mitochondrial phenotyping. Comparable permeabilized myofiber mitochondrial function was paralleled by both similar mitochondrial content and related mRNA expression profiles in non-PAD control and claudicating patient tissues. Tissues from CLI patients, despite being histologically intact and harboring equivalent mitochondrial content, presented a unique bioenergetic signature. This signature was defined by deficits in permeabilized myofiber mitochondrial function and a unique pattern of both nuclear and mitochondrial encoded gene suppression. Moreover, isolated muscle progenitor cells retained both mitochondrial functional deficits and gene suppression observed in the tissue. These findings indicate that muscle tissues from claudicating patients and non-PAD controls were similar in both their bioenergetics profile and mitochondrial phenotypes. In contrast, CLI patient limb skeletal muscles harbor a unique skeletal muscle mitochondriopathy that represents a potentially novel therapeutic site for intervention.
Collapse
Affiliation(s)
- Terence E Ryan
- Department of Physiology.,East Carolina Diabetes and Obesity Institute
| | | | - Cameron A Schmidt
- Department of Physiology.,East Carolina Diabetes and Obesity Institute
| | - Tonya N Zeczycki
- East Carolina Diabetes and Obesity Institute.,Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Thomas D Green
- Department of Physiology.,East Carolina Diabetes and Obesity Institute
| | - Michael D Tarpey
- Department of Physiology.,East Carolina Diabetes and Obesity Institute
| | - Reema Karnekar
- Department of Physiology.,East Carolina Diabetes and Obesity Institute
| | - Emma J Goldberg
- Department of Physiology.,East Carolina Diabetes and Obesity Institute
| | | | | | - Brian H Annex
- Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - P Darrell Neufer
- Department of Physiology.,East Carolina Diabetes and Obesity Institute
| | | | - Joseph M McClung
- Department of Physiology.,East Carolina Diabetes and Obesity Institute.,Department of Cardiovascular Sciences
| |
Collapse
|
42
|
Cacione DG, do Carmo Novaes F, Moreno DH, Cochrane Vascular Group. Stem cell therapy for treatment of thromboangiitis obliterans (Buerger's disease). Cochrane Database Syst Rev 2018; 10:CD012794. [PMID: 30378681 PMCID: PMC6516882 DOI: 10.1002/14651858.cd012794.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Thromboangiitis obliterans, also known as Buerger's disease, is a non-atherosclerotic, segmental inflammatory pathology that most commonly affects the small- and medium-sized arteries, veins, and nerves in the upper and lower extremities. The etiology is unknown, but involves hereditary susceptibility, tobacco exposure, immune and coagulation responses. In many cases, there is no possibility of revascularization to improve the condition. Stem cell therapy is an option for patients with severe complications, such as ischemic ulcers or rest pain. OBJECTIVES To assess the effectiveness and safety of stem cell therapy in individuals with thromboangiitis obliterans (Buerger's disease). SEARCH METHODS The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, CINAHL and AMED databases and World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov trials registers to 17 October 2017. The review authors searched the European grey literature OpenGrey Database, screened reference lists of relevant studies and contacted study authors. SELECTION CRITERIA Randomized controlled trials (RCTs) or quasi-RCTs of stem cell therapy in thromboangiitis obliterans (Buerger's disease). DATA COLLECTION AND ANALYSIS The review authors (DC, DM, FN) independently assessed the studies, extracted data and performed data analysis. MAIN RESULTS We only included one RCT (18 participants with thromboangiitis obliterans) comparing the implantation of stem cell derived from bone marrow with placebo and standard wound dressing care in this review. We identified no studies that compared stem cell therapy (bone marrow source) versus stem cell therapy (umbilical cord source), stem cell therapy (any source) versus pharmacological treatment and stem cell therapy (any source) versus sympathectomy. Ulcer healing was assessed in the form of ulcer size. The mean ulcer area decreased more in the stem cell implantation group: from 5.04 cm2 (standard deviation (SD) 0.70) to 1.48 cm2 (SD 0.56) compared with the control group: mean ulcer size area decreased from 4.68 cm2 (SD 0.62) to 3.59 cm2 (SD 0.14); mean difference (MD) -2.11 cm2, 95% confidence interval (CI) -2.49 to -1.73; 1 study, 18 participants; very low-quality evidence. Pain-free walking distance showed more of an improvement in the stem cell implantation group: from mean of 38.33 meters (SD 17.68) to 284.44 meters (SD 212.12) compared with the control group: mean walking distance increased from 35.66 meters (SD 19.79) to 78.22 meters (SD 35.35); MD 206.22 meters, 95% CI 65.73 to 346.71; 1 study; 18 participants; very low-quality evidence.Outcomes such as rate of amputation, pain, amputation-free survival and adverse effects were not assessed.The quality of evidence was classified as very low, with only one study, small numbers of participants, high risk of bias in many domains and missing information regarding tobacco exposure status. AUTHORS' CONCLUSIONS Very low-quality evidence suggests there may be an effect of the use of bone marrow-derived stem cells in the healing of ulcers and improvement in the pain-free walking distance in patients with Buerger's disease. High-quality trials assessing the effectiveness of stem cell therapy for treatment of patients with thromboangiitis obliterans (Buerger's disease) are needed.
Collapse
Affiliation(s)
- Daniel G Cacione
- UNIFESP – Escola Paulista de MedicinaDivision of Vascular and Endovascular Surgery, Department of SurgeryRua Borges Lagoa, 564 cj 124Vila ClementinoSão PauloBrazil04038000
| | | | - Daniel H Moreno
- UNIFESP – Escola Paulista de MedicinaDivision of Vascular and Endovascular Surgery, Department of SurgeryRua Borges Lagoa, 564 cj 124Vila ClementinoSão PauloBrazil04038000
| | | |
Collapse
|
43
|
Dong Z, Pan T, Fang Y, Wei Z, Gu S, Fang G, Liu Y, Luo Y, Liu H, Zhang T, Hu M, Guo D, Xu X, Chen B, Jiang J, Yang J, Shi Z, Zhu T, Shi Y, Liu P, Fu W. Purified CD34 + cells versus peripheral blood mononuclear cells in the treatment of angiitis-induced no-option critical limb ischaemia: 12-Month results of a prospective randomised single-blinded non-inferiority trial. EBioMedicine 2018; 35:46-57. [PMID: 30172703 PMCID: PMC6156701 DOI: 10.1016/j.ebiom.2018.08.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Peripheral blood mononuclear cells (PBMNCs) and purified CD34+ cells (PCCs) are increasingly being used at treating no-option critical limb ischaemia (NO-CLI). We aimed to compare the efficacies and uncover the advantages associated with each treatment approach. METHODS A randomised single-blinded non-inferiority trial (Number: NCT 02089828) was performed. NO-CLI patients were 1:1 randomised to the PBMNCs and PCCs groups, and compared in relation to safety and efficacy outcomes. The primary efficacy outcomes included major amputation and total amputation over 12 months. The major amputation-free survival (MAFS) and total amputation-free survival (TAFS) rates were calculated. FINDINGS Fifty patients (25 per group, 47 with thromboangiitis obliterans and 3 with other angiitis) were enrolled, with a median follow-up period of 24.5 months (interquartile range: 17-34 months). One patient in the PCCs group was lost at 2 months and one major amputation occurred in the PBMNCs group at 3 months post-transplantation. The total amputation rates at 6 months post-transplantation were 28.0% in the PCCs group and 16.0% in the PBMNCs group (p = 0.343), and remained unchanged at 12 months. The groups did not differ regarding the MAFS and TAFS (Breslow-Wilcoxon test: p = 0.3014 and p = 0.3414). The PCCs group had a significantly higher probability of rest pain relief than the PBMNCs group (Breslow-Wilcoxon test: p = 0.0454). INTERPRETATION PCCs was not inferior to PBMNCs at limb salvage in the treatment of angiitis-induced NO-CLI and appeared to induce earlier ischaemia relief. Each cell type had specific advantages. These outcomes require verification from longer-term trials involving larger numbers of patients. FUND: Training program for outstanding academic leaders of Shanghai health and family planning system (Hundred Talent Program,Grant No. 2018BR40); China National Natural Science Funds (Grant No. 30801122); The excellent core member training programme at Zhongshan Hospital, Fudan University, China (Grant No. 2015ZSYXGG02); and Zhongshan Funds for the Institute of Vascular Surgery, Fudan University, China. CLINICAL TRIAL REGISTRATION This study is registered with ClinicalTrials.gov (NCT 02089828).
Collapse
Affiliation(s)
- Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China.
| | - Tianyue Pan
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Zheng Wei
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiyang Gu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Fang
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Yifan Liu
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Yang Luo
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Hao Liu
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Meiyu Hu
- Core Lab of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Xin Xu
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Bin Chen
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Junhao Jiang
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Jue Yang
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Ting Zhu
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Abdul Wahid SF, Ismail NA, Wan Jamaludin WF, Muhamad NA, Abdul Hamid MKA, Harunarashid H, Lai NM, Cochrane Vascular Group. Autologous cells derived from different sources and administered using different regimens for 'no-option' critical lower limb ischaemia patients. Cochrane Database Syst Rev 2018; 8:CD010747. [PMID: 30155883 PMCID: PMC6513643 DOI: 10.1002/14651858.cd010747.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Revascularisation is the gold standard therapy for patients with critical limb ischaemia (CLI). In over 30% of patients who are not suitable for or have failed previous revascularisation therapy (the 'no-option' CLI patients), limb amputation is eventually unavoidable. Preliminary studies have reported encouraging outcomes with autologous cell-based therapy for the treatment of CLI in these 'no-option' patients. However, studies comparing the angiogenic potency and clinical effects of autologous cells derived from different sources have yielded limited data. Data regarding cell doses and routes of administration are also limited. OBJECTIVES To compare the efficacy and safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients. SEARCH METHODS The Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and trials registries (16 May 2018). Review authors searched PubMed until February 2017. SELECTION CRITERIA We included randomised controlled trials (RCTs) involving 'no-option' CLI patients comparing a particular source or regimen of autologous cell-based therapy against another source or regimen of autologous cell-based therapy. DATA COLLECTION AND ANALYSIS Three review authors independently assessed the eligibility and methodological quality of the trials. We extracted outcome data from each trial and pooled them for meta-analysis. We calculated effect estimates using a risk ratio (RR) with 95% confidence interval (CI), or a mean difference (MD) with 95% CI. MAIN RESULTS We included seven RCTs with a total of 359 participants. These studies compared bone marrow-mononuclear cells (BM-MNCs) versus mobilised peripheral blood stem cells (mPBSCs), BM-MNCs versus bone marrow-mesenchymal stem cells (BM-MSCs), high cell dose versus low cell dose, and intramuscular (IM) versus intra-arterial (IA) routes of cell implantation. We identified no other comparisons in these studies. We considered most studies to be at low risk of bias in random sequence generation, incomplete outcome data, and selective outcome reporting; at high risk of bias in blinding of patients and personnel; and at unclear risk of bias in allocation concealment and blinding of outcome assessors. The quality of evidence was most often low to very low, with risk of bias, imprecision, and indirectness of outcomes the major downgrading factors.Three RCTs (100 participants) reported a total of nine deaths during the study follow-up period. These studies did not report deaths according to treatment group.Results show no clear difference in amputation rates between IM and IA routes (RR 0.80, 95% CI 0.54 to 1.18; three RCTs, 95 participants; low-quality evidence). Single-study data show no clear difference in amputation rates between BM-MNC- and mPBSC-treated groups (RR 1.54, 95% CI 0.45 to 5.24; 150 participants; low-quality evidence) and between high and low cell dose (RR 3.21, 95% CI 0.87 to 11.90; 16 participants; very low-quality evidence). The study comparing BM-MNCs versus BM-MSCs reported no amputations.Single-study data with low-quality evidence show similar numbers of participants with healing ulcers between BM-MNCs and mPBSCs (RR 0.89, 95% CI 0.44 to 1.83; 49 participants) and between IM and IA routes (RR 1.13, 95% CI 0.73 to 1.76; 41 participants). In contrast, more participants appeared to have healing ulcers in the BM-MSC group than in the BM-MNC group (RR 2.00, 95% CI 1.02 to 3.92; one RCT, 22 participants; moderate-quality evidence). Researchers comparing high versus low cell doses did not report ulcer healing.Single-study data show similar numbers of participants with reduction in rest pain between BM-MNCs and mPBSCs (RR 0.99, 95% CI 0.93 to 1.06; 104 participants; moderate-quality evidence) and between IM and IA routes (RR 1.22, 95% CI 0.91 to 1.64; 32 participants; low-quality evidence). One study reported no clear difference in rest pain scores between BM-MNC and BM-MSC (MD 0.00, 95% CI -0.61 to 0.61; 37 participants; moderate-quality evidence). Trials comparing high versus low cell doses did not report rest pain.Single-study data show no clear difference in the number of participants with increased ankle-brachial index (ABI; increase of > 0.1 from pretreatment), between BM-MNCs and mPBSCs (RR 1.00, 95% CI 0.71 to 1.40; 104 participants; moderate-quality evidence), and between IM and IA routes (RR 0.93, 95% CI 0.43 to 2.00; 35 participants; very low-quality evidence). In contrast, ABI scores appeared higher in BM-MSC versus BM-MNC groups (MD 0.05, 95% CI 0.01 to 0.09; one RCT, 37 participants; low-quality evidence). ABI was not reported in the high versus low cell dose comparison.Similar numbers of participants had improved transcutaneous oxygen tension (TcO₂) with IM versus IA routes (RR 1.22, 95% CI 0.86 to 1.72; two RCTs, 62 participants; very low-quality evidence). Single-study data with low-quality evidence show a higher TcO₂ reading in BM-MSC versus BM-MNC groups (MD 8.00, 95% CI 3.46 to 12.54; 37 participants) and in mPBSC- versus BM-MNC-treated groups (MD 1.70, 95% CI 0.41 to 2.99; 150 participants). TcO₂ was not reported in the high versus low cell dose comparison.Study authors reported no significant short-term adverse effects attributed to autologous cell implantation. AUTHORS' CONCLUSIONS Mostly low- and very low-quality evidence suggests no clear differences between different stem cell sources and different treatment regimens of autologous cell implantation for outcomes such as all-cause mortality, amputation rate, ulcer healing, and rest pain for 'no-option' CLI patients. Pooled analyses did not show a clear difference in clinical outcomes whether cells were administered via IM or IA routes. High-quality evidence is lacking; therefore the efficacy and long-term safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients, remain to be confirmed.Future RCTs with larger numbers of participants are needed to determine the efficacy of cell-based therapy for CLI patients, along with the optimal cell source, phenotype, dose, and route of implantation. Longer follow-up is needed to confirm the durability of angiogenic potential and the long-term safety of cell-based therapy.
Collapse
Affiliation(s)
- S Fadilah Abdul Wahid
- Universiti Kebangsaan Malaysia Medical CentreCell Therapy CenterJalan Yaacob LatifKuala LumpurMalaysia56000
- Universiti Kebangsaan Malaysia Medical CentreClinical Haematology & Stem Cell Transplantation Services, Department of MedicineKuala LumpurMalaysia
| | - Nor Azimah Ismail
- Universiti Kebangsaan Malaysia Medical CentreCell Therapy CenterJalan Yaacob LatifKuala LumpurMalaysia56000
| | - Wan Fariza Wan Jamaludin
- Universiti Kebangsaan Malaysia Medical CentreCell Therapy CenterJalan Yaacob LatifKuala LumpurMalaysia56000
| | - Nor Asiah Muhamad
- Ministry of HealthInstitute for Public HealthKuala LumpurFederal TeritoryMalaysia50590
| | | | - Hanafiah Harunarashid
- Universiti Kebangsaan Malaysia Medical CentreUnit of Vascular Surgery, Department of SurgeryJalan Yaacob LatifKuala LumpurKuala LumpurMalaysia56000
| | - Nai Ming Lai
- Taylor's UniversitySchool of MedicineSubang JayaMalaysia
| | | |
Collapse
|
45
|
NEMCOVA A, JIRKOVSKA A, DUBSKY M, BEM R, FEJFAROVA V, WOSKOVA V, PYSNA A, BUNCOVA M. Perfusion Scintigraphy in the Assessment of Autologous Cell Therapy in Diabetic Patients With Critical Limb Ischemia. Physiol Res 2018; 67:583-589. [DOI: 10.33549/physiolres.933868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Perfusion scintigraphy with technetium-99-methoxy-isobutyl-isonitrile (99mTc-MIBI) is often used for assessing myocardial function but the number of studies concerning lower limb perfusion is limited. The aim of our study was to assess whether 99mTc-MIBI was an eligible method for evaluation of the effect of cell therapy on critical limb ischemia (CLI) in diabetic patients. 99mTc-MIBI of calf muscles was performed before and 3 months after autologous cell therapy (ACT) in 24 diabetic patients with CLI. Scintigraphic parameters such as rest count and exercising count after a stress test were defined. These parameters and their ratios were compared between treated and untreated (control) limbs and with changes in transcutaneous oxygen pressure (TcPO2) that served as a reference method. The effect of ACT was confirmed by a significant increase in TcPO2 values (p˂0.001) at 3 months after ACT. We did not observe any significant changes of scintigraphic parameters both at rest and after stress 3 months after ACT, there were no differences between treated and control limbs and no association with TcPO2 changes. Results of our study showed no significant contribution of 99mTc-MIBI of calf muscles to the assessment of ACT in diabetic patients with CLI over a 3-month follow-up period.
Collapse
Affiliation(s)
- A. NEMCOVA
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chadid T, Morris A, Surowiec A, Robinson S, Sasaki M, Galipeau J, Pollack BP, Brewster LP. Reversible secretome and signaling defects in diabetic mesenchymal stem cells from peripheral arterial disease patients. J Vasc Surg 2018; 68:137S-151S.e2. [PMID: 30104096 DOI: 10.1016/j.jvs.2018.05.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Regenerative medicine seeks to stall or to reverse the pathologic consequences of chronic diseases. Many people with diabetes have peripheral arterial disease (PAD), which increases their already high risk of major amputation. Cellular therapies are a promising regenerative medicine approach to PAD that can be used to focally inject regenerative cells to endangered tissue beds. Mesenchymal stem cells (MSCs) are known to promote tissue regeneration through stromal support and paracrine stimulation of new blood vessels (angiogenesis). Whereas little is known about human diabetic MSCs (dMSCs), particularly those from patients with PAD, dMSCs have a limited expansion capacity but can be improved with human platelet lysate (PL) supplementation. PL is rich in many growth factors, including epidermal growth factor (EGF), which is known to be important to cell proliferation and survival signaling pathways. We hypothesize that dMSCs have a reversible defect in EGF receptor pathways. The objective of this work was to test this hypothesis using dMSCs from PAD patients. METHODS The secretome expression of EGF and prominent angiogens was characterized from bone marrow (BM)-derived and adipose tissue-derived (ATD) dMSCs from five patients (six limbs) undergoing major amputation. Western blot was used to characterize the AKT and extracellular signal-regulated protein kinases 1 and 2 expression in dMSCs under standard culture (5% fetal bovine serum plus fibroblast growth factor 2 [FGF2]), 5% human PL, or 5% fetal bovine serum plus EGF. Healthy donor MSCs were control cells. The angiogenic activity of BM- and ATD-dMSCs was tested on human umbilical vein endothelial cells (ECs). Paired t-test, analysis of variance, and Kruskal-Wallis tests were used as appropriate. RESULTS Both BM- and ATD-dMSCs had typical MSC surface marker expression and similar expansion profiles, and they did not express EGF in their secretome. PL supplementation of dMSCs improved AKT signaling, but they were resistant to FGF2 activation of extracellular signal-regulated protein kinases 1 and 2. EGF supplementation led to similar AKT expression as with PL, but PL had greater phosphorylation of AKT at 30 and 60 minutes. The conditioned media from both BM- and ATD-dMSCs had robust levels of prominent angiogens (vascular endothelial growth factor, monocyte chemoattractant protein 1, hepatocyte growth factor), which stimulated EC proliferation and migration, and the co-culture of dMSCs with ECs led to significantly longer EC sprouts in three-dimensional gel than EC-alone pellets. CONCLUSIONS PL and EGF supplementation improves AKT expression in dMSCs over that of FGF2, but PL improved pAKT over that of EGF. Thus, PL supplementation strategies may improve AKT signaling, which could be important to MSC survival in cellular therapies. Furthermore, BM- and ATD-dMSCs have similar secretomes and robust in vitro angiogenic activity, which supports pursuing dMSCs from both reservoirs in regenerative medicine strategies.
Collapse
Affiliation(s)
- Tatiana Chadid
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Andrew Morris
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Alexandra Surowiec
- School of Arts and Sciences, Departments of Biological Sciences and Anthropology, Vanderbilt University, Nashville, Tenn
| | - Scott Robinson
- Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Maiko Sasaki
- Department of Dermatology and Pathology, Emory University School of Medicine, Atlanta, Ga
| | - Jacques Galipeau
- Don and Marilyn Anderson Professor in Oncology and Director, Program for Advanced Cell Therapy, University of Wisconsin-Madison, Madison, Wisc
| | - Brian P Pollack
- Department of Dermatology and Pathology, Emory University School of Medicine, Atlanta, Ga
| | - Luke P Brewster
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Ga; Surgery and Research Services, Atlanta VA Medical Center, Atlanta, Ga.
| |
Collapse
|
47
|
Kir D, Schnettler E, Modi S, Ramakrishnan S. Regulation of angiogenesis by microRNAs in cardiovascular diseases. Angiogenesis 2018; 21:699-710. [DOI: 10.1007/s10456-018-9632-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
|
48
|
Lian W, Hu X, Pan L, Han S, Cao C, Jia Z, Li M. Human primary CD34 + cells transplantation for critical limb ischemia. J Clin Lab Anal 2018; 32:e22569. [PMID: 29893031 DOI: 10.1002/jcla.22569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The goal of this study was to characterize the properties of human CD34+ cells in culture and investigate the feasibility and efficacy of CD34+ transplantation in a mouse model of limb ischemia and in patients with no-option critical limb ischemia. METHODS Human CD34+ cells isolated from peripheral blood and grown in culture for up to four passages stained positively for the surface markers CD34 and CD133 and showed high viability after cryopreservation and recovery. Seven days after surgery to induce limb ischemia, ischemic muscles of nude mice were injected with CD34+ cells. Two weeks later, mice were scored for extent of ischemic injury, and muscle tissue was collected for immunohistochemical analysis of vascular endothelial cells and RT-PCR analysis of cytokine expression. RESULTS Injury scores of CD34+ -treated, but not control, mice were significantly different before and after transplantation. Vascular density and expression of VEGF and bFGF mRNAs were also significantly increased in the treated mice. Patients with severe lower extremity arterial ischemia were injected with their own CD34+ cells in the affected calf, foot, or toe. Significant improvements were observed in peak pain-free walking time, ankle-brachial index, and transcutaneous partial oxygen pressure. These findings demonstrate that growth of human CD34+ cells in vitro and cryopreservations are feasible. CONCLUSION Such cells may provide a renewable source of stem cells for transplantation, which appears to be a feasible, safe, and effective treatment for patients with critical limb ischemia.
Collapse
Affiliation(s)
- Weishuai Lian
- Department of interventional and vascular Surgery, Tenth people's Hospital of Tongji University, Shanghai, China
| | - Xiaoxiao Hu
- Department of interventional and vascular Surgery, Tenth people's Hospital of Tongji University, Shanghai, China
| | - Long Pan
- Department of interventional and vascular Surgery, Tenth people's Hospital of Tongji University, Shanghai, China
| | - Shilong Han
- Department of interventional and vascular Surgery, Tenth people's Hospital of Tongji University, Shanghai, China
| | - Chuanwu Cao
- Department of interventional and vascular Surgery, Tenth people's Hospital of Tongji University, Shanghai, China
| | - Zhongzhi Jia
- Department of Interventional Radiology, No. 2 People's Hospital of Changzhou, Nanjing Medical University, Shanghai, China
| | - Maoquan Li
- Department of interventional and vascular Surgery, Tenth people's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
49
|
Nemcova A, Jirkovska A, Dubsky M, Kolesar L, Bem R, Fejfarova V, Pysna A, Woskova V, Skibova J, Jude EB. Difference in Serum Endostatin Levels in Diabetic Patients with Critical Limb Ischemia Treated by Autologous Cell Therapy or Percutaneous Transluminal Angioplasty. Cell Transplant 2018; 27:1368-1374. [PMID: 29860903 PMCID: PMC6168989 DOI: 10.1177/0963689718775628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to compare the serum levels of the anti-angiogenic factor endostatin (S-endostatin) as a potential marker of vasculogenesis after autologous cell therapy (ACT) versus percutaneous transluminal angioplasty (PTA) in diabetic patients with critical limb ischemia (CLI). A total of 25 diabetic patients with CLI treated in our foot clinic during the period 2008–2014 with ACT generating potential vasculogenesis were consecutively included in the study; 14 diabetic patients with CLI who underwent PTA during the same period were included in a control group in which no vasculogenesis had occurred. S-endostatin was measured before revascularization and at 1, 3, and 6 months after the procedure. The effect of ACT and PTA on tissue ischemia was confirmed by transcutaneous oxygen pressure (TcPO2) measurement at the same intervals. While S-endostatin levels increased significantly at 1 and 3 months after ACT (both P < 0.001), no significant change of S-endostatin after PTA was observed. Elevation of S-endostatin levels significantly correlated with an increase in TcPO2 at 1 month after ACT (r = 0.557; P < 0.001). Our study showed that endostatin might be a potential marker of vasculogenesis because of its significant increase after ACT in diabetic patients with CLI in contrast to those undergoing PTA. This increase may be a sign of a protective feedback mechanism of this anti-angiogenic factor.
Collapse
Affiliation(s)
- Andrea Nemcova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandra Jirkovska
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Dubsky
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Libor Kolesar
- 2 Department of Immunogenetics, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Robert Bem
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimira Fejfarova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Anna Pysna
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Woskova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jelena Skibova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Edward B Jude
- 3 Diabetes Centre, Tameside Hospital NHS Foundation Trust and University of Manchester, Lancashire, UK
| |
Collapse
|
50
|
Pan T, Wei Z, Fang Y, Dong Z, Fu W. Therapeutic efficacy of CD34 + cell-involved mononuclear cell therapy for no-option critical limb ischemia: A meta-analysis of randomized controlled clinical trials. Vasc Med 2018; 23:219-231. [PMID: 29457540 DOI: 10.1177/1358863x17752556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Early-phase clinical trials in patients with critical limb ischemia (CLI) have shown positive results of mononuclear cell therapy. The current meta-analysis investigated whether cluster of differentiation (CD) 34+ mononuclear cell therapy (CD34+MCT) is effective for no-option CLI. Ten randomized controlled clinical studies of CD34+MCT for no-option CLI with 479 patients were identified and analyzed for pooled results. Compared to control groups, the CD34+MCT was associated with lower total amputation (odds ratio (OR): 0.45, p=0.01; 95% confidence interval (CI): 0.24-0.85) and a higher complete ulcer healing rate (OR: 2.80, p=0.008; 95% CI: 1.31-6.02), but showed no advantage in major amputation (OR: 0.58, p=0.11; 95% CI: 0.29-1.14) and all-cause mortality (OR: 0.82, p=0.62; 95% CI: 0.36-1.83) . Studies with a high CD34+ cell dosage showed significant results in major amputation (OR: 0.38, p=0.002; 95% CI: 0.21-0.70), total amputation (OR: 0.31, p=0.0002; 95% CI: 0.17-0.57) and complete ulcer healing (OR: 7.58, p=0.0005; 95% CI: 2.40-23.88), which were not observed in the low-dose studies. However, inclusion of placebo-controlled studies showed no improvement of the CD34+MCT in total amputation (OR: 0.67, p=0.42; 95% CI: 0.25-1.79), major amputation (OR: 1.31, p=0.43; 95% CI: 0.67-2.54) or complete ulcer healing (OR: 1.52, p=0.27; 95% CI: 0.72-3.21), which were extremely significant in non-placebo-controlled studies ( p<0.001). In conclusion, the significant results of CD34+MCT might not support its therapeutic benefit due to high placebo-effect risk and considerable heterogeneity caused by distinct cell doses. More sizable double-blinded, randomized, placebo-controlled trials with higher CD34+ cell dosage are needed in the future.
Collapse
Affiliation(s)
- Tianyue Pan
- 1 Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Wei
- 2 Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Fang
- 1 Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- 1 Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- 1 Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|