1
|
Srivastava S, Krivokhizhina T, Keith R, Bhatnagar A, Srivastava S, Xie Z, Lorkiewicz P. High-throughput UPLC-ESI/MSMS method for simultaneous measurement of the urinary metabolites of volatile organic compounds and tobacco alkaloids. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124463. [PMID: 39826161 PMCID: PMC11929525 DOI: 10.1016/j.jchromb.2025.124463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Human exposure to volatile organic compounds (VOCs) poses significant health risks, contributing to cardiovascular disease, pulmonary disease, and cancer. Measurement of VOC metabolites (VOCm) in urine by liquid chromatography-mass spectrometry (LC-MS) is a preferred method for VOCm analysis; however, existing methods encounter challenges related to sensitivity, throughput, and analyte coverage. In addition to VOCm, the measurement of tobacco alkaloids (TAm) is critical to account for tobacco use in population-based studies. A method is needed that is highly sensitive, offers higher throughput, and can analyze VOCm and TAm in a single run. Herein, we present a robust dilute-and-shoot method aimed at overcoming these analytical challenges and expanding the targeted analysis to include 35 urinary VOCm and TAm and their metabolites. By leveraging high-speed polarity switching and optimized chromatographic parameters, our method achieved comprehensive analyte coverage and enhanced sensitivity, enabling reliable individual level VOC exposure assessment. Validation demonstrates robust linearity, sensitivity, accuracy, and precision, with minimal matrix effects. This high-throughput UPLC-MS/MS method significantly enhances VOC exposure assessment by enabling simultaneous measurement of 35 urinary VOC and TAm with high sensitivity and efficiency. Multiple metabolites from single parent xenobiotics are included in one run, expanding biomarker specificity. Our data indicate the method effectively accounts for tobacco consumption as a confounder in population-based studies, ensuring accurate VOC exposure assessment.
Collapse
Affiliation(s)
- Shweta Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Tatiana Krivokhizhina
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Rachel Keith
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Sanjay Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
2
|
Pisani DF, Lettieri-Barbato D, Ivanov S. Polyamine metabolism in macrophage-adipose tissue function and homeostasis. Trends Endocrinol Metab 2024; 35:937-950. [PMID: 38897879 DOI: 10.1016/j.tem.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Intracellular metabolism is a crucial regulator of macrophage function. Recent evidence revealed that the polyamine pathway and subsequent hypusination of eukaryotic initiation factor 5A (eIF5A) are master regulators of immune cell functions. In brown adipose tissue (BAT), macrophages show an impressive degree of heterogenicity, with specific subsets supporting adaptive thermogenesis during cold exposure. In this review, we discuss the impact of polyamine metabolism on macrophage diversity and function, with a particular focus on their role in adipose tissue homeostasis. Thus, we highlight the exploration of how polyamine metabolism in macrophages contributes to BAT homeostasis as an attractive and exciting new field of research.
Collapse
Affiliation(s)
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS-Fondazione Bietti, Rome, Italy.
| | | |
Collapse
|
3
|
Hu Y, Zeng X, Luo Y, Pei X, Zhou D, Zhu B. Trans, trans-2,4-decadienal, a lipid peroxidation product, aggravates insulin resistance in obese mice by promoting adipose inflammation. Food Sci Nutr 2024; 12:6398-6410. [PMID: 39554331 PMCID: PMC11561848 DOI: 10.1002/fsn3.4273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 11/19/2024] Open
Abstract
Peroxidation of polyunsaturated fatty acids results in the creation of numerous α, β-unsaturated aldehydes, many of which are complicated by the development of diabetes. Trans, trans-2,4-decadienal (DDE) is a dietary α, β-unsaturated aldehyde that is commonly found in food and the environment. However, it is unknown whether DDE exposure has some negative effects on glucose homeostasis and insulin sensitivity. This study investigated the biological effects of long-term DDE exposure in normal chow diet (NCD)-fed non-obese mice and high-fat diet (HFD)-fed obese mice. Results showed that oral administration of DDE for 14 weeks did not cause severe toxicity in NCD-fed non-obese mice but had significant adverse effects in HFD-fed obese mice. It was found that DDE exposure caused significant increases in LDL and ALT levels and aggravated glucose intolerance and insulin resistance in obese mice. Moreover, DDE robustly accumulated in adipose tissue and promoted the impairment of the insulin signaling pathway in the adipose tissue of obese mice while not affecting the skeletal muscle or liver. Mechanistically, DDE aggravated adipose tissue inflammation by promoting M1 macrophage accumulation and increasing proinflammatory cytokines in the adipocytes of obese mice, thus leading to impaired systemic insulin resistance. These findings provide crucial insights into the potential health impacts of long-term DDE exposure.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Xiangbo Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Ying Luo
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Xuechen Pei
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Dayong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| |
Collapse
|
4
|
Zhou Y, Jin W, Wu Q, Zhou Q. Acrolein: formation, health hazards and its controlling by dietary polyphenols. Crit Rev Food Sci Nutr 2024; 64:9604-9617. [PMID: 37203991 DOI: 10.1080/10408398.2023.2214625] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acrolein, a highly reactive toxic aldehyde, is a common dietary and environmental contaminant which can also be generated endogenously. Exposure to acrolein has been positively associated with some pathological conditions, such as atherosclerosis, diabetes mellitus, stroke, and Alzheimer's disease. At the cellular level, acrolein induces various harmful effects, particularly protein adduction and oxidative damages. Polyphenols are a group of secondary plant metabolites ubiquitously presented in fruits, vegetables, and herbs. Recent evidence has gradually solidified the protective role of polyphenols by working as acrolein scavengers and regulator of acrolein toxicities. This was largely attributed to the ability of polyphenols as antioxidants and sacrificial nucleophiles in trapping acrolein. This review discussed the exposure and toxicity of acrolein, summarized the known and anticipated contribution of polyphenols in ameliorating acrolein contamination and its health hazards.
Collapse
Affiliation(s)
- Yue Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Wendy Jin
- Rutgers Core Facility for Natural Products and Bioanalysis, New Use Agriculture and Natural Plant Products Program (NUANP), Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qingli Wu
- Rutgers Core Facility for Natural Products and Bioanalysis, New Use Agriculture and Natural Plant Products Program (NUANP), Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Baba SP, Amraotkar AR, Hoetker D, Gao H, Gomes D, Zhao J, Wempe MF, Rice PJ, DeFilippis AP, Rai SN, Pope CA, Bhatnagar A, O'Toole TE. Evaluation of supplementary carnosine accumulation and distribution: an initial analysis of participants in the Nucleophilic Defense Against PM Toxicity (NEAT) clinical trial. Amino Acids 2024; 56:55. [PMID: 39215872 PMCID: PMC11365863 DOI: 10.1007/s00726-024-03414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Carnosine is an endogenous dipeptide that buffers intracellular pH and quenches toxic products of lipid peroxidation. Used as a dietary supplement, it also supports exercise endurance. However, the accumulation and distribution of carnosine after supplementation has not been rigorously evaluated. To do this, we randomized a cohort to receive daily supplements of either placebo or carnosine (2 g/day). Blood and urine samples were collected twice over the subsequent 12 week supplementation period and we measured levels of red blood cell (RBC) carnosine, urinary carnosine, and urinary carnosine-propanol and carnosine-propanal conjugates by LC/MS-MS. We found that, when compared with placebo, supplementation with carnosine for 6 or 12 weeks led to an approximate twofold increase in RBC carnosine, while levels of urinary carnosine increased nearly sevenfold. Although there were no changes in the urinary levels of carnosine propanol, carnosine propanal increased nearly twofold. RBC carnosine levels were positively associated with urinary carnosine and carnosine propanal levels. No adverse reactions were reported by those in the carnosine or placebo arms, nor did carnosine supplementation have any effect on kidney, liver, and cardiac function or blood electrolytes. In conclusion, irrespective of age, sex, or BMI, oral carnosine supplementation in humans leads to its increase in RBC and urine, as well as an increase in urinary carnosine-propanal. RBC carnosine may be a readily accessible pool to estimate carnosine levels. Clinical trial registration: This study is registered with ClinicalTrials.gov (Nucleophilic Defense Against PM Toxicity (NEAT Trial)-Full Text View-ClinicalTrials.gov), under the registration: NCT03314987.
Collapse
Affiliation(s)
- Shahid P Baba
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY, USA
| | - Alok R Amraotkar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - David Hoetker
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Hong Gao
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Daniel Gomes
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Jingjing Zhao
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Michael F Wempe
- Department of Chemistry, Kentucky State University, Frankfort, KY, 40601, USA
| | - Peter J Rice
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Andrew P DeFilippis
- Department of Medicine, Vanderbilt University Medical Center, University of Vanderbilt, Nashville, TN, USA
| | - Shesh N Rai
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - C Arden Pope
- Department of Economics, Brigham Young University, Provo, UT, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Timothy E O'Toole
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA.
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA.
| |
Collapse
|
6
|
Zhu Z, Liu Z, Zhang D, Li L, Pei J, Cai L. Models for calcific aortic valve disease in vivo and in vitro. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:6. [PMID: 38424219 PMCID: PMC10904700 DOI: 10.1186/s13619-024-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Calcific Aortic Valve Disease (CAVD) is prevalent among the elderly as the most common valvular heart disease. Currently, no pharmaceutical interventions can effectively reverse or prevent CAVD, making valve replacement the primary therapeutic recourse. Extensive research spanning decades has contributed to the establishment of animal and in vitro cell models, which facilitates a deeper understanding of the pathophysiological progression and underlying mechanisms of CAVD. In this review, we provide a comprehensive summary and analysis of the strengths and limitations associated with commonly employed models for the study of valve calcification. We specifically emphasize the advancements in three-dimensional culture technologies, which replicate the structural complexity of the valve. Furthermore, we delve into prospective recommendations for advancing in vivo and in vitro model studies of CAVD.
Collapse
Affiliation(s)
- Zijin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Zhirong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, China.
| | - Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
7
|
Lin X, Feng T, Cui E, Li Y, Qin Z, Zhao X. A rat model established by simulating genetic-environmental interactions recapitulates human Alzheimer's disease pathology. Brain Res 2024; 1822:148663. [PMID: 37918702 DOI: 10.1016/j.brainres.2023.148663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND In humans, Alzheimer's disease (AD) is typically sporadic in nature, and its pathology is usually influenced by extensive factors. The study established a rat model based on the genetic-environmental interaction. METHODS A rat model was established by transduction of an adeno-associated virus combined with acrolein treatment. Rats were assigned to the normal control (NC), acrolein group, AAV (-) group, AAV-APP group, and AAV-APP/acrolein group. The success of model construction was verified in multiple ways, including by assessing cognitive function, examining microstructural changes in the brain in vivo, and performing immunohistochemistry. The contribution of genetic (APP mutation) and environmental (acrolein) factors to AD-like phenotypes in the model was explored by factorial analysis. RESULTS 1) The AAV-APP/acrolein group showed a decline in cognitive function, as indicated by a reduced gray matter volume in key cognition-related brain areas, lower FA values in the hippocampus and internal olfactory cortex, and Aβ deposition in the cortex and hippocampus. 2) The AAV-APP group also showed a decline in cognitive function, although the group exhibited atypical brain atrophy in the gray matter and insignificant Aβ deposition. 3) The acrolein group did not show any significant changes in Aβ levels, gray matter volume, or cognitive function. 4) The genetic factor (APP mutation) explained 39.74% of the AD-like phenotypes in the model factors, and the environmental factor (acrolein exposure) explained 33.3%. CONCLUSIONS The genetic-environmental interaction rat model exhibited a phenotype that resembled the features of human AD and will be useful for research on AD.
Collapse
Affiliation(s)
- Xiaomei Lin
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China
| | - Tianyuyi Feng
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China
| | - Erheng Cui
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China
| | - Yunfei Li
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China
| | - Zhang Qin
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China
| | - Xiaohu Zhao
- Department of Imaging, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200000, China.
| |
Collapse
|
8
|
Sahu R, Shah K, Malviya R, Paliwal D, Sagar S, Singh S, Prajapati BG, Bhattacharya S. E-Cigarettes and Associated Health Risks: An Update on Cancer Potential. Adv Respir Med 2023; 91:516-531. [PMID: 37987300 PMCID: PMC10660480 DOI: 10.3390/arm91060038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
The potential cancer risk associated with electronic-cigarette (e-cigarette) use is ongoing and remains a subject of debate. E-Cigarettes work by heating a liquid that usually contains nicotine, flavorings, and other chemicals. When the liquid is heated, users inhale an aerosol into their lungs. While e-cigarettes are generally considered less harmful than traditional tobacco products, they still contain potentially harmful chemicals, which can damage DNA and lead to cancer. Several studies have investigated the potential cancer risk associated with e-cigarette use, while other studies have suggested that e-cigarette aerosol may contain carcinogenic chemicals that could increase the risk of lung and bladder cancer in humans. However, these studies are limited in their scope and do not provide conclusive evidence. Overall, the long-term cancer risk associated with e-cigarette use remains uncertain, more research is needed to fully understand the potential risks and benefits of e-cigarettes. However, this review will allow the investigator to get more recent updates about e-cigarettes.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, India; (R.M.); (D.P.); (S.S.)
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Kamal Shah
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, India; (R.M.); (D.P.); (S.S.)
| | - Deepika Paliwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, India; (R.M.); (D.P.); (S.S.)
| | - Sakshi Sagar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, India; (R.M.); (D.P.); (S.S.)
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-Be University, Shirpur 425405, India;
| |
Collapse
|
9
|
Chavan RS, Supalkar KV, Sadar SS, Vyawahare NS. Animal models of Alzheimer's disease: An originof innovativetreatments and insight to the disease's etiology. Brain Res 2023; 1814:148449. [PMID: 37302570 DOI: 10.1016/j.brainres.2023.148449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The main pathogenic features are the development and depositionof senile plaques and neurofibrillary tangles in brain. Recent developments in the knowledge of the pathophysiological mechanisms behind Alzheimer's disease and other cognitive disorders have suggested new approaches to treatment development. These advancements have been significantly aided by the use of animal models, which are also essential for the assessment of therapies. Various approaches as transgenic animal model, chemical models, brain injury are used. This review will presentAD pathophysiology and emphasize several Alzheimer like dementia causingchemical substances, transgenic animal model and stereotaxy in order to enhance our existing knowledge of their mechanism of AD induction, dose, and treatment duration.
Collapse
Affiliation(s)
- Ritu S Chavan
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India.
| | - Krishna V Supalkar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Smeeta S Sadar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Niraj S Vyawahare
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| |
Collapse
|
10
|
Xie Z, Chen JY, Gao H, Keith RJ, Bhatnagar A, Lorkiewicz P, Srivastava S. Global Profiling of Urinary Mercapturic Acids Using Integrated Library-Guided Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10563-10573. [PMID: 37432892 PMCID: PMC11064822 DOI: 10.1021/acs.est.2c09554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Urinary mercapturic acids (MAs) are often used as biomarkers for monitoring human exposures to occupational and environmental xenobiotics. In this study, we developed an integrated library-guided analysis workflow using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. This method includes expanded assignment criteria and a curated library of 220 MAs and addresses the shortcomings of previous untargeted approaches. We employed this workflow to profile MAs in the urine of 70 participants─40 nonsmokers and 30 smokers. We found approximately 500 MA candidates in each urine sample, and 116 MAs from 63 precursors were putatively annotated. These include 25 previously unreported MAs derived mostly from alkenals and hydroxyalkenals. Levels of 68 MAs were comparable in nonsmokers and smokers, 2 MAs were higher in nonsmokers, and 46 MAs were elevated in smokers. These included MAs of polycyclic aromatic hydrocarbons and hydroxyalkenals and those derived from toxicants present in cigarette smoke (e.g., acrolein, 1,3-butadiene, isoprene, acrylamide, benzene, and toluene). Our workflow allowed profiling of known and unreported MAs from endogenous and environmental sources, and the levels of several MAs were increased in smokers. Our method can also be expanded and applied to other exposure-wide association studies.
Collapse
Affiliation(s)
- Zhengzhi Xie
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, United States
- Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Jin Y Chen
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, United States
- Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Hong Gao
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, United States
- Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Rachel J Keith
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, United States
- Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Aruni Bhatnagar
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, United States
- Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Pawel Lorkiewicz
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, United States
- Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, United States
- Department Center for Cardiometabolic Science, University of Louisville, Louisville, Kentucky 40202, United States
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Sanjay Srivastava
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, Kentucky 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, United States
- Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| |
Collapse
|
11
|
Klein J, Diaba-Nuhoho P, Giebe S, Brunssen C, Morawietz H. Regulation of endothelial function by cigarette smoke and next-generation tobacco and nicotine products. Pflugers Arch 2023:10.1007/s00424-023-02824-w. [PMID: 37285061 DOI: 10.1007/s00424-023-02824-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
Cigarette smoking is the most important avoidable cardiovascular risk factor. It causes endothelial dysfunction and atherosclerosis and increases the risk of its severe clinical complications like coronary artery disease, myocardial infarction, stroke, and peripheral artery disease. Several next-generation tobacco and nicotine products have been developed to decrease some of the deleterious effects of regular tobacco smoking. This review article summarizes recent findings about the impact of cigarette smoking and next-generation tobacco and nicotine products on endothelial dysfunction. Both cigarette smoking and next-generation tobacco products lead to impaired endothelial function. Molecular mechanisms of endothelial dysfunction like oxidative stress, reduced nitric oxide availability, inflammation, increased monocyte adhesion, and cytotoxic effects of cigarette smoke and next-generation tobacco and nicotine products are highlighted. The potential impact of short- and long-term exposure to next-generation tobacco and nicotine products on the development of endothelial dysfunction and its clinical implications for cardiovascular diseases are discussed.
Collapse
Affiliation(s)
- Justus Klein
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Patrick Diaba-Nuhoho
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Fetscherstr. 74, D-01307, Dresden, Germany
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, Albert-Schweitzer-Str. 33, D-48149, Münster, Germany
| | - Sindy Giebe
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Coy Brunssen
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Henning Morawietz
- Department of Medicine III, Division of Vascular Endothelium and Microcirculation, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Fetscherstr. 74, D-01307, Dresden, Germany.
| |
Collapse
|
12
|
Ding R, Ren X, Sun Q, Sun Z, Duan J. An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2023; 48:227-257. [PMID: 35998874 PMCID: PMC10248804 DOI: 10.1016/j.jare.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nowadays, cigarette smoking remains the leading cause of chronic disease and premature death, especially cardiovascular disease. As an emerging tobacco product, e-cigarettes have been advocated as alternatives to canonical cigarettes, and thus may be an aid to promote smoking cessation. However, recent studies indicated that e-cigarettes should not be completely harmless to the cardiovascular system. AIM OF REVIEW This review aimed to build up an integral perspective of cigarettes and e-cigarettes-related cardiovascular toxicity. KEY SCIENTIFIC CONCEPTS OF REVIEW This review adopted the adverse outcome pathway (AOP) framework as a pivotal tool and aimed to elucidate the association between the molecular initiating events (MIEs) induced by cigarette and e-cigarette exposure to the cardiovascular adverse outcome. Since the excessive generation of reactive oxygen species (ROS) has been widely approved to play a critical role in cigarette smoke-related CVD and may also be involved in e-cigarette-induced toxic effects, the ROS overproduction and subsequent oxidative stress are regarded as essential parts of this framework. As far as we know, this should be the first AOP framework focusing on cigarette and e-cigarette-related cardiovascular toxicity, and we hope our work to be a guide in exploring the biomarkers and novel therapies for cardiovascular injury.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
13
|
McGraw KE, Konkle SL, Riggs DW, Rai SN, DeJarnett N, Xie Z, Keith RJ, Oshunbade A, Hall ME, Shimbo D, Bhatnagar A. Exposure to Volatile Organic Compounds Is Associated with Hypertension in Black Adults: The Jackson Heart Study. ENVIRONMENTAL RESEARCH 2023; 223:115384. [PMID: 36796615 PMCID: PMC10134439 DOI: 10.1016/j.envres.2023.115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/15/2022] [Accepted: 01/27/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The prevalence of hypertension is higher among Black adults than among White and Hispanic adults. Nevertheless, reasons underlying the higher rates of hypertension in the Black population remain unclear but may relate to exposure to environmental chemicals such as volatile organic compounds (VOCs). METHODS We evaluated the associations of blood pressure (BP) and hypertension with VOC exposure in non-smokers and smokers in a subgroup of the Jackson Heart Study (JHS), consisting of 778 never smokers and 416 age- and sex-matched current smokers. We measured urinary metabolites of 17 VOCs by mass spectrometry. RESULTS After adjusting for covariates, we found that amoong non-smokers, metabolites of acrolein and crotonaldehyde were associated with a 1.6 mm Hg (95%CI: 0.4, 2.7; p = 0.007) and a 0.8 mm Hg (95%CI: 0.01, 1.6; p = 0.049) higher systolic BP, and the styrene metabolite was associated with a 0.4 mm Hg (95%CI: 0.09, 0.8, p = 0.02) higher diastolic BP. Current smokers had 2.8 mm Hg (95% CI 0.5, 5.1) higher systolic BP. They were at higher risk of hypertension (relative risk = 1.2; 95% CI, 1.1, 1.4), and had higher urinary levels of several VOC metabolites. Individuals who smoke had higher levels of the urinary metabolites of acrolein, 1,3-butadiene, and crotonaldehyde and were associated with higher systolic BP. The associations were stronger among participants who were <60 years of age and male. Using Bayesian kernel machine regression to assess the effects of multiple VOC exposures, we found that the relationship between VOCs and hypertension among non-smokers was driven primarily by acrolein and styrene in non-smokers, and crotonaldehyde in smokers. CONCLUSIONS Hypertension in Black individuals may be attributed, in part, to VOC exposure from the environment or tobacco smoke.
Collapse
Affiliation(s)
- Katlyn E McGraw
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville School of Public Health and Information Sciences, 485 E Gray Street, Louisville, KY, 40202, USA
| | - Stacey L Konkle
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville School of Public Health and Information Sciences, 485 E Gray Street, Louisville, KY, 40202, USA
| | - Daniel W Riggs
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville School of Public Health and Information Sciences, 485 E Gray Street, Louisville, KY, 40202, USA
| | - Shesh N Rai
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville School of Public Health and Information Sciences, 485 E Gray Street, Louisville, KY, 40202, USA
| | - Natasha DeJarnett
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Rachel J Keith
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Adebamike Oshunbade
- University of Mississippi Medical Center Department of Medicine - Cardiology, 2500 North State St, Jackson, MS, 39216, USA
| | - Michael E Hall
- University of Mississippi Medical Center Department of Medicine - Cardiology, 2500 North State St, Jackson, MS, 39216, USA
| | - Diachi Shimbo
- Columbia University Department of Medicine, 161 Fort Washington Ave, New York, NY, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Xu XD, Chen JX, Zhu L, Xu ST, Jiang J, Ren K. The emerging role of pyroptosis-related inflammasome pathway in atherosclerosis. Mol Med 2022; 28:160. [PMID: 36544112 PMCID: PMC9773468 DOI: 10.1186/s10020-022-00594-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis (AS), a chronic sterile inflammatory disorder, is one of the leading causes of mortality worldwide. The dysfunction and unnatural death of plaque cells, including vascular endothelial cells (VEC), macrophages, and vascular smooth muscle cells (VSMC), are crucial factors in the progression of AS. Pyroptosis was described as a form of cell death at least two decades ago. It is featured by plasma membrane swelling and rupture, cell lysis, and consequent robust release of cytosolic contents and pro-inflammatory mediators, including interleukin-1β (IL-1β), IL-18, and high mobility group box 1 (HMGB1). Pyroptosis of plaque cells is commonly observed in the initiation and development of AS, and the levels of pyroptosis-related proteins are positively correlated with plaque instability, indicating the crucial contribution of pyroptosis to atherogenesis. Furthermore, studies have also identified some candidate anti-atherogenic agents targeting plaque cell pyroptosis. Herein, we summarize the research progress in understating (1) the discovery and definition of pyroptosis; (2) the characterization and molecular mechanisms of pyroptosis; (3) the regulatory mechanisms of pyroptosis in VEC, macrophage, and VSMC, as well as their potential role in AS progression, aimed at providing therapeutic targets for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Xiao-Dan Xu
- grid.412679.f0000 0004 1771 3402Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui People’s Republic of China
| | - Jia-Xian Chen
- grid.443397.e0000 0004 0368 7493Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100 Hainan People’s Republic of China
| | - Lin Zhu
- grid.252251.30000 0004 1757 8247College of Nursing, Anhui University of Chinese Medicine, Hefei, 230012 Anhui People’s Republic of China
| | - Shu-Ting Xu
- grid.411971.b0000 0000 9558 1426Department of Nephrology, The Affiliated Hospital of Dalian Medical University, Dalian, 116044 Liaoning People’s Republic of China
| | - Jian Jiang
- grid.443397.e0000 0004 0368 7493Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100 Hainan People’s Republic of China
| | - Kun Ren
- grid.252251.30000 0004 1757 8247College of Nursing, Anhui University of Chinese Medicine, Hefei, 230012 Anhui People’s Republic of China ,grid.443397.e0000 0004 0368 7493Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100 Hainan People’s Republic of China
| |
Collapse
|
15
|
Abstract
Neurodegenerative diseases are characterized by a massive loss of specific neurons, which can be fatal. Acrolein, an omnipresent environmental pollutant, is classified as a priority control contaminant by the EPA. Evidence suggests that acrolein is a highly active unsaturated aldehyde related to many nervous system diseases. Therefore, numerous studies have been conducted to identify the function of acrolein in neurodegenerative diseases, such as ischemic stroke, AD, PD, and MS, and its exact regulatory mechanism. Acrolein is involved in neurodegenerative diseases mainly by elevating oxidative stress, polyamine metabolism, neuronal damage, and plasma ACR-PC levels, and decreasing urinary 3-HPMA and plasma GSH levels. At present, the protective mechanism of acrolein mainly focused on the use of antioxidant compounds. This review aimed to clarify the role of acrolein in the pathogenesis of four neurodegenerative diseases (ischemic stroke, AD, PD and MS), as well as protection strategies, and to propose future trends in the inhibition of acrolein toxicity through optimization of food thermal processing and exploration of natural products.
Collapse
|
16
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
17
|
Dutta P, Sengupta A, Chakraborty S. Epigenetics: a new warrior against cardiovascular calcification, a forerunner in modern lifestyle diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62093-62110. [PMID: 34601672 DOI: 10.1007/s11356-021-15718-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Arterial and aortic valve calcifications are the most prevalent pathophysiological conditions among all the reported cases of cardiovascular calcifications. It increases with several risk factors like age, hypertension, external stimuli, mechanical forces, lipid deposition, malfunction of genes and signaling pathways, enhancement of naturally occurring calcium inhibitors, and many others. Modern-day lifestyle is affected by numerous environmental factors and harmful toxins that impair our health rather than providing benefits. Applying the combinatorial approach or targeting the exact mechanism could be a new strategy for drug designing or attenuating the severity of calcification. Most of the non-communicable diseases are life-threatening; thus, altering the phenotype and not the genotype may reveal the gateway for fighting with upcoming hurdles. Overall, this review summarizes the reason behind the generation of arterial and aortic valve calcification and its related signaling pathways and also the detrimental effects of calcification. In addition, the individual process of epigenetics and how the implementation of this process becomes a novel approach for diminishing the harmful effect of calcification are discussed. Noteworthy, as epigenetics is linked with genetics and environmental factors necessitates further clinical trials for complete and in-depth understanding and application of this strategy in a more specific and prudent manner.
Collapse
Affiliation(s)
- Parna Dutta
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India
| | - Arunima Sengupta
- Department of Life science & Bio-technology, Jadavpur University, Kolkata, 700032, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
18
|
Staal YCM, Bil W, Bokkers BGH, Soeteman-Hernández LG, Stephens WE, Talhout R. Challenges in Predicting the Change in the Cumulative Exposure of New Tobacco and Related Products Based on Emissions and Toxicity Dose-Response Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10528. [PMID: 36078242 PMCID: PMC9518537 DOI: 10.3390/ijerph191710528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Many novel tobacco products have been developed in recent years. Although many may emit lower levels of several toxicants, their risk in the long term remains unclear. We previously published a method for the exposure assessment of mixtures that can be used to compare the changes in cumulative exposure to carcinogens among tobacco products. While further developing this method by including more carcinogens or to explore its application to non-cancer endpoints, we encountered a lack of data that are required for better-substantiated conclusions regarding differences in exposure between products. In this special communication, we argue the case for more data on adverse health effects, as well as more data on the composition of the emissions from tobacco products. Such information can be used to identify significant changes in relevance to health using the cumulative exposure method with different products and to substantiate regulatory decisions.
Collapse
Affiliation(s)
- Yvonne C. M. Staal
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Wieneke Bil
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Bas G. H. Bokkers
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Lya G. Soeteman-Hernández
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - W. Edryd Stephens
- School of Earth & Environmental Sciences, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Reinskje Talhout
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
19
|
Crowley LN, Le BL, Cicalo C, Brown J, Li Y, Kim YJ, Lee JH, Pan JH, Lennon SL, Han BK, Kim JK. Acrolein, an environmental toxicant and its applications to in vivo and in vitro atherosclerosis models: An update. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103890. [PMID: 35613694 DOI: 10.1016/j.etap.2022.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 06/03/2023]
Abstract
Cardiovascular disease, the foremost cause of death worldwide, is an overarching disease term that encompasses a number of disorders involving the heart and circulatory system, including atherosclerosis. Atherosclerosis is a primary cause of cardiovascular diseases and is caused by buildup of plaque and narrowing of blood vessels. Epidemiological studies have suggested that environmental pollutants are implicated in atherosclerosis disease progression. Among many environmental pollutants, acrolein (Acr) is an abundant reactive aldehyde and is ubiquitously present in cigarette smoke as well as food products (e.g., overheated oils and wine). Despite its ubiquitous presence and potential impact on the etiology of cardiovascular disease, a limited consensus has been made in regard to Acr exposure conditions to induce atherosclerosis in vivo. This mini-review summarizes in vivo atherosclerosis models using Acr to investigate biochemical and phenotypic changes related to atherosclerosis and in vitro mechanistic studies involving Acr and atherosclerosis.
Collapse
Affiliation(s)
- Liana N Crowley
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Brandy L Le
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Cara Cicalo
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Justin Brown
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yali Li
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Bok Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
20
|
Effect Comparison of E-Cigarette and Traditional Smoking and Association with Stroke-A Cross-Sectional Study of NHANES. Neurol Int 2022; 14:441-452. [PMID: 35736618 PMCID: PMC9227824 DOI: 10.3390/neurolint14020037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Introduction: Tobacco use is one of the most significant risk factors for stroke. Besides traditional cigarettes and combustible products, the use of e-cigarettes and electronic nicotine delivery products has been widespread among young adults in the recent era. Furthermore, the trend of vaping has increased over the last decade. However, the relationship between e-cigarettes and stroke is largely unknown. The aim of this study was to evaluate the prevalence and identify the relationship between e-cigarette smoking and stroke. Methods: A cross-sectional study was performed using the NHANES database of the US population. Adults with a history of smoking were considered in our study and divided into three groups, e-cigarette users, traditional, and dual smokers. The Chi-squared test, Wilcoxon rank-sum test, and multivariable logistic regression analysis were used to identify the prevalence and association of e-cigarette consumption and stroke. Results: Out of a total of 266,058 respondents from 2015 to 2018, we found 79,825 respondents who smoked e-cigarettes (9.72%) or traditional (29.37%) or dual smoking (60.91%). Stroke prevalence among e-cigarette smokers was 1.57%. Stroke was more prevalent among traditional smokers than among e-cigarette smokers. (6.75% vs. 1.09%; p < 0.0001) E-cigarette smokers had early onset of stroke in comparison with traditional smokers. (median age: 48 vs. 59 years; p < 0.0001). Among females with stroke, the prevalence of e-cigarette use was higher in comparison with traditional smoking (36.36% vs. 33.91%; p < 0.0001). Among the stroke population, the prevalence of e-cigarette use was higher among Mexican-Americans (21.21% vs. 6.02%) and other Hispanics (24.24% vs. 7.70%) compared with traditional smoking (p < 0.0001). The regression analysis found higher odds of stroke history among e-cigarette users than traditional smokers [aOR: 1.15; 95% CI: 1.15−1.16)]. Conclusion: Though stroke was more prevalent in traditional smokers, the incidence of stroke was early-in-onset and was strongly associated with e-cigarette use compared to traditional smokers. We have also identified vascular effects of e-cigarettes components as possible triggers for the stroke.
Collapse
|
21
|
L'Abbate S, Chianca M, Fabiani I, Del Franco A, Giannoni A, Vergaro G, Grigoratos C, Kusmic C, Passino C, D'Alessandra Y, Burchielli S, Emdin M, Cardinale DM. In Vivo Murine Models of Cardiotoxicity Due to Anticancer Drugs: Challenges and Opportunities for Clinical Translation. J Cardiovasc Transl Res 2022; 15:1143-1162. [PMID: 35312959 DOI: 10.1007/s12265-022-10231-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
Modern therapeutic approaches have led to an improvement in the chances of surviving a diagnosis of cancer. However, this may come with side effects, with patients experiencing adverse cardiovascular events or exacerbation of underlying cardiovascular disease related to their cancer treatment. Rodent models of chemotherapy-induced cardiotoxicity are useful to define pathophysiological mechanisms of cardiac damage and to identify potential therapeutic targets. The key mechanisms involved in cardiotoxicity induced by specific different antineoplastic agents are summarized in this state-of-the-art review, as well as the rodent models of cardiotoxicity by different classes of anticancer drugs, along with the strategies tested for primary and secondary cardioprotection. Current approaches for early detection of cardiotoxicity in preclinical studies with a focus on the application of advanced imaging modalities and biomarker strategies are also discussed. Potential applications of cardiotoxicity modelling in rodents are illustrated in relation to the advancements of promising research topics of cardiotoxicity. Created with BioRender.com.
Collapse
Affiliation(s)
- Serena L'Abbate
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michela Chianca
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Annamaria Del Franco
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | | | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Yuri D'Alessandra
- Cardiovascular Proteomics Unit, Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | | | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardiology Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| |
Collapse
|
22
|
Environmental exposure to volatile organic compounds is associated with endothelial injury. Toxicol Appl Pharmacol 2022; 437:115877. [PMID: 35045333 PMCID: PMC10045232 DOI: 10.1016/j.taap.2022.115877] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Volatile organic compounds (VOCs) are airborne toxicants abundant in outdoor and indoor air. High levels of VOCs are also present at various Superfund and other hazardous waste sites; however, little is known about the cardiovascular effects of VOCs. We hypothesized that ambient exposure to VOCs exacerbate cardiovascular disease (CVD) risk by depleting circulating angiogenic cells (CACs). APPROACH AND RESULTS In this cross-sectional study, we recruited 603 participants with low-to-high CVD risk and measured 15 subpopulations of CACs by flow cytometry and 16 urinary metabolites of 12 VOCs by LC/MS/MS. Associations between CAC and VOC metabolite levels were examined using generalized linear models in the total sample, and separately in non-smokers. In single pollutant models, metabolites of ethylbenzene/styrene and xylene, were negatively associated with CAC levels in both the total sample, and in non-smokers. The metabolite of acrylonitrile was negatively associated with CD45dim/CD146+/CD34+/AC133+ cells and CD45+/CD146+/AC133+, and the toluene metabolite with AC133+ cells. In analysis of non-smokers (n = 375), multipollutant models showed a negative association with metabolites of ethylbenzene/styrene, benzene, and xylene with CD45dim/CD146+/CD34+ cells, independent of other VOC metabolite levels. Cumulative VOC risk score showed a strong negative association with CD45dim/CD146+/CD34+ cells, suggesting that total VOC exposure has a cumulative effect on pro-angiogenic cells. We found a non-linear relationship for benzene, which showed an increase in CAC levels at low, but depletion at higher levels of exposure. Sex and race, hypertension, and diabetes significantly modified VOC associated CAC depletion. CONCLUSION Low-level ambient exposure to VOCs is associated with CAC depletion, which could compromise endothelial repair and angiogenesis, and exacerbate CVD risk.
Collapse
|
23
|
Zelko IN, Taylor BS, Das TP, Watson WH, Sithu ID, Wahlang B, Malovichko MV, Cave MC, Srivastava S. Effect of vinyl chloride exposure on cardiometabolic toxicity. ENVIRONMENTAL TOXICOLOGY 2022; 37:245-255. [PMID: 34717031 PMCID: PMC8724461 DOI: 10.1002/tox.23394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/09/2021] [Accepted: 10/22/2021] [Indexed: 05/08/2023]
Abstract
Vinyl chloride (VC) is an organochlorine mainly used to manufacture its polymer polyvinyl chloride, which is extensively used in the manufacturing of consumer products. Recent studies suggest that chronic low dose VC exposure affects glucose homeostasis in high fat diet-fed mice. Our data suggest that even in the absence of high fat diet, exposure to VC (0.8 ppm, 6 h/day, 5 day/week, for 12 weeks) induces glucose intolerance (1.0 g/kg, i.p.) in male C57BL/6 mice. This was accompanied with the depletion of hepatic glutathione and a modest increase in lung interstitial macrophages. VC exposure did not affect the levels of circulating immune cells, endothelial progenitor cells, platelet-immune cell aggregates, and cytokines and chemokines. The acute challenge of VC-exposed mice with LPS did not affect lung immune cell composition or plasma IL-6. To examine the effect of VC exposure on vascular inflammation and atherosclerosis, LDL receptor-KO mice on C57BL/6 background maintained on western diet were exposed to VC for 12 weeks (0.8 ppm, 6 h/day, 5 day/week). Unlike the WT C57BL/6 mice, VC exposure did not affect glucose tolerance in the LDL receptor-KO mice. Plasma cytokines, lesion area in the aortic valve, and markers of lesional inflammation in VC-exposed LDL receptor-KO mice were comparable with the air-exposed controls. Collectively, despite impaired glucose tolerance and modest pulmonary inflammation, chronic low dose VC exposure does not affect surrogate markers of cardiovascular injury, LPS-induced acute inflammation in C57BL/6 mice, and chronic inflammation and atherosclerosis in the LDL receptor-KO mice.
Collapse
Affiliation(s)
- Igor N. Zelko
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Breandon S. Taylor
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| | - Trinath P. Das
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Walter H. Watson
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, KY 40202
| | - Israel D. Sithu
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| | - Banrida Wahlang
- Superfund Research Center, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
| | - Marina V. Malovichko
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Matthew C. Cave
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
| | - Sanjay Srivastava
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| |
Collapse
|
24
|
Jin L, Conklin DJ. A novel evaluation of endothelial dysfunction ex vivo: "Teaching an Old Drug a New Trick". Physiol Rep 2021; 9:e15120. [PMID: 34755498 PMCID: PMC8579072 DOI: 10.14814/phy2.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Many CVDs begin with endothelium dysfunction (ED), including hypertension, thrombosis, and atherosclerosis. Our assay evaluated ED in isolated murine aorta by quantifying phenylephrine-induced contractions (PE) in the presence of L-NAME, which blocked acetylcholine-induced relaxation (ACh %; >99%). The "L-NAME PE Contraction Ratio" (PECR) was defined as: "PE Tension post-L-NAME" divided by "PE Tension pre-L-NAME." We hypothesized that our novel PE Contraction Ratio would strongly correlate with alterations in endothelium function. Validation 1: PECR and ACh % values of naïve aortas were strongly and positively correlated (PECR vs. ACh %, r2 = 0.91, n = 7). Validation 2: Retrospective analyses of published aortic PECR and ACh % data of female mice exposed to filtered air, propylene glycol:vegetable glycerin (PG:VG), formaldehyde (FA), or acetaldehyde (AA) for 4d showed that the PECR in air-exposed mice (PECR = 1.43 ± 0.05, n = 16) correlated positively with the ACh % (r2 = 0.40) as seen in naïve aortas. Similarly, PECR values were significantly decreased in aortas with ED yet retained positive regression coefficients with ACh % (PG:VG r2 = 0.54; FA r2 = 0.55). Unlike other toxicants, inhaled AA significantly increased both PECR and ACh % values yet diminished their correlation (r2 = 0.09). Validation 3: To assess species-specific dependence, we tested PECR in rat aorta, and found PECR correlated with ACh % relaxation albeit less well in this aged and dyslipidemic model. Because the PECR reflects NOS function directly, it is a robust measure of both ED and vascular dysfunction. Therefore, it is a complementary index of existing tests of ED that also provides insight into mechanisms of vascular toxicity.
Collapse
Affiliation(s)
- Lexiao Jin
- American Heart Association‐Tobacco Regulation and Addiction CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Daniel J. Conklin
- American Heart Association‐Tobacco Regulation and Addiction CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKentuckyUSA
- Superfund Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Division of Environmental MedicineDepartment of MedicineUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
25
|
Jin L, Lorkiewicz P, Xie Z, Bhatnagar A, Srivastava S, Conklin DJ. Acrolein but not its metabolite, 3-Hydroxypropylmercapturic acid (3HPMA), activates vascular transient receptor potential Ankyrin-1 (TRPA1): Physiological to toxicological implications. Toxicol Appl Pharmacol 2021; 426:115647. [PMID: 34271065 PMCID: PMC8343963 DOI: 10.1016/j.taap.2021.115647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Acrolein, an electrophilic α,β-unsaturated aldehyde, is present in foods and beverages, and is a product of incomplete combustion, and thus, reaches high ppm levels in tobacco smoke and structural fires. Exposure to acrolein is linked with cardiopulmonary toxicity and cardiovascular disease risk. The hypothesis of this study is the direct effects of acrolein in isolated murine blood vessels (aorta and superior mesenteric artery, SMA) are transient receptor potential ankyrin-1 (TRPA1) dependent. Using isometric myography, isolated aorta and SMA were exposed to increasing levels of acrolein. Acrolein inhibited phenylephrine (PE)-induced contractions (approximately 90%) in aorta and SMA of male and female mice in a concentration-dependent (0.01-100 μM) manner. The major metabolite of acrolein, 3-hydroxypropylmercapturic acid (3HPMA), also relaxed PE-precontracted SMA. As the SMA was 20× more sensitive to acrolein than aorta (SMA EC50 0.8 ± 0.2 μM; aorta EC50 > 29.4 ± 4.4 μM), the mechanisms of acrolein-induced relaxation were studied in SMA. The potency of acrolein-induced relaxation was inhibited significantly by: 1) mechanically-impaired endothelium; 2) Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME); 3) guanylyl cyclase (GC) inhibitor (ODQ); and, 4) a TRPA1 antagonist (A967079). TRPA1 positive immunofluorescence was present in the endothelium. Compared with other known TRPA1 agonists, including allyl isothiocyanate (AITC), cinnamaldehyde, crotonaldehyde, and formaldehyde, acrolein stimulated a more potent TRPA1-dependent relaxation. Acrolein, at high concentration [100 μM], induced tension oscillations (spasms) independent of TRPA1 in precontracted SMA but not in aorta. In conclusion, acrolein is vasorelaxant at low levels (physiological) yet vasotoxic at high levels (toxicological).
Collapse
Affiliation(s)
- L Jin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA
| | - P Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA
| | - Z Xie
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - A Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA; Superfund Research Center, University of Louisville, Louisville, KY, USA
| | - S Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA; Superfund Research Center, University of Louisville, Louisville, KY, USA
| | - D J Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA; Superfund Research Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
26
|
Gui X, Yang Z, Li MD. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Front Physiol 2021; 12:673341. [PMID: 34220536 PMCID: PMC8245763 DOI: 10.3389/fphys.2021.673341] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a representative source of toxic chemical exposures to humans, and the adverse consequences of cigarette smoking are mediated by its effect on both neuronal and immune-inflammatory systems. Cigarette smoking also is a major risk factor for intestinal disorders, such as Crohn's disease and peptic ulcer. On the other hand, cigarette smoking is protective against developing ulcerative colitis. The effects of cigarette smoking on intestinal disorders include changes in intestinal irrigation and microbiome, increases in permeability of the mucosa, and impaired mucosal immune responses. However, the underlying mechanism linking cigarette smoking with intestinal microbiota dysbiosis is largely unknown. In this communication, we first review the current knowledge about the mechanistic interaction between cigarette smoke and intestinal microbiota dysbiosis, which include the likely actions of nicotine, aldehydes, polycyclic aromatic hydrocarbons, heavy metals, volatile organic compounds and toxic gases, and then reveal the potential mechanisms of the lung-gut cross talk and skin-gut cross talk in regulating the balance of intestinal microbiota and the interrelation of intestinal microbiota dysbiosis and systemic disorders.
Collapse
Affiliation(s)
- Xiaohua Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Keith R, Bhatnagar A. Cardiorespiratory and Immunologic Effects of Electronic Cigarettes. CURRENT ADDICTION REPORTS 2021; 8:336-346. [PMID: 33717828 PMCID: PMC7935224 DOI: 10.1007/s40429-021-00359-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Although e-cigarettes have become popular, especially among youth, the health effects associated with e-cigarette use remain unclear. This review discusses current evidence relating to the cardiovascular, pulmonary, and immunological effects of e-cigarettes. RECENT FINDINGS The use of e-cigarettes by healthy adults has been shown to increase blood pressure, heart rate, and arterial stiffness, as well as resistance to air flow in lungs. Inhalation of e-cigarette aerosol has been shown to elicit immune responses and increase the production of immunomodulatory cytokines in young tobacco-naïve individuals. In animal models, long-term exposure to e-cigarettes leads to marked changes in lung architecture, dysregulation of immune genes, and low-grade inflammation. Exposure to e-cigarette aerosols in mice has been shown to induce DNA damage, inhibit DNA repair, and promote carcinogenesis. Chronic exposure to e-cigarettes has also been reported to result in the accumulation of lipid-laden macrophages in the lung and dysregulation of lipid metabolism and transport in mice. Although, the genotoxic and inflammatory effects of e-cigarettes are milder than those of combustible cigarettes, some of the cardiorespiratory effects of the two insults are comparable. The toxicity of e-cigarettes has been variably linked to nicotine, as well as other e-cigarette constituents, operating conditions, and use patterns. SUMMARY The use of e-cigarettes in humans is associated with significant adverse cardiorespiratory and immunological changes. Data from animal models and in vitro studies support the notion that long-term use of e-cigarettes may pose significant health risks.
Collapse
Affiliation(s)
- Rachel Keith
- American Heart Association Tobacco Regulation and Addiction Center & The Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, 302E Muhammad Ali Blvd, Louisville, KY 40202 USA
| | - Aruni Bhatnagar
- American Heart Association Tobacco Regulation and Addiction Center & The Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, 302E Muhammad Ali Blvd, Louisville, KY 40202 USA
| |
Collapse
|
28
|
Xu C, Liang J, Xu S, Liu Q, Xu J, Gu A. Increased serum levels of aldehydes are associated with cardiovascular disease and cardiovascular risk factors in adults. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123134. [PMID: 32569983 DOI: 10.1016/j.jhazmat.2020.123134] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have identified several genetic and environmental risk factors for cardiovascular disease (CVD), but little is known about the associations between serum aldehydes and CVD risk. Herein, we examined associations between serum levels of aldehydes and the risk of CVD and CVD subtypes among 1947 U.S. adults participating in the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Bayesian kernel machine regression (BKMR) was used to analyze the combined effect of serum aldehydes on the overall risk of CVD. We found that isopentanaldehyde concentrations were positively associated with the odds of CVD (adjusted odds ratio (aOR): 2.17; 95 % confidence interval (95 % CI): 1.36, 3.46). The result of BKMR also indicated a positive association of mixed aldehydes with CVD risk. Isopentanaldehyde had the highest posterior inclusion probabilities (PIP = 0.90). Each one-unit (ng/mL) increase in the isopentanaldehyde concentration was associated with a 25.0 mg/dL increase in triglycerides and a 0.9 × 109/L increase in white blood cell (WBC) count in the fully adjusted model. Current evidence suggests that isopentanaldehyde may increase the risk of CVD by elevating triglycerides and WBC count.
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Shuqin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Hong KU, Doll MA, Lykoudi A, Salazar-González RA, Habil MR, Walls KM, Bakr AF, Ghare SS, Barve SS, Arteel GE, Hein DW. Acetylator Genotype-Dependent Dyslipidemia in Rats Congenic for N-Acetyltransferase 2. Toxicol Rep 2020; 7:1319-1330. [PMID: 33083237 PMCID: PMC7553889 DOI: 10.1016/j.toxrep.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023] Open
Abstract
Recent reports suggest that arylamine N-acetyltransferases (NAT1 and/or NAT2) serve important roles in regulation of energy utility and insulin sensitivity. We investigated the interaction between diet (control vs. high-fat diet) and acetylator phenotype (rapid vs. slow) using previously established congenic rat lines (in F344 background) that exhibit rapid or slow Nat2 (orthologous to human NAT1) acetylator genotypes. Male and female rats of each genotype were fed control or high-fat (Western-style) diet for 26 weeks. We then examined diet- and acetylator genotype-dependent changes in body and liver weights, systemic glucose tolerance, insulin sensitivity, and plasma lipid profile. Male and female rats on the high fat diet weighed approximately 10% more than rats on the control diet and the percentage liver to body weight was consistently higher in rapid than slow acetylator rats. Rapid acetylator rats were more prone to develop dyslipidemia overall (i.e., higher triglyceride; higher LDL; and lower HDL), compared to slow acetylator rats. Total cholesterol (TC)-to-HDL ratios were significantly higher and HDL-to-LDL ratios were significantly lower in rapid acetylator rats. Our data suggest that rats with rapid systemic Nat2 (NAT1 in humans) genotype exhibited higher dyslipidemia conferring risk for metabolic syndrome and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Kyung U. Hong
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark A. Doll
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Angeliki Lykoudi
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Raúl A. Salazar-González
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mariam R. Habil
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kennedy M. Walls
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Alaa F. Bakr
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Smita S. Ghare
- Departments of Medicine and Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Shirish S. Barve
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Departments of Medicine and Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Gavin E. Arteel
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W. Hein
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Departments of Medicine and Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Tobacco smoking is the most significant modifiable risk factor in the development of cardiovascular disease (CVD). Exposure to mainstream cigarette smoke (MCS) is associated with CVD through the development of endothelial dysfunction, a condition characterized by an imbalance of vasoactive factors in the vasculature. This dysfunction is thought to be induced in part by aldehydes generated at high levels in MCS. RECENT FINDINGS Electronic cigarettes (e-cigs) may also pose CVD risk. Although the health effects of e-cigs are still largely unknown, the presence of aldehydes in e-cig aerosol suggests that e-cigs may induce adverse cardiovascular outcomes similar to those seen with MCS exposure. Herein, we review studies of traditional and emerging tobacco product use, shared harmful and potentially harmful constituents, and measures of biomarkers of harm (endothelial dysfunction) to examine a potential and distinct role of aldehydes in cardiovascular harm associated with cigarette and e-cig use.
Collapse
Affiliation(s)
- Jordan Lynch
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA.
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA.
- University of Louisville American Heart Association - Tobacco Regulation and Addiction Center, Louisville, KY, 40202, USA.
| | - Lexiao Jin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andre Richardson
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA
- University of Louisville American Heart Association - Tobacco Regulation and Addiction Center, Louisville, KY, 40202, USA
| | - Daniel J Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA
- University of Louisville American Heart Association - Tobacco Regulation and Addiction Center, Louisville, KY, 40202, USA
- Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
31
|
Lynch J, Jin L, Richardson A, Jagatheesan G, Lorkiewicz P, Xie Z, Theis WS, Shirk G, Malovichko MV, Bhatnagar A, Srivastava S, Conklin DJ. Acute and chronic vascular effects of inhaled crotonaldehyde in mice: Role of TRPA1. Toxicol Appl Pharmacol 2020; 402:115120. [PMID: 32634517 DOI: 10.1016/j.taap.2020.115120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Although crotonaldehyde (CR) is an abundant α,β-unsaturated aldehyde in mainstream cigarette smoke (MCS), the cardiovascular toxicity of inhaled CR is largely unexplored. Thus, male C57BL/6 J mice were exposed acutely (1 h, 6 h, and 4d) and chronically (12 weeks) to CR (at levels relevant to MCS; 1 and 3 ppm), and cardiovascular and systemic outcomes were measured in vivo and in vitro. Diastolic blood pressure was decreased (hypotension) by both acute and chronic CR exposure. Vascular toxicity of inhaled CR was quantified in isolated aorta in response to agonists of contraction (phenylephrine, PE) and relaxation (acetylcholine, ACh; sodium nitroprusside, SNP). Although no change in contractility was observed, ACh-induced relaxations were augmented after both acute and chronic CR exposures whereas SNP-induced relaxation was enhanced only following 3 ppm CR exposure. Because CR is a known agonist of the transient receptor potential ankyrin 1 (TRPA1) channel, male TRPA1-null mice were exposed to air or CR (4d, 1 ppm) and aortic function assessed in vitro. CR exposure had no effect on TRPA1-null aortic function indicating a role of TRPA1 in CR effects in C57BL/6 J mice. Notably, CR exposure (4d, 1 ppm) had no effect on aortic function in female C57BL/6 J mice. This study shows that CR inhalation exposure induces real-time and persistent vascular changes that promote hypotension-a known risk factor for stroke. Because of continued widespread exposures of humans to combustion-derived CR (environmental and tobacco products), CR may be an important cardiovascular disease risk factor.
Collapse
Affiliation(s)
- Jordan Lynch
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America.
| | - Lexiao Jin
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Andre Richardson
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Ganapathy Jagatheesan
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Department of Chemistry, University of Louisville, United States of America.
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America.
| | - Whitney S Theis
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Gregg Shirk
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Marina V Malovichko
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| | - Aruni Bhatnagar
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| | - Sanjay Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| | - Daniel J Conklin
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| |
Collapse
|
32
|
Jin L, Jagatheesan G, Lynch J, Guo L, Conklin DJ. Crotonaldehyde-induced vascular relaxation and toxicity: Role of endothelium and transient receptor potential ankyrin-1 (TRPA1). Toxicol Appl Pharmacol 2020; 398:115012. [PMID: 32320793 PMCID: PMC7375699 DOI: 10.1016/j.taap.2020.115012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Crotonaldehyde (CR) is an electrophilic α,β-unsaturated aldehyde present in foods and beverages and is a minor metabolite of 1,3-butadiene. CR is a product of incomplete combustion, and is at high levels in smoke of cigarettes and structural fires. Exposure to CR has been linked to cardiopulmonary toxicity and cardiovascular disease. OBJECTIVE The purpose of this study was to examine the direct effects of CR in murine blood vessels (aorta and superior mesenteric artery, SMA) using an in vitro system. METHODS AND RESULTS CR induced concentration-dependent (1-300 μM) relaxations (75-80%) in phenylephrine (PE) precontracted aorta and SMA. Because the SMA was 20× more sensitive to CR than aorta (SMA EC50 3.8 ± 0.5 μM; aorta EC50 76.0 ± 2.0 μM), mechanisms of CR relaxation were studied in SMA. The CR-induced relaxation at low concentrations (1-30 μM) was inhibited by: 1) mechanically-impaired endothelium; 2) Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME); 3) guanylyl cyclase (GC) inhibitor (ODQ); 4) transient receptor potential ankyrin-1 (TRPA1) antagonist (A967079); and, 5) by non-vasoactive level of nicotine (1 μM). Similarly, a TRPA1 agonist, allyl isothiocyanate (AITC; mustard oil), stimulated SMA relaxation dependent on TRPA1, endothelium, NO, and GC. Consistent with these mechanisms, TRPA1 was present in the SMA endothelium. CR, at higher concentrations (100-300 μM), induced tension oscillations (spasms) and irreversibly impaired contractility (a vasotoxic effect enhanced by impaired endothelium). CONCLUSIONS CR relaxation depends on a functional endothelium and TRPA1, whereas vasotoxicity is enhanced by endothelium dysfunction. Thus, CR is both vasoactive and vasotoxic along a concentration continuum.
Collapse
Affiliation(s)
- L Jin
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA; Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation Center, University of Louisville, Louisville, KY, USA
| | - G Jagatheesan
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation Center, University of Louisville, Louisville, KY, USA
| | - J Lynch
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA; Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation Center, University of Louisville, Louisville, KY, USA
| | - L Guo
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation Center, University of Louisville, Louisville, KY, USA
| | - D J Conklin
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA; Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
33
|
Zhang D, Jiang X, Xiao L, Lu Y, Sang S, Lv L, Dong W. Mechanistic studies of inhibition on acrolein by myricetin. Food Chem 2020; 323:126788. [PMID: 32305809 DOI: 10.1016/j.foodchem.2020.126788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
Acrolein (ACR) is an unsaturated aldehyde with high activity and toxicity and is produced in vivo and in food. This study investigated the impact of B-ring structure on the trapping of ACR by flavonols and the trapping mechanism and efficacy of ACR by myricetin. Galangin, kaempferol, quercetin, and myricetin, which possess the same A- and C-ring but different numbers of -OH groups on the B-ring, were selected for this study. Our results suggested that increasing the number of -OH groups on the B-ring can enhance the ACR trapping efficacy of flavonol and myrectin was identified as the most active flavonol. The adducts of myricetin with ACR under different ratios and incubation times were analyzed using LC-MS/MS. We also purified and identified the major mono- and di-ACR-myricetin adducts. Furthermore, myricetin could dose-dependently inhibit the formation of ACR in cookies through the formation of mono- and di-ACR adducts.
Collapse
Affiliation(s)
- Dingmin Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, China
| | - Xiaoyun Jiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, China
| | - Liubang Xiao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, China
| | - Yongling Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, China
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, United States
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, China.
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China.
| |
Collapse
|
34
|
Yin Z, Jiang K, Shi L, Fei J, Zheng J, Ou S, Ou J. Formation of di-cysteine acrolein adduct decreases cytotoxicity of acrolein by ROS alleviation and apoptosis intervention. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121686. [PMID: 31780296 DOI: 10.1016/j.jhazmat.2019.121686] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Acrolein (ACR) is a toxic contaminant for humans. Our previous research indicated that l-cysteine (Cys) decreased the cytotoxicity of acrolein possibly via adduct formation, but which adduct contributed to the toxicity-lowering effect remains unknown. In this work, we identified a di-cysteine acrolein adduct (ACR-di-Cys) and investigated its toxicity against human bronchial epithelial cell line HBE and colon cancer cell line Caco-2. ACR-di-Cys tremendously decreased acrolein-induced cytotoxicity via alleviating ROS and apoptosis intervention. In the condition of no presence of free cysteine, however, this adduct can convert to mono-ACR-Cys in PBS solution by losing a molecule of cysteine conjugated at CC bond. ACR-mono-Cys showed much higher toxicity than ACR-di-Cys, and even higher than acrolein after 48 h exposure. This study indicated that cysteine can react with acrolein to form adducts with different acrolein-detoxifying capacity, and a sufficient intake of cysteine or cysteine-containing proteins can maximize the detoxifying effect for acrolein via the formation of a highly detoxifying agent, ACR-di-Cys.
Collapse
Affiliation(s)
- Zhao Yin
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Lei Shi
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China
| | - Jia Fei
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
35
|
Abplanalp WT, Wickramasinghe NS, Sithu SD, Conklin DJ, Xie Z, Bhatnagar A, Srivastava S, O'Toole TE. Benzene Exposure Induces Insulin Resistance in Mice. Toxicol Sci 2020; 167:426-437. [PMID: 30346588 DOI: 10.1093/toxsci/kfy252] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Benzene is a ubiquitous pollutant associated with hematotoxicity but its metabolic effects are unknown. We sought to determine if and how exposure to volatile benzene impacted glucose handling. We exposed wild type C57BL/6 mice to volatile benzene (50 ppm × 6 h/day) or HEPA-filtered air for 2 or 6 weeks and measured indices of oxidative stress, inflammation, and insulin signaling. Compared with air controls, we found that mice inhaling benzene demonstrated increased plasma glucose (p = .05), insulin (p = .03), and HOMA-IR (p = .05), establishing a state of insulin and glucose intolerance. Moreover, insulin-stimulated Akt phosphorylation was diminished in the liver (p = .001) and skeletal muscle (p = .001) of benzene-exposed mice, accompanied by increases in oxidative stress and Nf-κb phosphorylation (p = .025). Benzene-exposed mice also demonstrated elevated levels of Mip1-α transcripts and Socs1 (p = .001), but lower levels of Irs-2 tyrosine phosphorylation (p = .0001). Treatment with the superoxide dismutase mimetic, TEMPOL, reversed benzene-induced effects on oxidative stress, Nf-κb phosphorylation, Socs1 expression, Irs-2 tyrosine phosphorylation, and systemic glucose intolerance. These findings suggest that exposure to benzene induces insulin resistance and that this may be a sensitive indicator of inhaled benzene toxicity. Persistent ambient benzene exposure may be a heretofore unrecognized contributor to the global human epidemics of diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Wesley T Abplanalp
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292
| | - Nalinie S Wickramasinghe
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Srinivas D Sithu
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Daniel J Conklin
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Zhengzhi Xie
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Aruni Bhatnagar
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Sanjay Srivastava
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Timothy E O'Toole
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| |
Collapse
|
36
|
Malovichko MV, Zeller I, Krivokhizhina TV, Xie Z, Lorkiewicz P, Agarwal A, Wickramasinghe N, Sithu SD, Shah J, O'Toole T, Rai SN, Bhatnagar A, Conklin DJ, Srivastava S. Systemic Toxicity of Smokeless Tobacco Products in Mice. Nicotine Tob Res 2020; 21:101-110. [PMID: 30085294 DOI: 10.1093/ntr/ntx230] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 10/02/2017] [Indexed: 02/05/2023]
Abstract
Introduction Smokeless tobacco products such as snuff and snus are used worldwide. However, little is known about the systemic and cardiovascular toxicity of smokeless tobacco exposure. Methods Biomarkers of endothelial activation and injury, immune functions, platelet activation and insulin resistance were measured in 8-week old male C57BL/6 mice exposed to commercial snuff, CRP-2 reference snuff, commercial snus, CRP-1 reference snus, and nicotine in drinking water (100 µg/mL) for 4, 12, and 24 weeks. Results Twenty-four weeks of exposure to smokeless tobacco products or nicotine significantly decreased the levels of circulating Flk+/Sca+ endothelial progenitor cells. Twelve and 24 weeks of exposure to all the smokeless tobacco products and nicotine significantly decreased the levels of circulating CD19+ B cells, CD4+ T cells, CD8+ T cells, and CD11b+ monocytes, whereas 4 weeks of exposure to Camel snus and Copenhagen snuff significantly depleted the levels of peripheral blood CD19+ B cells and CD11b+ monocytes. Twenty-four weeks of exposure to smokeless tobacco products or nicotine significantly decreased plasma IFNγ levels. However, plasma TNFα levels were significantly increased in mice exposed to Copenhagen snuff or nicotine for 24 weeks. This was accompanied by a five to sevenfold increase in the hepatic expression of TNFα. Neither smokeless products nor nicotine affected plasma lipoproteins, platelet activation, or systemic insulin sensitivity. Conclusions Chronic exposure to snuff and snus suppresses circulating levels of EPCs, endothelial microparticles and immune cells, but increases plasma TNF-α levels. These effects of smokeless tobacco products are attributable, at least in part, to nicotine. Implications Exposure to smokeless tobacco products results in the depletion of endothelial progenitor cells, which may impair the endothelium repair. Suppression of the circulating levels of immune cells upon exposure to smokeless tobacco products may increase the susceptibility to secondary infection. Increased formation of proinflammatory cytokines such as TNFα by nicotine or Copenhagen snuff may lead to vascular inflammation and thereby exacerbate atherogenesis.
Collapse
Affiliation(s)
- Marina V Malovichko
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Iris Zeller
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Tatiana V Krivokhizhina
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Zhengzhi Xie
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Pawel Lorkiewicz
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Abhinav Agarwal
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Nalinie Wickramasinghe
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Srinivas D Sithu
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Jasmit Shah
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Timothy O'Toole
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Shesh N Rai
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Aruni Bhatnagar
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Daniel J Conklin
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Sanjay Srivastava
- American Heart Association-Tobacco Regulation and Addiction Center, Institute of Molecular Cardiology, and Diabetes and Obesity Center, University of Louisville, Louisville, KY
| |
Collapse
|
37
|
Wu X, Chen L, Zeb F, Li C, Jiang P, Chen A, Xu C, Haq IU, Feng Q. Clock-Bmal1 mediates MMP9 induction in acrolein-promoted atherosclerosis associated with gut microbiota regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1455-1463. [PMID: 31265956 DOI: 10.1016/j.envpol.2019.06.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Circadian rhythm is believed to play important roles in atherosclerosis. The gut microbiota is found to be closely related to atherogenesis, and shows compositional and functional circadian oscillation. However, it's still unclarified whether circadian clock and intestinal microbiota are involved in the progression of atherosclerosis induced by environmental pollutant acrolein. Herein, patients with atherosclerosis showed higher MMP9, a promising biomarker for atherosclerosis, and lower Bmal1 and Clock expression in the plasma. Interestingly, acrolein exposure contributed to the increased MMP9, decreased Clock and Bmal1, and activated MAPK pathways in human umbilical vein endothelial cells (HUVECs). We found that knockdown of Clock or Bmal1 lead to upregulation of MMP9 in HUVECs, and that Clock and Bmal1 expression was elevated while MAPK pathways were blocked. Atherosclerotic apolipoproteinE-deficient mice consumed a high-fat diet were used and treated with acrolein (3 mg/kg/day) in the drinking water for 12 weeks. Upregulation of MMP9, and downregulation of Clock and Bmal1 were also observed in plasma of the mice. Besides, acrolein feeding altered gut microbiota composition at a phylum level especially for an increased Firmicutes and a decreased Bacteroidetes. Additionally, gut microbiota showed correlation with atherosclerotic plaque, MMP9 and Bmal1 levels. Therefore, our findings indicated that acrolein increased the expression of MMP9 through MAPK regulating circadian clock, which was associated with gut microbiota regulation in atherosclerosis. Circadian rhythms and gut microbiota might be promising targets in the prevention of cardiovascular disease caused by environmental pollutants.
Collapse
Affiliation(s)
- Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lijun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Southeast University, Nanjing, 210000, China
| | - Pan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chuyue Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
38
|
Abplanalp W, Haberzettl P, Bhatnagar A, Conklin DJ, O'Toole TE. Carnosine Supplementation Mitigates the Deleterious Effects of Particulate Matter Exposure in Mice. J Am Heart Assoc 2019; 8:e013041. [PMID: 31234700 PMCID: PMC6662354 DOI: 10.1161/jaha.119.013041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Background Exposure to fine airborne particulate matter ( PM 2.5) induces quantitative and qualitative defects in bone marrow-derived endothelial progenitor cells of mice, and similar outcomes in humans may contribute to vascular dysfunction and the cardiovascular morbidity and mortality associated with PM 2.5 exposure. Nevertheless, mechanisms underlying the pervasive effects of PM 2.5 are unclear and effective interventional strategies to mitigate against PM 2.5 toxicity are lacking. Furthermore, whether PM 2.5 exposure affects other types of bone marrow stem cells leading to additional hematological or immunological dysfunction is not clear. Methods and Results Mice given normal drinking water or that supplemented with carnosine, a naturally occurring, nucleophilic di-peptide that binds reactive aldehydes, were exposed to filtered air or concentrated ambient particles. Mice drinking normal water and exposed to concentrated ambient particles demonstrated a depletion of bone marrow hematopoietic stem cells but no change in mesenchymal stem cells. However, HSC depletion was significantly attenuated when the mice were placed on drinking water containing carnosine. Carnosine supplementation also increased the levels of carnosine-propanal conjugates in the urine of CAPs-exposed mice and prevented the concentrated ambient particles-induced dysfunction of endothelial progenitor cells as assessed by in vitro and in vivo assays. Conclusions These results suggest that exposure to PM 2.5 has pervasive effects on different bone marrow stem cell populations and that PM 2.5-induced hematopoietic stem cells depletion, endothelial progenitor cell dysfunction, and defects in vascular repair can be mitigated by excess carnosine. Carnosine supplementation may be a viable approach for preventing PM 2.5-induced immune dysfunction and cardiovascular injury in humans.
Collapse
Affiliation(s)
- Wesley Abplanalp
- Department of MedicineDiabetes and Obesity CenterUniversity of LouisvilleKY
| | - Petra Haberzettl
- Department of MedicineDiabetes and Obesity CenterUniversity of LouisvilleKY
- Envirome InstituteUniversity of LouisvilleKY
| | - Aruni Bhatnagar
- Department of MedicineDiabetes and Obesity CenterUniversity of LouisvilleKY
- Envirome InstituteUniversity of LouisvilleKY
| | - Daniel J. Conklin
- Department of MedicineDiabetes and Obesity CenterUniversity of LouisvilleKY
- Envirome InstituteUniversity of LouisvilleKY
| | - Timothy E. O'Toole
- Department of MedicineDiabetes and Obesity CenterUniversity of LouisvilleKY
- Envirome InstituteUniversity of LouisvilleKY
| |
Collapse
|
39
|
Zirak MR, Mehri S, Karimani A, Zeinali M, Hayes AW, Karimi G. Mechanisms behind the atherothrombotic effects of acrolein, a review. Food Chem Toxicol 2019; 129:38-53. [DOI: 10.1016/j.fct.2019.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
|
40
|
Wang T, Liu J, Tsou H, Liu T, Wang H. Identification of acrolein metabolites in human buccal cells, blood, and urine after consumption of commercial fried food. Food Sci Nutr 2019; 7:1668-1676. [PMID: 31139379 PMCID: PMC6526626 DOI: 10.1002/fsn3.1001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 02/06/2023] Open
Abstract
SCOPE Acrolein is a highly electrophilic α,β-unsaturated aldehyde and is associated with human diseases. It is formed by Maillard reaction during food processing and could be detected in the emissions of overheated cooking oils. Consequently, humans are at risk of acrolein exposure through consumption of such prepared food. METHODS AND RESULTS We conducted three human studies that healthy subjects (21-30 years) were served fried foods including fried chicken and French fries from three commercial fast food restaurants. Acrolein-related metabolites including urinary 3-hydroxypropyl mercapturic acid (3-HPMA), serum acrolein-protein conjugates (Acr-FDP), and buccal acrolein-induced DNA damages (Acr-dG adducts) along with GSH levels in serum or buccal cells were investigated for different times after consumption. CONCLUSION Urinary 3-HPMA levels were increased after 2-hr consumption of fried food with an elimination half-life of 10 hr. In addition, increased Acr-dG adducts in oral cavity were inversely correlated to buccal glutathione (GSH) levels after consumption. However, there was no significant change in systemic GSH levels or Acr-FDP adducts in serum. These results indicate that exposure of acrolein from consuming fried food affects local oral cavity homeostasis. This may provide a possible link between intake of fried food and increased risk of upper aerodigestive tract cancers.
Collapse
Affiliation(s)
- Tse‐Wen Wang
- Institute of Food Safety and Health Risk AssessmentNational Yang‐Ming UniversityTaipeiTaiwan
| | - Jin‐Hui Liu
- Institute of Food Safety and Health Risk AssessmentNational Yang‐Ming UniversityTaipeiTaiwan
| | - Han‐Hsing Tsou
- Institute of Environmental and Occupational Health SciencesNational Yang‐Ming UniversityTaipeiTaiwan
| | - Tsung‐Yun Liu
- Institute of Food Safety and Health Risk AssessmentNational Yang‐Ming UniversityTaipeiTaiwan
- Institute of Environmental and Occupational Health SciencesNational Yang‐Ming UniversityTaipeiTaiwan
| | - Hsiang‐Tsui Wang
- Department of PharmacologyNational Yang‐Ming UniversityTaipeiTaiwan
| |
Collapse
|
41
|
Conklin DJ, Schick S, Blaha MJ, Carll A, DeFilippis A, Ganz P, Hall ME, Hamburg N, O'Toole T, Reynolds L, Srivastava S, Bhatnagar A. Cardiovascular injury induced by tobacco products: assessment of risk factors and biomarkers of harm. A Tobacco Centers of Regulatory Science compilation. Am J Physiol Heart Circ Physiol 2019; 316:H801-H827. [PMID: 30707616 PMCID: PMC6483019 DOI: 10.1152/ajpheart.00591.2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Although substantial evidence shows that smoking is positively and robustly associated with cardiovascular disease (CVD), the CVD risk associated with the use of new and emerging tobacco products, such as electronic cigarettes, hookah, and heat-not-burn products, remains unclear. This uncertainty stems from lack of knowledge on how the use of these products affects cardiovascular health. Cardiovascular injury associated with the use of new tobacco products could be evaluated by measuring changes in biomarkers of cardiovascular harm that are sensitive to the use of combustible cigarettes. Such cardiovascular injury could be indexed at several levels. Preclinical changes contributing to the pathogenesis of disease could be monitored by measuring changes in systemic inflammation and oxidative stress, organ-specific dysfunctions could be gauged by measuring endothelial function (flow-mediated dilation), platelet aggregation, and arterial stiffness, and organ-specific injury could be evaluated by measuring endothelial microparticles and platelet-leukocyte aggregates. Classical risk factors, such as blood pressure, circulating lipoproteins, and insulin resistance, provide robust estimates of risk, and subclinical disease progression could be followed by measuring coronary artery Ca2+ and carotid intima-media thickness. Given that several of these biomarkers are well-established predictors of major cardiovascular events, the association of these biomarkers with the use of new and emerging tobacco products could be indicative of both individual and population-level CVD risk associated with the use of these products. Differential effects of tobacco products (conventional vs. new and emerging products) on different indexes of cardiovascular injury could also provide insights into mechanisms by which they induce cardiovascular harm.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Suzaynn Schick
- Department of Medicine, University of California-San Francisco , San Francisco, California
| | - Michael J Blaha
- Ciccarone Center for the Prevention of Heart Disease, Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Alex Carll
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Andrew DeFilippis
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Peter Ganz
- Department of Medicine, University of California-San Francisco , San Francisco, California
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Naomi Hamburg
- Department of Medicine/Cardiovascular Medicine, School of Medicine, Boston University , Boston, Massachusetts
| | - Tim O'Toole
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Lindsay Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Sanjay Srivastava
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| |
Collapse
|
42
|
Nogueira MS, Scolaro B, Milne GL, Castro IA. Oxidation products from omega-3 and omega-6 fatty acids during a simulated shelf life of edible oils. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Jansson P, Kay B. Aldehydes identified in commercially available ω-3 supplements via 1 H NMR spectroscopy. Nutrition 2018; 60:74-79. [PMID: 30529885 DOI: 10.1016/j.nut.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/13/2018] [Accepted: 10/07/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Cardiovascular disease (CVD) is the leading cause of mortality globally. Studies have suggested that supplementary ω-3 oils may provide cardiovascular protection, although the literature is equivocal. Recently, it has been established that many commercially available ω-3 supplements are unacceptably oxidized, leading to myriad potential health risks. One oxidation product of concern is aldehydes, which have been shown to have mutagenic, cytotoxic, and inflammatory properties that may contribute to many different disease processes, including CVD. The aim of this study was to assess the prevalence of aldehyde contamination in commercially available ω-3 supplements. METHODS We tested 12 different ω-3 oils (6 fish, 4 krill, 2 algae), using 1 H-nuclear magnetic resonance scanning. This work is of a pilot nature, as such we randomly selected and purchased 12 different oils over the counter from various local retailers according to the sales representatives' recommendations. RESULTS The four krill products contained aldehydes at concentrations between 5.652 (±0.496) and 6.779 (±1.817) mMol/L. Both algae samples contained aldehydes: 1.235 (±0.111) and 1.565 (±0.618) mMol/L. Two of the six fish oils contained aldehydes 1.568 (±0.291) and 4.319 (±2.361) mMol/L. There is currently no standard for aldehyde content nor for labeling of ω-3 supplements. Two-thirds (8 of 12) of the ω-3 supplements tested in this study contained aldehydes. Aldehydes have the potential to precipitate serious health problems even at very low absolute intake volumes. These findings may provide reason for sober reflection.
Collapse
Affiliation(s)
- Pim Jansson
- Independent nutritionist and biomedical scientist, Mapua, New Zealand
| | - Bartholomew Kay
- Independent physiologist and nutritionist, Mapua, New Zealand.
| |
Collapse
|
44
|
Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, Ali J, Haque SE. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci 2018; 218:112-131. [PMID: 30552952 DOI: 10.1016/j.lfs.2018.12.018] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Cyclophosphamide (CP) is an important anticancer drug which belongs to the class of alkylating agent. Cyclophosphamide is mostly used in bone marrow transplantation, rheumatoid arthritis, lupus erythematosus, multiple sclerosis, neuroblastoma and other types of cancer. Dose-related cardiotoxicity is a limiting factor for its use. CP-induced cardiotoxicity ranges from 7 to 28% and mortality ranges from 11 to 43% at the therapeutic dose of 170-180 mg/kg, i.v. CP undergoes hepatic metabolism that results in the production of aldophosphamide. Aldophosphamide decomposes into phosphoramide mustard & acrolein. Phosphoramide is an active neoplastic agent, and acrolein is a toxic metabolite which acts on the myocardium and endothelial cells. This is the first review article that talks about cyclophosphamide-induced cardiotoxicity and the different signaling pathways involved in its pathogenicity. Based on the available literature, CP is accountable for cardiomyocytes energy pool alteration by affecting the heart fatty acid binding proteins (H-FABP). CP has been found associated with cardiomyocytes apoptosis, inflammation, endothelial dysfunction, calcium dysregulation, endoplasmic reticulum damage, and mitochondrial damage. Molecular mechanism of cardiotoxicity has been discussed in detail through crosstalk of Nrf2/ARE, Akt/GSK-3β/NFAT/calcineurin, p53/p38MAPK, NF-kB/TLR-4, and Phospholamban/SERCA-2a signaling pathway. Based on the available literature we support the fact that metabolites of CP are responsible for cardiotoxicity due to depletion of antioxidants/ATP level, altered contractility, damaged endothelium and enhanced pro-inflammatory/pro-apoptotic activities resulting into cardiomyopathy, myocardial infarction, and heart failure. Dose adjustment, elimination/excretion of acrolein and maintenance of endogenous antioxidant pool could be the therapeutic approach to mitigate the toxicities.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mansoor Ali
- Department of Biosciences, Jamia Millia Islamia,110025 New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
45
|
Wu X, Li C, Mariyam Z, Jiang P, Zhou M, Zeb F, Haq IU, Chen A, Feng Q. Acrolein-induced atherogenesis by stimulation of hepatic flavin containing monooxygenase 3 and a protection from hydroxytyrosol. J Cell Physiol 2018; 234:475-485. [PMID: 29953618 DOI: 10.1002/jcp.26600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
Acrolein, a highly toxic α, β-unsaturated aldehyde, promotes the progression of atherosclerosis in association with inflammatory signaling pathway and reverse cholesterol transport (RCT) process. Additionally, hepatic flavin containing monooxygenase 3 (FMO3) is involved in the pathogenesis of atherosclerosis by regulating cholesterol metabolism. Hydroxytyrosol (HT), as a major phenolic compound in olive oil, exerts anti-inflammatory and anti-atherogenic activities in vitro and animal models. The current study was designed to evaluate whether FMO3 participated in pro-atherogenic process by acrolein and HT showed protective effect during this process. Here, endothelial cells and macrophage Raw264.7 cells were used as the cell models. Following oxidized low-density lipoprotein (OX-LDL) treatment, acrolein exposure promoted foam cells formation in macrophage Raw264.7 cells. The expression of FMO3 and inflammatory makers such as phospho-NF-κB, IL-1β, TNFα as well as IL-6 were significantly increased. However, ATP-binding cassette transporters subfamily A member 1 (ABCA1), a major transporter in RCT process, was repressed by acrolein. In addition, FMO3 knockdown could suppress inflammatory markers and promote ABCA1 expression. Hydroxytyrosol (HT) was observed to reduce lipid accumulation, FMO3 expression as well as inflammatory response. Moreover, it promoted ABCA1 expression. Therefore, our findings indicated that acrolein-enhanced atherogenesis by increasing FMO3 which increased inflammatory responses and decreased ABCA1 in vitro can be alleviated by HT, which may have a therapeutic potential for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Southeast University, Nanjing, China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Abstract
Acrolein is a highly reactive unsaturated aldehyde that is formed during the burning of gasoline and diesel fuels, cigarettes, woods and plastics. In addition, acrolein is generated during the cooking or frying of food with fats or oils. Acrolein is also used in the synthesis of many organic chemicals and as a biocide in agricultural and industrial water supply systems. The total emissions of acrolein in the United States from all sources are estimated to be 62,660 tons/year. Acrolein is classified by the Environmental Protection Agency as a high-priority air and water toxicant. Acrolein can exert toxic effects following inhalation, ingestion, and dermal exposures that are dose dependent. Cardiovascular tissues are particularly sensitive to the toxic effects of acrolein based primarily on in vitro and in vivo studies. Acrolein can generate free oxygen radical stress in the heart, decrease endothelial nitric oxide synthase phosphorylation and nitric oxide formation, form cytoplasmic and nuclear protein adducts with myocyte and vascular endothelial cell proteins and cause vasospasm. In this manner, chronic exposure to acrolein can cause myocyte dysfunction, myocyte necrosis and apoptosis and ultimately lead to cardiomyopathy and cardiac failure. Epidemiological studies of acrolein exposure and toxicity should be developed and treatment strategies devised that prevent or significantly limit acrolein cardiovascular toxicity.
Collapse
|
47
|
Keith RJ, Fetterman JL, Riggs DW, O'Toole T, Nystoriak JL, Holbrook M, Lorkiewicz P, Bhatnagar A, DeFilippis AP, Hamburg NM. Protocol to assess the impact of tobacco-induced volatile organic compounds on cardiovascular risk in a cross- sectional cohort: Cardiovascular Injury due to Tobacco Use study. BMJ Open 2018; 8:e019850. [PMID: 29602846 PMCID: PMC5884372 DOI: 10.1136/bmjopen-2017-019850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Tobacco use leads to increased mortality, the majority of which is attributed to cardiovascular disease. Despite this knowledge, the early cardiovascular impact of tobacco product use is not well understood. Tobacco use increases exposure to harmful and potentially harmful constituents including volatile organic compounds (VOCs) such as acrolein and crotonaldehyde, which may contribute to cardiovascular risk. The link between exposure patterns, risk profiles and demographic distribution of tobacco product users, particularly users of new and emerging products, are not well known. Therefore, we designed the Cardiovascular Injury due to Tobacco Use (CITU) study to assess population characteristics, demographic features, exposure patterns and cardiovascular risk in relation to tobacco. METHODS AND ANALYSIS We present the design and methodology of the CITU study, a cross-sectional observational tobacco study conducted in Boston, Massachusetts and Louisville, Kentucky starting in 2014. Healthy participants 21-45 years of age who use tobacco products, including electronic nicotine devices, or who never used tobacco are being recruited. The study aims to recruit an evenly split cohort of African-Americans and Caucasians, that is, sex balanced for evaluation of self-reported tobacco exposure, VOC exposure and tobacco-induced injury profiling. Detailed information about participant's demographics, health status and lifestyle is also collected. ETHICS AND DISSEMINATION The study protocol was approved institutional review boards at both participating universities. All study protocols will protect participant confidentiality. Results from the study will be disseminated via peer-reviewed journals and presented at scientific conferences.
Collapse
Affiliation(s)
- Rachel J Keith
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Jessica L Fetterman
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
- American Heart Association Tobacco Regulation and Addiction Center, Boston University
| | - Daniel W Riggs
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Timothy O'Toole
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Jessica L Nystoriak
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Monika Holbrook
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
- American Heart Association Tobacco Regulation and Addiction Center, Boston University
| | - Pawel Lorkiewicz
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Aruni Bhatnagar
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Andrew P DeFilippis
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Naomi M Hamburg
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
- American Heart Association Tobacco Regulation and Addiction Center, Boston University
| |
Collapse
|
48
|
Argacha JF, Bourdrel T, van de Borne P. Ecology of the cardiovascular system: A focus on air-related environmental factors. Trends Cardiovasc Med 2018; 28:112-126. [DOI: 10.1016/j.tcm.2017.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/09/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022]
|
49
|
Makwana O, Flockton H, Watters GP, Nisar R, Smith GA, Fields W, Bombick B. Human aortic endothelial cells respond to shear flow in well-plate microfluidic devices. Altern Lab Anim 2017; 45:177-190. [PMID: 28994298 DOI: 10.1177/026119291704500407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although chronic progressive cardiovascular diseases such as atherosclerosis are often challenging to fully model in vitro, it has been shown that certain in vitro methods can effectively evaluate some aspects of disease progression. This has been demonstrated in in vitro and in vivo studies of endothelial cells that have illustrated the effects of nitric oxide (NO) production, filamentous actin (F-actin) formation, and cell and actin angle alignment on vascular function and homeostasis. Systems utilising shear flow have been established, in order to create a physiologically relevant environment for cells that require shear flow for homeostasis. Here, we investigated the use of a well-plate microfluidic system and associated devices (0-20dyn/cm²) to demonstrate applied shear effects on primary Human Aortic Endothelial Cells (HAECs). Changes in cell and actin alignment in the direction of flow, real-time production of NO and gross cell membrane shape changes in response to physiological shear flow were observed. These commercial systems have a range of potential applications, including within the consumer and pharmaceutical industries, thereby reducing the dependency on animal testing for regulatory safety assessments.
Collapse
Affiliation(s)
- Om Makwana
- RAI Services Company Winston-Salem, NC, USA
| | - Hannah Flockton
- Covance Laboratories Ltd, Genetic and Molecular Toxicology, Harrogate, UK
| | - Gary P Watters
- Covance Laboratories Ltd, Genetic and Molecular Toxicology, Harrogate, UK
| | - Rizwan Nisar
- Covance Laboratories Ltd, Genetic and Molecular Toxicology, Harrogate, UK
| | - Gina A Smith
- Covance Laboratories Ltd, Genetic and Molecular Toxicology, Harrogate, UK
| | | | | |
Collapse
|
50
|
Verhaegen A, Van Gaal L. Do E-cigarettes induce weight changes and increase cardiometabolic risk? A signal for the future. Obes Rev 2017; 18:1136-1146. [PMID: 28660671 DOI: 10.1111/obr.12568] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
Abstract
The prevalence of non-cigarette tobacco use in electronic cigarettes, also called vaping, is rapidly increasing, especially in adolescents and young adults, due to attractive marketing techniques promoting them as healthier alternatives to conventional tobacco cigarettes. Although smoking is associated with weight loss, it increases insulin resistance and attributes to other features of the metabolic syndrome, increasing the cardiometabolic risk profile. Whether vaping has the same deleterious effects on metabolic parameters as regular cigarette smoke has not yet been studied thoroughly in humans. However, animal model experiments attribute comparable effects of e-cigarette smoking, even without nicotine exposure, on weight and metabolic parameters as compared to smoking cigarettes. In this review paper, we want to give an overview of published data on the effects on weight and cardiometabolic parameters of e-cigarette use and formulate some mechanistic hypotheses.
Collapse
Affiliation(s)
- A Verhaegen
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium
| | - L Van Gaal
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|