1
|
Zhong Y, De T, Mishra M, Avitia J, Alarcon C, Perera MA. Leveraging drug perturbation to reveal genetic regulators of hepatic gene expression in African Americans. Am J Hum Genet 2023; 110:58-70. [PMID: 36608685 PMCID: PMC9892765 DOI: 10.1016/j.ajhg.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Expression quantitative locus (eQTL) studies have paved the way in identifying genetic variation impacting gene expression levels. African Americans (AAs) are disproportionately underrepresented in eQTL studies, resulting in a lack of power to identify population-specific regulatory variants especially related to drug response. Specific drugs are known to affect the biosynthesis of drug metabolism enzymes as well as other genes. We used drug perturbation in cultured primary hepatocytes derived from AAs to determine the effect of drug treatment on eQTL mapping and to identify the drug response eQTLs (reQTLs) that show altered effect size following drug treatment. Whole-genome genotyping (Illumina MEGA array) and RNA sequencing were performed on 60 primary hepatocyte cultures after treatment with six drugs (Rifampin, Phenytoin, Carbamazepine, Dexamethasone, Phenobarbital, and Omeprazole) and at baseline (no treatment). eQTLs were mapped by treatment and jointly with Meta-Tissue. We found varying transcriptional changes across different drug treatments and identified Nrf2 as a potential general transcriptional regulator. We jointly mapped eQTLs with gene expression data across all drug treatments and baseline, which increased our power to detect eQTLs by 2.7-fold. We also identified 2,988 reQTLs (eQTLs with altered effect size after drug treatment). reQTLs were more likely to overlap transcription factor binding sites, and we uncovered reQTLs for drug metabolizing genes such as CYP3A5. Our results provide insights into the genetic regulation of gene expression in hepatocytes through drug perturbation and provide insight into SNPs that effect the liver's ability to respond to transcription upregulation.
Collapse
Affiliation(s)
- Yizhen Zhong
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tanima De
- Integrative Translational Genetic, Regeneron Genetic Center, Tarrytown, NY 10591, USA
| | - Mrinal Mishra
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juan Avitia
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cristina Alarcon
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Minoli A Perera
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
The Role of Certain Polymorphic Variants in Genes, Previously Associated with Blood Pressure Values, with Reference to the Risk of Development of Coronary Artery Disease. ACTA MEDICA BULGARICA 2022. [DOI: 10.2478/amb-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Abstract
The aim of the study was to analyze the effect of polymorphic variants previously associated with arterial hypertension (AH) in Genome Wide Association Studies (GWASs) in/next to genes and locuses CYP7A1 and PLEKHA7 on the development of coronary artery disease (CAD) in Bulgarian patients. A hundred and nine consecutive patients with angiographically documented CAD were studied. The genotyping was done with 7900 HT Fast Real-Time PCR (Applied Biosystems) with TaqMan® method. The control group consisted of 192 healthy population controls, selected from the bio- bank of the Molecular Medicine Center. SPSS and PLINK were used for the statistical analysis with level of significance < 0.05 and confidence interval 95%. The mean age of the studied patients was 63.71 ± 9.35 years; 35 (35%) females. Previous myocardial infarction (MI) had 38(38%); one-vessel – 39 (39%); two-vessel – 28 (28%); three-vessel disease – 34 (34%); 43 (43%) were with diabetes mellitus; 92 (92%) – with arterial hypertension (AH); 77 (77%) – with dyslipidemia; 42 (42%) were smokers; 25 (25%) were obese. We did not find any significant association between CAD and poly- morphism rs11191548 near CYP17A1 and only a tendency for genotype of rs381815 in PLEKHA7 (p = 0.06; OR 0.64; CI 0.40-1.02 for CAD) under dominant model. This is of practical importance both for studying the genetic aspects of CAD in the future and for enlargement of the current database.
Collapse
|
3
|
Ahbara AM, Musa HH, Robert C, Abebe A, Al-Jumaili AS, Kebede A, Latairish S, Agoub MO, Clark E, Hanotte O, Mwacharo JM. Natural adaptation and human selection of northeast African sheep genomes. Genomics 2022; 114:110448. [PMID: 35964803 DOI: 10.1016/j.ygeno.2022.110448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
African sheep manifest diverse but distinct physio-anatomical traits, which are the outcomes of natural- and human-driven selection. Here, we generated 34.8 million variants from 150 indigenous northeast African sheep genomes sequenced at an average depth of ∼54× for 130 samples (Ethiopia, Libya) and ∼20× for 20 samples (Sudan). These represented sheep from diverse environments, tail morphology and post-Neolithic introductions to Africa. Phylogenetic and model-based admixture analysis provided evidence of four genetic groups corresponding to altitudinal geographic origins, tail morphotypes and possible historical introduction and dispersal of the species into and across the continent. Running admixture at higher levels of K (6 ≤ K ≤ 25), revealed cryptic levels of genome intermixing as well as distinct genetic backgrounds in some populations. Comparative genomic analysis identified targets of selection that spanned conserved haplotype structures overlapping clusters of genes and gene families. These were related to hypoxia responses, ear morphology, caudal vertebrae and tail skeleton length, and tail fat-depot structures. Our findings provide novel insights underpinning morphological variation and response to human-driven selection and environmental adaptation in African indigenous sheep.
Collapse
Affiliation(s)
- Abulgasim M Ahbara
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya; School of Life Sciences, University of Nottingham, University Park, Nottingham, UK; Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia; LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia; Animal and Veterinary Sciences, SRUC, The Roslin Institute Building, Midlothian, Edinburgh, UK.
| | - Hassan H Musa
- Faculty of Medical Laboratory Sciences, University of Khartoum, Sudan
| | - Christelle Robert
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK
| | - Ayele Abebe
- Debre Berhan Research Centre, Debre Berhan, Ethiopia
| | - Ahmed S Al-Jumaili
- Department of Medical Laboratory Techniques, Al-Maarif University College, Ramadi, Anbar, Iraq
| | - Adebabay Kebede
- LiveGene-CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia; Amhara Regional Agricultural Research Institute, Bahir Dar, Ethiopia
| | - Suliman Latairish
- Department of Animal Production, Faculty of Agriculture, Misurata University, Misurata, Libya
| | | | - Emily Clark
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK; LiveGene-CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia.
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia; Animal and Veterinary Sciences, SRUC, The Roslin Institute Building, Midlothian, Edinburgh, UK; Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK.
| |
Collapse
|
4
|
Ohara H, Nabika T. Genetic Modifications to Alter Blood Pressure Level. Biomedicines 2022; 10:biomedicines10081855. [PMID: 36009402 PMCID: PMC9405136 DOI: 10.3390/biomedicines10081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic manipulation is one of the indispensable techniques to examine gene functions both in vitro and in vivo. In particular, cardiovascular phenotypes such as blood pressure cannot be evaluated in vitro system, necessitating the creation of transgenic or gene-targeted knock-out and knock-in experimental animals to understand the pathophysiological roles of specific genes on the disease conditions. Although genome-wide association studies (GWAS) in various human populations have identified multiple genetic variations associated with increased risk for hypertension and/or its complications, the causal links remain unresolved. Genome-editing technologies can be applied to many different types of cells and organisms for creation of knock-out/knock-in models. In the post-GWAS era, it may be more worthwhile to validate pathophysiological implications of the risk variants and/or candidate genes by creating genome-edited organisms.
Collapse
|
5
|
Analysis on the desert adaptability of indigenous sheep in the southern edge of Taklimakan Desert. Sci Rep 2022; 12:12264. [PMID: 35851076 PMCID: PMC9293982 DOI: 10.1038/s41598-022-15986-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
The southern margin of the Taklimakan Desert is characterized by low rainfall, heavy sandstorms, sparse vegetation and harsh ecological environment. The indigenous sheep in this area are rich in resources, with the advantages of perennial estrus and good resistance to stress in most sheep. Exploring the molecular markers of livestock adaptability in this environment will provide the molecular basis for breeding research to cope with extreme future changes in the desert environment. In this study, we analyzed the population genetic structure and linkage imbalance of five sheep breeds with three different agricultural geographic characteristics using four complementary genomic selection signals: fixation index (FST), cross-population extended haplotype homozygosity (xp-EHH), Rsb (extended haplotype homozygosity between-populations) and iHS (integrated haplotype homozygosity score). We used Illumina Ovine SNP 50K Genotyping BeadChip Array, and gene annotation and enrichment analysis were performed on selected regions of the obtained genome. The ovary of Qira Black sheep (Follicular phase, Luteal phase, 30th day of pregnancy, 45th day of pregnancy) was collected, and the differentially expressed genes were screened by transcriptomic sequencing. Genome-wide selective sweep results and transcriptome data were combined for association analysis to obtain candidate genes associated with perennial estrus and stable reproduction. In order to verify the significance of the results, 15 resulting genes were randomly selected for fluorescence quantitative analysis. The results showed that Dolang sheep and Qira Black sheep evolved from Kazak sheep. Linkage disequilibrium analysis showed that the decay rate of sheep breeds in the Taklimakan Desert was higher than that in Yili grassland. The signals of FST, xp-EHH, Rsb and iHS detected 526, 332, 308 and 408 genes, respectively, under the threshold of 1% and 17 overlapping genes under the threshold of 5%. A total of 29 genes were detected in association analysis of whole-genome and transcriptome data. This study reveals the genetic mechanism of perennial estrus and environmental adaptability of indigenous sheep breeds in the Taklimakan Desert. It provides a theoretical basis for the conservation and exploitation of genetic resources of indigenous sheep breeds in extreme desert environment. This provides a new perspective for the quick adaptation of sheep and other mammals to extreme environments and future climate changes.
Collapse
|
6
|
Sluysmans S, Salmaso A, Rouaud F, Méan I, Brini M, Citi S. The PLEKHA7-PDZD11 complex regulates the localization of the calcium pump PMCA and calcium handling in cultured cells. J Biol Chem 2022; 298:102138. [PMID: 35714771 PMCID: PMC9307954 DOI: 10.1016/j.jbc.2022.102138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/11/2023] Open
Abstract
The plasma membrane calcium ATPase (PMCA) extrudes calcium from the cytosol to the extracellular space to terminate calcium-dependent signaling. Although the distribution of PMCA is crucial for its function, the molecular mechanisms that regulate the localization of PMCA isoforms are not well understood. PLEKHA7 is implicated by genetic studies in hypertension and the regulation of calcium handling. PLEKHA7 recruits the small adapter protein PDZD11 to adherens junctions, and together they control the trafficking and localization of plasma membrane associated proteins, including the Menkes copper ATPase. Since PDZD11 binds to the C-terminal domain of b-isoforms of PMCA, PDZD11 and its interactor PLEKHA7 could control the localization and activity of PMCA. Here, we test this hypothesis using cultured cell model systems. We show using immunofluorescence microscopy and a surface biotinylation assay that KO of either PLEKHA7 or PDZD11 in mouse kidney collecting duct epithelial cells results in increased accumulation of endogenous PMCA at lateral cell–cell contacts and PDZ-dependent ectopic apical localization of exogenous PMCA4x/b isoform. In HeLa cells, coexpression of PDZD11 reduces membrane accumulation of overexpressed PMCA4x/b, and analysis of cytosolic calcium transients shows that PDZD11 counteracts calcium extrusion activity of overexpressed PMCA4x/b, but not PMCA4x/a, which lacks the PDZ-binding motif. Moreover, KO of PDZD11 in either endothelial (bEnd.3) or epithelial (mouse kidney collecting duct) cells increases the rate of calcium extrusion. Collectively, these results suggest that the PLEKHA7–PDZD11 complex modulates calcium homeostasis by regulating the localization of PMCA.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Andrea Salmaso
- Department of Biology, University of Padua, Padua, Italy
| | - Florian Rouaud
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Marisa Brini
- Department of Biology, University of Padua, Padua, Italy.
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Cataloging the potential SNPs (single nucleotide polymorphisms) associated with quantitative traits, viz. BMI (body mass index), IQ (intelligence quotient) and BP (blood pressure): an updated review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Single nucleotide polymorphism (SNP) variants are abundant, persistent and widely distributed across the genome and are frequently linked to the development of genetic diseases. Identifying SNPs that underpin complex diseases can aid scientists in the discovery of disease-related genes by allowing for early detection, effective medication and eventually disease prevention.
Main body
Various SNP or polymorphism-based studies were used to categorize different SNPs potentially related to three quantitative traits: body mass index (BMI), intelligence quotient (IQ) and blood pressure, and then uncovered common SNPs for these three traits. We employed SNPedia, RefSNP Report, GWAS Catalog, Gene Cards (Data Bases), PubMed and Google Scholar search engines to find relevant material on SNPs associated with three quantitative traits. As a result, we detected three common SNPs for all three quantitative traits in global populations: SNP rs6265 of the BDNF gene on chromosome 11p14.1, SNP rs131070325 of the SL39A8 gene on chromosome 4p24 and SNP rs4680 of the COMT gene on chromosome 22q11.21.
Conclusion
In our review, we focused on the prevalent SNPs and gene expression activities that influence these three quantitative traits. These SNPs have been used to detect and map complex, common illnesses in communities for homogeneity testing and pharmacogenetic studies. High blood pressure, diabetes and heart disease, as well as BMI, schizophrenia and IQ, can all be predicted using common SNPs. Finally, the results of our work can be used to find common SNPs and genes that regulate these three quantitative features across the genome.
Collapse
|
8
|
Wei BL, Yin RX, Liu CX, Deng GX, Guan YZ, Zheng PF. CYP17A1-ATP2B1 SNPs and Gene-Gene and Gene-Environment Interactions on Essential Hypertension. Front Cardiovasc Med 2021; 8:720884. [PMID: 34722659 PMCID: PMC8552967 DOI: 10.3389/fcvm.2021.720884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
Background: The association between the CYP17A1 and ATP2B1 SNPs and essential hypertension (referred to as hypertension) is far from being consistent. In addition to the heterogeneity of hypertension resulting in inconsistent results, gene–gene and gene–environment interactions may play a major role in the pathogenesis of hypertension rather than a single gene or environmental factor. Methods: A case–control study consisting of 1,652 individuals (hypertension, 816; control, 836) was conducted in Maonan ethnic minority of China. Genotyping of the four SNPs was performed by the next-generation sequencing technology. Results: The frequencies of minor alleles and genotypes of four SNPs were different between the two groups (p < 0.001). According to genetic dominance model analysis, three (rs1004467, rs11191548, and rs17249754) SNPs and two haplotypes (CYP17A1 rs1004467G-rs11191548C and ATP2B1 rs1401982G-rs17249754A) were negatively correlated, whereas rs1401982 SNP and the other two haplotypes (CYP17A1 rs1004467A-rs11191548T and ATP2B1 rs1401982A-rs17249754G) were positively associated with hypertension risk (p ≤ 0.002 for all). Two best significant two-locus models were screened out by GMDR software involving SNP–environment (rs11191548 and BMI ≥ 24 kg/m2) and haplotype–environment (CYP17A1 rs1004467G-rs11191548C and BMI ≥ 24 kg/m2) interactions (p ≤ 0.01). The subjects carrying some genotypes increased the hypertension risk. Conclusions: Our outcomes implied that the rs1004467, rs11191548, and rs17249754 SNPs and CYP17A1 rs1004467G-rs11191548C and ATP2B1 rs1401982G-rs17249754A haplotypes have protective effects, whereas the rs1401982 SNP and CYP17A1 rs1004467A-rs11191548T and ATP2B1 rs1401982A-rs17249754G haplotypes showed adverse effect on the prevalence of hypertension. Several SNP–environment interactions were also detected.
Collapse
Affiliation(s)
- Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Künstner A, Aherrahrou R, Hirose M, Bruse P, Ibrahim SM, Busch H, Erdmann J, Aherrahrou Z. Effect of Differences in the Microbiome of Cyp17a1-Deficient Mice on Atherosclerotic Background. Cells 2021; 10:1292. [PMID: 34070975 PMCID: PMC8224745 DOI: 10.3390/cells10061292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
CYP17A1 is a cytochrome P450 enzyme that has 17-alpha-hydroxylase and C17,20-lyase activities. Cyp17a11 deficiency is associated with high body mass and visceral fat deposition in atherosclerotic female ApoE knockout (KO, d/d or -/-) mice. In the present study, we aimed to investigate the effects of diet and Cyp17a1 genotype on the gut microbiome. Female Cyp17a1 (d/d) × ApoE (d/d) (DKO) and ApoE (d/d) (controls) were fed either standard chow or a Western-type diet (WTD), and we demonstrated the effects of genetics and diet on the body mass of the mice and composition of their gut microbiome. We found a significantly lower alpha diversity after accounting for the ecological network structure in DKO mice and WTD-fed mice compared with chow-fed ApoE(d/d). Furthermore, we found a strong significant positive association of the Firmicutes vs. Bacteroidota ratio with body mass and the circulating total cholesterol and triglyceride concentrations of the mice when feeding the WTD, independent of the Cyp17a1 genotype. Further pathway enrichment and network analyses revealed a substantial effect of Cyp17a1 genotype on associated cardiovascular and obesity-related pathways involving aspartate and L-arginine. Future studies are required to validate these findings and further investigate the role of aspartate/L-arginine pathways in the obesity and body fat distribution in our mouse model.
Collapse
Affiliation(s)
- Axel Künstner
- Medical Systems Biology Group, Lübeck Institute for Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.K.); (H.B.)
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
| | - Redouane Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
- Centre for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908-0717, USA
| | - Misa Hirose
- Lübeck Institute for Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (S.M.I.)
| | - Petra Bruse
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
| | - Saleh Mohamed Ibrahim
- Lübeck Institute for Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (S.M.I.)
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute for Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.K.); (H.B.)
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
- DZHK (German Centre for Cardiovascular Research), University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
- DZHK (German Centre for Cardiovascular Research), University Heart Centre Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
10
|
Xie M, Yuan S, Zeng Y, Zheng C, Yang Y, Dong Y, He Q. ATP2B1 gene polymorphisms rs2681472 and rs17249754 are associated with susceptibility to hypertension and blood pressure levels: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25530. [PMID: 33847678 PMCID: PMC8052043 DOI: 10.1097/md.0000000000025530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The present study aimed to conduct a systematic review and meta-analysis to evaluate the relationships between ATP2B1 gene polymorphisms with blood pressure (BP) level and susceptibility to hypertension. METHODS PubMed, Web of Science, Embase and China National Knowledge Infrastructure (CNKI) Databases were systematically searched by 2 independent researchers to screen studies on ATP2B1 gene polymorphisms and BP related phenotypes. The records retrieval period was limited from the formation of the database to March 4, 2021. Pooled odds rations (ORs) or β and their 95% confidence intervals (95%CI) were calculated to assess the association between ATP2B1 gene polymorphisms and the risk of hypertension or BP levels. Publication bias and sensitivity analysis were conducted to find potential bias. All the statistical analysis were conducted with Stata version 11.0 software. RESULTS A total of 15 articles were ultimately included in the present study, including 15 polymorphisms of ATP2B1 gene. Nine articles (N = 65,362) reported the polymorphism rs17249754, and 7 articles(N = 91,997) reported rs2681472 (both loci were reported in 1 article). Meta-analysis showed that rs17249754 (G/A) and rs2681472 (A/G) were associated with the susceptibility to hypertension (rs17249754: OR = 1.19, 95%CI: 1.10-1.28; rs2681472: OR = 1.15, 95%CI: 1.12-1.17), and were positively associated with systolic BP (SBP) and diastolic blood pressure (DBP) (rs17249754: SBP, β=1.01, 95%CI: 0.86-1.16, DBP, β=0.48, 95%CI: 0.30-0.66; rs2681472: SBP, β=0.92, 95%CI: 0.77-1.07, DBP, β=0.50, 95%CI: 0.42-0.58) in the additive genetic model. Subgroup analysis stratified by race, population, sample size, and BP measurement method revealed that the association between A allele in rs2681472 polymorphism and risk of hypertension was slightly stronger in European (EUR) populations (OR = 1.16, 95%CI: 1.13-1.20) than in East Asians (OR = 1.14, 95%CI: 1.10-1.17). While in East Asians, relation between rs17249754 with risk of hypertension (OR = 1.19, 95%CI: 1.10-1.28) is stronger than rs2681472 (OR = 1.14, 95%CI: 1.10-1.17). CONCLUSIONS Our study demonstrated that ATP2B1 gene polymorphism rs2681472 and rs17249754 were associated with BP levels and the susceptibility to hypertension.
Collapse
Affiliation(s)
- Ming Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
| | - Shuqian Yuan
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
| | - Yuan Zeng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
| | - Chanjuan Zheng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
| | - Yide Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
- Institute of Child and Adolescent Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Quanyuan He
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha
| |
Collapse
|
11
|
Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E, Citi S. Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183399. [DOI: 10.1016/j.bbamem.2020.183399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
12
|
Hou B, Jia X, Deng Z, Liu X, Liu H, Yu H, Liu S. Exploration of CYP21A2 and CYP17A1 polymorphisms and preeclampsia risk among Chinese Han population: a large-scale case-control study based on 5021 subjects. Hum Genomics 2020; 14:33. [PMID: 32977860 PMCID: PMC7517682 DOI: 10.1186/s40246-020-00286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several genome-wide association studies have identified single-nucleotide polymorphisms (SNPs), such as rs4409766, rs1004467, and rs3824755 in CYP17A1 and rs2021783 in CYP21A2, as new hypertension susceptibility genetic variants in the Chinese population. This study aimed to look into the relationship between preeclampsia (PE) and these SNPs in Chinese Han women. METHODS Overall, 5021 unrelated pregnant women were recruited, including 2002 patients with PE and 3019 normal healthy controls. The real-time PCR (TaqMan) method was applied to genotype these four polymorphisms. RESULTS A statistically obvious difference in the allelic frequencies was observed in CYP21A2 rs2021783 between cases and controls (χ2 = 7.201, Pc = 0.028 by allele), and the T allele was associated with the occurrence and development of PE (OR = 1.151, 95% CI 1.039-1.275). We also found a significant association between rs2021783 and the development of early-onset PE (Pc = 0.008 by genotype, Pc = 0.004 by allele). For rs1004467 and rs3824755, the distribution of allelic frequencies differed markedly between mild PE and control groups (χ2 = 6.843, Pc = 0.036; χ2 = 6.869, Pc = 0.036), and patients with the TT genotype of rs1004467 were less easy to develop mild PE than were those carrying the CT or CC genotype (χ2 = 7.002, Pc = 0.032, OR = 1.306, 95% CI 1.071-1.593). The GG genotype of rs3824755 appeared to a protective effect on the occurrence of mild PE (OR = 0.766, 95% CI 0.629-0.934). CONCLUSIONS CYP21A2 rs2021783 appears to be closely related to PE susceptibility, and CYP17A1 rs1004467 and rs3824755 seem to be closely associated with mild PE in Han women.
Collapse
Affiliation(s)
- Bo Hou
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuewen Jia
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Emergency Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Ziwen Deng
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Liu
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huitang Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
13
|
CYP17A1 deficient XY mice display susceptibility to atherosclerosis, altered lipidomic profile and atypical sex development. Sci Rep 2020; 10:8792. [PMID: 32472014 PMCID: PMC7260244 DOI: 10.1038/s41598-020-65601-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 12/24/2022] Open
Abstract
CYP17A1 is a cytochrome P450 enzyme with 17-alpha-hydroxylase and C17,20-lyase activities. CYP17A1 genetic variants are associated with coronary artery disease, myocardial infarction and visceral and subcutaneous fat distribution; however, the underlying pathological mechanisms remain unknown. We aimed to investigate the function of CYP17A1 and its impact on atherosclerosis in mice. At 4–6 months, CYP17A1-deficient mice were viable, with a KO:Het:WT ratio approximating the expected Mendelian ratio of 1:2:1. All Cyp17a1 knockout (KO) mice were phenotypically female; however, 58% were Y chromosome-positive, resembling the phenotype of human CYP17A1 deficiency, leading to 46,XY differences/disorders of sex development (DSD). Both male and female homozygous KO mice were infertile, due to abnormal genital organs. Plasma steroid analyses revealed a complete lack of testosterone in XY-KO mice and marked accumulation of progesterone in XX-KO mice. Elevated corticosterone levels were observed in both XY and XX KO mice. In addition, Cyp17a1 heterozygous mice were also backcrossed onto an Apoe KO atherogenic background and fed a western-type diet (WTD) to study the effects of CYP17A1 on atherosclerosis. Cyp17a1 x Apoe double KO XY mice developed more atherosclerotic lesions than Apoe KO male controls, regardless of diet (standard or WTD). Increased atherosclerosis in CYP17A1 XY KO mice lacking testosterone was associated with altered lipid profiles. In mice, CYP17A1 deficiency interferes with sex differentiation. Our data also demonstrate its key role in lipidomic profile, and as a risk factor in the pathogenesis of atherosclerosis.
Collapse
|
14
|
Huang Y, Cai L, Zheng Y, Pan J, Li L, Zong L, Lin W, Liang J, Huang H, Wen J, Chen G. Association between lifestyle and thyroid dysfunction: a cross-sectional epidemiologic study in the She ethnic minority group of Fujian Province in China. BMC Endocr Disord 2019; 19:83. [PMID: 31362731 PMCID: PMC6668292 DOI: 10.1186/s12902-019-0414-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/12/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Thyroid dysfunction is one of the prevalent endocrine disorders. The relationship between lifestyle factors and thyroid dysfunction was not clear and some of the factors seemed paradoxical. METHODS We conducted this population-based study using data from 5154 She ethnic minority people who had entered into the epidemic survey of diabetes between July 2007 to September 2009. Life style information was collected using a standard questionnaire. Body mass index (BMI), Blood pressure and serum TSH, TPOAb, triglycerides (TG), total cholesterol (TC) and high-density lipoprotein cholesterol (HDL) were collected. RESULTS The study showed that people who drank, had higher education or suffered from insomnia have lower incidence of hyperthyroidism. On the other hand, smoking, alcohol consumption, exercise, undergoing weight watch and chronic headache were associated with decreased incidence of hypothyroidism. Using multivariable logistic regression analysis, we found that alcohol consumption was associated with decreased probability of hyperthyroidism, hypothyroidism, as well as positive TPOAb. The amounts of cigarettes smoked daily displayed a positive correlation with hyperthyroidism among smokers. Accordingly, smoking seemed to be associated with decreased risk for hypothyroidism and positive TPOAb. Exercise and maintaining a healthy weight might have a beneficial effect on thyroid health. Interestingly, daily staple amount showed an inverse correlation with incidence of positive TPOAb. CONCLUSIONS Within the Chinese She ethnic minority, we found associations between different lifestyle factors and the incidence of different thyroid diseases. Understanding the nature of these associations requires further investigations.
Collapse
Affiliation(s)
- Yanling Huang
- Department of Endocrinology and Metabolism, Zhongshan Hospital Xiamen University, 201-209 Hubin South Road, Xiamen, 361004, China
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Liangchun Cai
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yuanyuan Zheng
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Jinxing Pan
- Department of Geriatrics, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Liantao Li
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Liyao Zong
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Wei Lin
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Jixing Liang
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Huibin Huang
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Junping Wen
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Gang Chen
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| |
Collapse
|
15
|
Zhang N, Chen H, Jia J, Ye X, Ding H, Zhan Y. The CYP17A1 gene polymorphisms are associated with hypercholesterolemia in Han Chinese. J Gene Med 2019; 21:e3102. [PMID: 31170334 DOI: 10.1002/jgm.3102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The CYP17A1 gene has been identified to associate with hypertension in Chinese population. However, the association between CYP17A1 polymorphisms and hypertension-related factors is unclear. The present study aimed to investigate the relation between CYP17A1 single nucleotide polymorphisms (SNPs) and serum lipid profiles. METHODS In total, 1350 participants were included in the study. Six SNPs in or near CYP17A1 gene were genotyped in a Han Chinese population in two stages. RESULTS There was a statistically significant association of rs1004467 (adjusted odds ratio = 0.783, 95% confidence interval = 0.667-0.919, p < 0.05) and rs11191548 (adjusted odds ratio = 0.788, 95% confidence interval = 0.672-0.925, p < 0.05) with hypercholesterolemia after adjustment for potential factors. Additionally, the rs1004467 minor G-allele and the rs11191548 minor C-allele were significantly associated with the lower serum total cholesterol levels (p < 0.05 for all). CONCLUSIONS The rs1004467 and rs11191548 in the CYP17A1 gene are associated with a decreased risk of hypercholesterolemia and lower serum TC levels in Han Chinese.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Intensive Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Geriatric Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huimei Chen
- Jiangsu Key Laboratory of Molecular Medicine, Department of Medical Genetics, Nanjing University, Nanjing, Jiangsu, China
| | - Jian Jia
- Department of General Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoman Ye
- Department of Geriatric Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haixia Ding
- Department of Geriatric Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiyang Zhan
- Department of Geriatric Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Durairaj Pandian V, Giovannucci DR, Vazquez G, Kumarasamy S. CACNB2 is associated with aberrant RAS-MAPK signaling in hypertensive Dahl Salt-Sensitive rats. Biochem Biophys Res Commun 2019; 513:760-765. [DOI: 10.1016/j.bbrc.2019.03.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 12/25/2022]
|
17
|
Manosroi W, Williams GH. Genetics of Human Primary Hypertension: Focus on Hormonal Mechanisms. Endocr Rev 2019; 40:825-856. [PMID: 30590482 PMCID: PMC6936319 DOI: 10.1210/er.2018-00071] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
Increasingly, primary hypertension is being considered a syndrome and not a disease, with the individual causes (diseases) having a common sign-an elevated blood pressure. To determine these causes, genetic tools are increasingly employed. This review identified 62 proposed genes. However, only 21 of them met our inclusion criteria: (i) primary hypertension, (ii) two or more supporting cohorts from different publications or within a single publication or one supporting cohort with a confirmatory genetically modified animal study, and (iii) 600 or more subjects in the primary cohort; when including our exclusion criteria: (i) meta-analyses or reviews, (ii) secondary and monogenic hypertension, (iii) only hypertensive complications, (iv) genes related to blood pressure but not hypertension per se, (v) nonsupporting studies more common than supporting ones, and (vi) studies that did not perform a Bonferroni or similar multiassessment correction. These 21 genes were organized in a four-tiered structure: distant phenotype (hypertension); intermediate phenotype [salt-sensitive (18) or salt-resistant (0)]; subintermediate phenotypes under salt-sensitive hypertension [normal renin (4), low renin (8), and unclassified renin (6)]; and proximate phenotypes (specific genetically driven hypertensive subgroup). Many proximate hypertensive phenotypes had a substantial endocrine component. In conclusion, primary hypertension is a syndrome; many proposed genes are likely to be false positives; and deep phenotyping will be required to determine the utility of genetics in the treatment of hypertension. However, to date, the positive genes are associated with nearly 50% of primary hypertensives, suggesting that in the near term precise, mechanistically driven treatment and prevention strategies for the specific primary hypertension subgroups are feasible.
Collapse
Affiliation(s)
- Worapaka Manosroi
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Endocrinology and Metabolism, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Gordon H Williams
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Rodriguez-Iturbe B, Johnson RJ. Genetic Polymorphisms in Hypertension: Are We Missing the Immune Connection? Am J Hypertens 2019; 32:113-122. [PMID: 30418477 DOI: 10.1093/ajh/hpy168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Renal Hospital Universitario, Universidad del Zulia, Maracaibo, Zulia, Venezuela
- Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Zulia, Venezuela
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
19
|
Dee RA, Mangum KD, Bai X, Mack CP, Taylor JM. Druggable targets in the Rho pathway and their promise for therapeutic control of blood pressure. Pharmacol Ther 2019; 193:121-134. [PMID: 30189292 PMCID: PMC7235948 DOI: 10.1016/j.pharmthera.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of high blood pressure (also known as hypertension) has steadily increased over the last few decades. Known as a silent killer, hypertension increases the risk for cardiovascular disease and can lead to stroke, heart attack, kidney failure and associated sequela. While numerous hypertensive therapies are currently available, it is estimated that only half of medicated patients exhibit blood pressure control. This signifies the need for a better understanding of the underlying cause of disease and for more effective therapies. While blood pressure homeostasis is very complex and involves the integrated control of multiple body systems, smooth muscle contractility and arterial resistance are important contributors. Strong evidence from pre-clinical animal models and genome-wide association studies indicate that smooth muscle contraction and BP homeostasis are governed by the small GTPase RhoA and its downstream target, Rho kinase. In this review, we summarize the signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity in smooth muscle cells and discuss current therapeutic strategies to target these RhoA pathway components. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations.
Collapse
Affiliation(s)
- Rachel A Dee
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin D Mangum
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xue Bai
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
20
|
Lin QF, Xia QQ, Zeng YL, Wu XY, Ye LF, Yao LT, Xin YT, Huang GB. Prevalence of migraine in Han Chinese of Fujian province: An epidemiological study. Medicine (Baltimore) 2018; 97:e13500. [PMID: 30593125 PMCID: PMC6314704 DOI: 10.1097/md.0000000000013500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 11/08/2018] [Indexed: 11/26/2022] Open
Abstract
Migraine is a relatively common disease that is associated with high disability and reduced quality-of-life. This study aimed to investigate the prevalence, epidemiological characteristics, and risk factors of migraine in Han Chinese from Fujian Province, China.A cross-sectional epidemiological survey study was conducted to evaluate characteristics of migraine in Han Chinese. Demographic and clinical data were collected through a survey administered in face-to-face interviews by trained investigators, and a physical exam and symptom review were performed. Univariate and multivariate regression analyses were performed to assess independent risk factors for migraine.A total of 7860 subjects aged 15 years and older were surveyed, of which 9.1% (n = 717) were diagnosed with migraine. Among these, a higher percentage was female (12.6%) than male (5.3%). Only 114 subjects (15.9%) were diagnosed as having migraine with aura, which was closely associated with family history of migraine. Multivariate regression analysis showed that the odds of migraine were significantly lower in subjects aged ≥50 years compared with those aged <30 years (odds ratio [OR] ranged from 0.40 to 0.64; P ≤.013) and was higher in females compared with males (OR = 2.89, P <.001). The odds of migraine was significantly greater in subjects with a history of alcohol consumption (OR = 1.81, P <.00) and insomnia (OR = 2.77, P <.001).Han Chinese in Fujian province has a relatively high prevalence of migraine, and female gender, <50 years of age, insomnia, and use of alcohol are associated with increased odds of having migraine in this population.
Collapse
Affiliation(s)
| | - Qiao-qing Xia
- Radiation and Chemotherapy Division, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Simonyte S, Kuciene R, Dulskiene V, Lesauskaite V. Association between ATP2B1 and CACNB2 polymorphisms and high blood pressure in a population of Lithuanian children and adolescents: a cross-sectional study. BMJ Open 2018; 8:e019902. [PMID: 29982197 PMCID: PMC6042568 DOI: 10.1136/bmjopen-2017-019902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Recently, genome-wide associated studies have identified several genetic loci that are associated with elevated blood pressure and could play a critical role in intracellular calcium homeostasis. The aim of this study was to assess the associations of ATP2B1 rs2681472 and CACNB2 rs12258967 gene polymorphisms with high blood pressure (HBP) among Lithuanian children and adolescents aged 12-15 years. STUDY DESIGN AND PARTICIPANTS This was a cross-sectional study of a randomly selected sample of 646 12-15-year-old adolescents who participated in the survey 'The Prevalence and Risk Factors of HBP in 12-15 Year-Old Lithuanian Children and Adolescents (from November 2010 to April 2012)'. Anthropometric parameters and BP were measured. The participants with HBP were screened on two separate occasions. Subjects were genotyped ATP2B1 rs2681472 and CACNB2 rs12258967 gene polymorphisms using real-time PCR method. RESULTS The prevalence of HBP was 36.7%, significantly higher for boys than for girls. In the multivariate analysis, after adjustment for body mass index and waist circumference, boys with CACNB2 CG genotype, CACNB2 GG genotype and CACNB2 CG +GG genotype had higher odds of having HBP in codominant (adjusted OR (aOR)=1.92; 95% CI 1.16 to 3.18, p=0.011; and aOR=2.64; 95% CI 1.19 to 5.90, p=0.018) and in dominant (aOR=2.05; 95% CI 1.27 to 3.30, p=0.003) inheritance models. Girls carrying CACNB2 CG genotype and CACNB2 CG +GG genotype had increased odds of HBP in codominant (aOR=1.82; 95% CI 1.02 to 3.24, p=0.044) and in dominant (aOR=1.89; 95% CI 1.09 to 3.28, p=0.023) inheritance models. Furthermore, significant associations were found in additive models separately for boys (aOR=1.72; 95% CI 1.20 to 2.46, p=0.003) and girls (aOR=1.52; 95% CI 1.05 to 2.20, p=0.027). No significant association was found between ATP2B1 gene polymorphism and the odds of HBP. CONCLUSIONS Our results indicate that CACNB2 gene polymorphism was significantly associated with higher odds of HBP in Lithuanian adolescents aged 12-15 years.
Collapse
Affiliation(s)
- Sandrita Simonyte
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Renata Kuciene
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virginija Dulskiene
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vaiva Lesauskaite
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
22
|
Zhang N, Jia J, Ding Q, Chen H, Ye X, Ding H, Zhan Y. Common variant rs11191548 near the CYP17A1 gene is associated with hypertension and the serum 25(OH) D levels in Han Chinese. J Hum Genet 2018; 63:731-737. [PMID: 29556032 DOI: 10.1038/s10038-018-0435-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
The CYP17A1 gene, which encodes17α-hydroxylase and 17,20-lyase, has been identified as a common hypertension susceptibility locus in a European population. However, the association between CYP17A1 polymorphisms and hypertension is unclear in the Chinese population as well as in the role of serum 25(OH) D levels. Six single nucleotide polymorphisms (SNPs) in CYP17A1 were genotyped in two stages in a Han Chinese population, and the serum 25(OH) D levels were measured. Analysis in stage 1 showed that the rs1004467 minor G-allele and rs11191548 minor C-allele in CYP17A1 were significantly associated with a decreased risk of hypertension and higher serum 25(OH) D levels (all P < 0.05). The larger sample in stage 2 also showed that a mutation in rs11191548 was significantly associated with a decreased risk of hypertension (adjusted OR = 0.707, 95% CI: 0.553-0.904, P = 0.006). The rs11191548 minor C-allele was associated with higher serum 25(OH) D levels in hypertensive subjects (βadj ± SEM = 0.094 ± 0.949, P = 0.003) and controls (βadj ± SEM = 0.128 ± 1.025, P < 0.001). In conclusion, the rs11191548 CYP17A1 gene mutation was associated with hypertension and the serum 25(OH) D levels in Han Chinese.
Collapse
Affiliation(s)
- Ning Zhang
- Geriatric Medicine Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Jia
- General Medicine Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiuju Ding
- Jiangsu Key Laboratory of Molecular Medicine, Department of Medical Genetics, Nanjing University, Nanjing, Jiangsu, China
| | - Huimei Chen
- Jiangsu Key Laboratory of Molecular Medicine, Department of Medical Genetics, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoman Ye
- Geriatric Medicine Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haixia Ding
- Geriatric Medicine Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yiyang Zhan
- Geriatric Medicine Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Ren Y, Jiao X, Zhang L. Expression level of fibroblast growth factor 5 (FGF5) in the peripheral blood of primary hypertension and its clinical significance. Saudi J Biol Sci 2018; 25:469-473. [PMID: 29692649 PMCID: PMC5911643 DOI: 10.1016/j.sjbs.2017.11.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To explore the expression level of FGF5 in the peripheral blood of primary hypertension patients and its clinical significance. METHODS The 34 patients with primary hypertension treated in this hospital from June 2012 to June 2014 were selected as the observation group, while the 25 patients at this hospital who had physical exam with heathy results were selected as control group. Venous blood was drawn early in the morning after an overnight fast. FGF5, mRNA and protein level changes in the peripheral blood cells and peripheral blood serum were analyzed by real-time fluorescence based quantitative PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). FGF5 gene SNP (rs16998073) were amplified by PCR and inserted into T vector, and its genetic variation were analyzed by sequencing. The relationship of FGF5 protein levels and genetic variation with diastolic/systolic blood pressure was also analyzed. RESULTS Comparing with the control group, the observation group's FGF5 mRNA and protein levels significantly increased in the peripheral blood cells and peripheral blood. The difference was statistically significant (P < .05). Correlation analysis showed that FGF5 protein level and systolic/diastolic blood pressure were positively correlated (P < .05). T/A genetic variation of FGF5 gene SNP (rs16998073) and diastolic/systolic blood pressure were positively correlated (P < .05). CONCLUSION The FGF5 mRNA and protein expression levels of the patients with primary hypertension were abnormal and had genetic variation, which were associated with blood pressure of the patients with primary hypertension.
Collapse
Affiliation(s)
- Yuchao Ren
- Cardiovascular Medicine Ward 3, Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Xiaoqi Jiao
- Cardiovascular Medicine Ward 3, Zhengzhou Central Hospital, Zhengzhou 450007, China
- Cardiovascular Medicine Ward 5, Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Lin Zhang
- Cardiovascular Medicine Ward 3, Zhengzhou Central Hospital, Zhengzhou 450007, China
| |
Collapse
|
24
|
Priyadharsini Jayaseelan V, Muthusamy K, Venkatramani S, Arumugam P, Gopalswamy J, Thiagarajan SS. Gender-specific Association of ATP2B1 (rs2681472) Gene Polymorphism with Essential Hypertension in South Indian Population. INT J HUM GENET 2018. [DOI: 10.1080/09723757.2017.1421431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Karthikeyan Muthusamy
- Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | | | | | - Jayaraman Gopalswamy
- Department of Genetics, Dr. ALM PGIBMS, University of Madras, Taramani, Chennai, Tamil Nadu, India
| | | |
Collapse
|
25
|
Azam AB, Azizan EAB. Brief Overview of a Decade of Genome-Wide Association Studies on Primary Hypertension. Int J Endocrinol 2018; 2018:7259704. [PMID: 29666641 PMCID: PMC5831899 DOI: 10.1155/2018/7259704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Primary hypertension is widely believed to be a complex polygenic disorder with the manifestation influenced by the interactions of genomic and environmental factors making identification of susceptibility genes a major challenge. With major advancement in high-throughput genotyping technology, genome-wide association study (GWAS) has become a powerful tool for researchers studying genetically complex diseases. GWASs work through revealing links between DNA sequence variation and a disease or trait with biomedical importance. The human genome is a very long DNA sequence which consists of billions of nucleotides arranged in a unique way. A single base-pair change in the DNA sequence is known as a single nucleotide polymorphism (SNP). With the help of modern genotyping techniques such as chip-based genotyping arrays, thousands of SNPs can be genotyped easily. Large-scale GWASs, in which more than half a million of common SNPs are genotyped and analyzed for disease association in hundreds of thousands of cases and controls, have been broadly successful in identifying SNPs associated with heart diseases, diabetes, autoimmune diseases, and psychiatric disorders. It is however still debatable whether GWAS is the best approach for hypertension. The following is a brief overview on the outcomes of a decade of GWASs on primary hypertension.
Collapse
Affiliation(s)
- Afifah Binti Azam
- Department of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Elena Aisha Binti Azizan
- Department of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
27
|
Padmanabhan S, Aman A, Dominiczak AF. Genomics of hypertension. Pharmacol Res 2017; 121:219-229. [DOI: 10.1016/j.phrs.2017.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/11/2023]
|
28
|
Abstract
Genomic insights and analyses of Mendelian hypertension (HTN) syndromes and Genome-Wide Association study (GWAS) on essential hypertension have contributed to the depth of understanding of the genetics origins of hypertension. Mendelian syndromes are important for the field, since such knowledge leads to specific insights about disease pathogenesis and the potential for precision medicine. The clinical impact of findings of on essential hypertension is continuously evolving, and the insights accrued will refine efforts to combat the societal impact of hypertension. Comprehensive identification of all genomic variants of hypertension, along with their individual associated mechanisms, is paving the way forward in the era of personalized medicine. The overriding challenge for care providers is to reduce health inequities through improved compliance and, perhaps, new paradigms for implementation science that incorporate genomic medicine.
Collapse
Affiliation(s)
- Sheriff N Dodoo
- Department of Internal Medicine, Meharry Medical College, 1005 Dr DB Todd Jr Boulevard, Nashville, TN 37208, USA
| | - Ivor J Benjamin
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Division of Cardiology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
29
|
Li Q, Gao T, Yuan Y, Wu Y, Huang Q, Xie F, Ran P, Sun L, Xiao C. Association of CYP17A1 Genetic Polymorphisms and Susceptibility to Essential Hypertension in the Southwest Han Chinese Population. Med Sci Monit 2017; 23:2488-2499. [PMID: 28537227 PMCID: PMC5450854 DOI: 10.12659/msm.902109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background The CYP17A1 gene encodes for cytochrome P450 enzyme CYP17A1, which is involved with the steroidogenic pathway including mineralocorticoids. The CYP17A1 polymorphisms might affect enzyme activity, then leading to a state of mineralocorticoid 11-deoxycorticosterone excess characterized by hypertension, suppressed plasma renin activity, and low aldosterone concentrations. The aim of this study was to investigate the contribution of CYP17A1 polymorphisms in inducing the susceptibility to essential hypertension among the Southwest Han Chinese population. Material/Methods Eight single nucleotide polymorphisms of CYP17A1 were genotyped in a case-control study for samples by polymerase chain reaction-restriction fragment length polymorphism analysis. Results The polymorphisms rs11191548 and rs4919687 were significantly associated with hypertension risk, which was confirmed by systolic and diastolic blood pressure distribution analyses between different genotype groups, and these two polymorphisms were found in linkage disequilibrium. The rs4919687 polymorphism was estimated to cause the destruction of exonic splicing silencer (ESR and Motif 3) sites and to transform the transcription factor AREB6 binding site, respectively, in the bioinformatics analyses. The haplotypes rs4919686A-rs3740397G -rs4919687C-rs743572C-rs11191548C and rs4919686A-rs3740397G-rs4919687T-rs743572C- rs11191548T were found to be susceptible to essential hypertension. Conclusions Our findings suggest that the CYP17A1 polymorphisms could be a genetic risk factor for essential hypertension among the Yunnan Han Chinese population, which would have implications for the treatment of this complex disorder.
Collapse
Affiliation(s)
- Qian Li
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Tangxin Gao
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Yuncang Yuan
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Yanrui Wu
- Department of Cell Biology and Genetics, Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Qionglin Huang
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Fei Xie
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Pengzhan Ran
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Lijuan Sun
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| |
Collapse
|
30
|
MacKenzie SM, Freel EM, Connell JM, Fraser R, Davies E. ACTH and Polymorphisms at Steroidogenic Loci as Determinants of Aldosterone Secretion and Blood Pressure. Int J Mol Sci 2017; 18:ijms18030579. [PMID: 28272372 PMCID: PMC5372595 DOI: 10.3390/ijms18030579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/11/2023] Open
Abstract
The majority of genes contributing to the heritable component of blood pressure remain unidentified, but there is substantial evidence to suggest that common polymorphisms at loci involved in the biosynthesis of the corticosteroids aldosterone and cortisol are important. This view is supported by data from genome-wide association studies that consistently link the CYP17A1 locus to blood pressure. In this review article, we describe common polymorphisms at three steroidogenic loci (CYP11B2, CYP11B1 and CYP17A1) that alter gene transcription efficiency and levels of key steroids, including aldosterone. However, the mechanism by which this occurs remains unclear. While the renin angiotensin system is rightly regarded as the major driver of aldosterone secretion, there is increasing evidence that the contribution of corticotropin (ACTH) is also significant. In light of this, we propose that the differential response of variant CYP11B2, CYP11B1 and CYP17A1 genes to ACTH is an important determinant of blood pressure, tending to predispose individuals with an unfavourable genotype to hypertension.
Collapse
Affiliation(s)
- Scott M MacKenzie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - E Marie Freel
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - John M Connell
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | - Robert Fraser
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Eleanor Davies
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
31
|
Interaction between Single Nucleotide Polymorphism and Urinary Sodium, Potassium, and Sodium-Potassium Ratio on the Risk of Hypertension in Korean Adults. Nutrients 2017; 9:nu9030235. [PMID: 28273873 PMCID: PMC5372898 DOI: 10.3390/nu9030235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/23/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
Hypertension is a complex disease explained with diverse factors including environmental factors and genetic factors. The objectives of this study were to determine the interaction effects between gene variants and 24 h estimated urinary sodium and potassium excretion and sodium-potassium excretion ratios on the risk of hypertension. A total of 8839 participants were included in the genome-wide association study (GWAS) to find genetic factors associated with hypertension. Tanaka and Kawasaki formulas were applied to estimate 24 h urinary sodium and potassium excretion. A total of 4414 participants were included in interaction analyses to identify the interaction effects of gene variants according to 24 h estimated urinary factors on the risk of hypertension. CSK rs1378942 and CSK-MIR4513 rs3784789 were significantly modified by urinary sodium-potassium excretion ratio. In addition, MKLN rs1643270 with urinary potassium excretion, LOC101929750 rs7554672 with urinary sodium and potassium excretion, and TENM4 rs10466739 with urinary sodium-potassium excretion ratio showed significant interaction effects. The present study results indicated that the mutant alleles of CSK rs1378942 and CSK-MIR4513 rs3784789 had the strongest protective effects against hypertension in the middle group of 24 h estimated urinary sodium-potassium excretion ratio. Further studies are needed to replicate these analyses in other populations.
Collapse
|
32
|
Waken RJ, de las Fuentes L, Rao DC. A Review of the Genetics of Hypertension with a Focus on Gene-Environment Interactions. Curr Hypertens Rep 2017; 19:23. [PMID: 28283927 PMCID: PMC5647656 DOI: 10.1007/s11906-017-0718-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Here, we discuss the interpretation and modeling of gene-environment interactions in hypertension-related phenotypes, with a focus on the necessary assumptions and possible challenges. RECENT FINDINGS Recently, small cohort studies have discovered several novel genetic variants associated with hypertension-related phenotypes through modeling gene-environment interactions. Several consortia-based meta-analytic efforts have uncovered many novel genetic variants in hypertension without modeling interaction terms, giving promise to future meta-analytic efforts that incorporate gene-environment interactions. Heritability studies and genome-wide association studies have established that hypertension, a prevalent cardiovascular disease, has a genetic component that may be modulated by the environment (such as lifestyle factors). This review includes a discussion of known genetic associations for hypertension/blood pressure, including those resulting from the incorporation of gene-environmental interaction modeling.
Collapse
Affiliation(s)
- R J Waken
- Division of Biostatistics, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave, Campus Box 8067, St. Louis, MO, 63110, USA.
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave, Campus Box 8067, St. Louis, MO, 63110, USA
- Division of Cardiology, Department of Medicine, 660 S. Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA
| | - D C Rao
- Division of Biostatistics, Washington University in St. Louis, School of Medicine, 660 S. Euclid Ave, Campus Box 8067, St. Louis, MO, 63110, USA
| |
Collapse
|
33
|
Impact and influence of “omics” technology on hyper tension studies. Int J Cardiol 2017; 228:1022-1034. [DOI: 10.1016/j.ijcard.2016.11.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 12/14/2022]
|
34
|
Shah J, Guerrera D, Vasileva E, Sluysmans S, Bertels E, Citi S. PLEKHA7: Cytoskeletal adaptor protein at center stage in junctional organization and signaling. Int J Biochem Cell Biol 2016; 75:112-6. [PMID: 27072621 DOI: 10.1016/j.biocel.2016.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
PLEKHA7 is a recently characterized component of the cytoplasmic region of epithelial adherens junctions (AJ). It comprises two WW domains, a pleckstrin-homology domain, and proline-rich and coiled-coil domains. PLEKHA7 interacts with cytoplasmic components of the AJ (p120-catenin, paracingulin, afadin), stabilizes the E-cadherin complex by linking it to the minus ends of noncentrosomal microtubules, and stabilizes junctional nectins through the newly identified interactor PDZD11. Similarly to afadin, and unlike E-cadherin and p120-catenin, the localization of PLEKHA7 at AJ is strictly zonular (in the zonula adhaerens subdomain of AJ), and does not extend along the basolateral contacts. Genome-wide association studies and experiments on animal and cellular models show that although PLEKHA7 is not required for organism viability, it is implicated in cardiovascular physiology, hypertension, primary angle closure glaucoma, susceptibility to staphylococcal α-toxin, and epithelial morphogenesis and growth. Thus, PLEKHA7 is a cytoskeletal adaptor protein important for AJ organization, and at the center of junction-associated signaling pathways which fine-tune important pathophysiological processes.
Collapse
Affiliation(s)
- Jimit Shah
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Diego Guerrera
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sophie Sluysmans
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Eva Bertels
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
35
|
Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, Poser I, Mann M, Hyman AA, Citi S. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem 2016; 291:11016-29. [PMID: 27044745 DOI: 10.1074/jbc.m115.712935] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Indexed: 01/07/2023] Open
Abstract
PLEKHA7 is a junctional protein implicated in stabilization of the cadherin protein complex, hypertension, cardiac contractility, glaucoma, microRNA processing, and susceptibility to bacterial toxins. To gain insight into the molecular basis for the functions of PLEKHA7, we looked for new PLEKHA7 interactors. Here, we report the identification of PDZ domain-containing protein 11 (PDZD11) as a new interactor of PLEKHA7 by yeast two-hybrid screening and by mass spectrometry analysis of PLEKHA7 immunoprecipitates. We show that PDZD11 (17 kDa) is expressed in epithelial and endothelial cells, where it forms a complex with PLEKHA7, as determined by co-immunoprecipitation analysis. The N-terminal Trp-Trp (WW) domain of PLEKHA7 interacts directly with the N-terminal 44 amino acids of PDZD11, as shown by GST-pulldown assays. Immunofluorescence analysis shows that PDZD11 is localized at adherens junctions in a PLEKHA7-dependent manner, because its junctional localization is abolished by knock-out of PLEKHA7, and is rescued by re-expression of exogenous PLEKHA7. The junctional recruitment of nectin-1 and nectin-3 and their protein levels are decreased via proteasome-mediated degradation in epithelial cells where either PDZD11 or PLEKHA7 have been knocked-out. PDZD11 forms a complex with nectin-1 and nectin-3, and its PDZ domain interacts directly with the PDZ-binding motif of nectin-1. PDZD11 is required for the efficient assembly of apical junctions of epithelial cells at early time points in the calcium-switch model. These results show that the PLEKHA7-PDZD11 complex stabilizes nectins to promote efficient early junction assembly and uncover a new molecular mechanism through which PLEKHA7 recruits PDZ-binding membrane proteins to epithelial adherens junctions.
Collapse
Affiliation(s)
- Diego Guerrera
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Jimit Shah
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Ekaterina Vasileva
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Sophie Sluysmans
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Isabelle Méan
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Lionel Jond
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Ina Poser
- the Max Planck Institute for Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Matthias Mann
- the Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Anthony A Hyman
- the Max Planck Institute for Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Sandra Citi
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland,
| |
Collapse
|
36
|
Ackermann D, Pruijm M, Ponte B, Guessous I, Ehret G, Escher G, Dick B, Al-Alwan H, Vuistiner P, Paccaud F, Burnier M, Péchère-Bertschi A, Martin PY, Vogt B, Mohaupt M, Bochud M. CYP17A1 Enzyme Activity Is Linked to Ambulatory Blood Pressure in a Family-Based Population Study. Am J Hypertens 2016; 29:484-93. [PMID: 26297028 PMCID: PMC4886492 DOI: 10.1093/ajh/hpv138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/03/2015] [Accepted: 07/25/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genome-wide association studies have linked CYP17A1 coding for the steroid hormone synthesizing enzyme 17α-hydroxylase (CYP17A1) to blood pressure (BP). We hypothesized that the genetic signal may translate into a correlation of ambulatory BP (ABP) with apparent CYP17A1 activity in a family-based population study and estimated the heritability of CYP17A1 activity. METHODS In the Swiss Kidney Project on Genes in Hypertension, day and night urinary excretions of steroid hormone metabolites were measured in 518 participants (220 men, 298 women), randomly selected from the general population. CYP17A1 activity was assessed by 2 ratios of urinary steroid metabolites: one estimating the combined 17α-hydroxylase/17,20-lyase activity (ratio 1) and the other predominantly 17α-hydroxylase activity (ratio 2). A mixed linear model was used to investigate the association of ABP with log-transformed CYP17A1 activities exploring effect modification by urinary sodium excretion. RESULTS Daytime ABP was positively associated with ratio 1 under conditions of high, but not low urinary sodium excretion (P interaction <0.05). Ratio 2 was not associated with ABP. Heritability estimates (SE) for day and night CYP17A1 activities were 0.39 (0.10) and 0.40 (0.09) for ratio 1, and 0.71 (0.09) and 0.55 (0.09) for ratio 2 (P values <0.001). CYP17A1 activities, assessed with ratio 1, were lower in older participants. CONCLUSIONS Low apparent CYP17A1 activity (assessed with ratio 1) is associated with elevated daytime ABP when salt intake is high. CYP17A1 activity is heritable and diminished in the elderly. These observations highlight the modifying effect of salt intake on the association of CYP17A1 with BP.
Collapse
Affiliation(s)
- Daniel Ackermann
- University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland;
| | - Menno Pruijm
- Service of Nephrology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Belen Ponte
- Service of Nephrology, University Hospital of Geneva (HUG), Geneva, Switzerland
| | - Idris Guessous
- Institute of Social and Preventive Medicine (IUMSP), University of Lausanne, Lausanne, Switzerland
| | - Georg Ehret
- Cardiology, Department of Specialties of Internal Medicine, University Hospital of Geneva (HUG), Geneva, Switzerland
| | - Geneviève Escher
- University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Bernhard Dick
- University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Heba Al-Alwan
- Institute of Social and Preventive Medicine (IUMSP), University of Lausanne, Lausanne, Switzerland
| | - Philippe Vuistiner
- Institute of Social and Preventive Medicine (IUMSP), University of Lausanne, Lausanne, Switzerland
| | - Fred Paccaud
- Institute of Social and Preventive Medicine (IUMSP), University of Lausanne, Lausanne, Switzerland
| | - Michel Burnier
- Service of Nephrology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Antoinette Péchère-Bertschi
- Service of Endocrinology, Department of Specialties of Internal Medicine, University Hospital of Geneva (HUG), Geneva, Switzerland
| | - Pierre-Yves Martin
- Service of Nephrology, University Hospital of Geneva (HUG), Geneva, Switzerland
| | - Bruno Vogt
- University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Markus Mohaupt
- University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Murielle Bochud
- Institute of Social and Preventive Medicine (IUMSP), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Bai X, Dee R, Mangum KD, Mack CP, Taylor JM. RhoA signaling and blood pressure: The consequence of failing to “Tone it Down”. World J Hypertens 2016; 6:18-35. [DOI: 10.5494/wjh.v6.i1.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled high blood pressure is a major risk factor for heart attack, stroke, and kidney failure and contributes to an estimated 25% of deaths worldwide. Despite numerous treatment options, estimates project that reasonable blood pressure (BP) control is achieved in only about half of hypertensive patients. Improvements in the detection and management of hypertension will undoubtedly be accomplished through a better understanding of the complex etiology of this disease and a more comprehensive inventory of the genes and genetic variants that influence BP regulation. Recent studies (primarily in pre-clinical models) indicate that the small GTPase RhoA and its downstream target, Rho kinase, play an important role in regulating BP homeostasis. Herein, we summarize the underlying mechanisms and highlight signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations. Finally, we summarize the current (albeit limited) clinical data on the efficacy of targeting the RhoA pathway in hypertensive patients.
Collapse
|
38
|
Diver LA, MacKenzie SM, Fraser R, McManus F, Freel EM, Alvarez-Madrazo S, McClure JD, Friel EC, Hanley NA, Dominiczak AF, Caulfield MJ, Munroe PB, Connell JM, Davies E. Common Polymorphisms at the CYP17A1 Locus Associate With Steroid Phenotype: Support for Blood Pressure Genome-Wide Association Study Signals at This Locus. Hypertension 2016; 67:724-732. [PMID: 26902494 DOI: 10.1161/hypertensionaha.115.06925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 01/11/2023]
Abstract
Genome-wide association studies implicate the CYP17A1 gene in human blood pressure regulation although the causative polymorphisms are as yet unknown. We sought to identify common polymorphisms likely to explain this association. We sequenced the CYP17A1 locus in 60 normotensive individuals and observed 24 previously identified single-nucleotide polymorphisms with minor allele frequency >0.05. From these, we selected, for further studies, 7 polymorphisms located ≤ 2 kb upstream of the CYP17A1 transcription start site. In vitro reporter gene assays identified 3 of these (rs138009835, rs2150927, and rs2486758) as having significant functional effects. We then analyzed the association between the 7 polymorphisms and the urinary steroid metabolites in a hypertensive cohort (n=232). Significant associations included that of rs138009835 with aldosterone metabolite excretion; rs2150927 associated with the ratio of tetrahydrodeoxycorticosterone to tetrahydrodeoxycortisol, which we used as an index of 17α-hydroxylation. Linkage analysis showed rs138009835 to be the only 1 of the 7 polymorphisms in strong linkage disequilibrium with the blood pressure-associated polymorphisms identified in the previous studies. In conclusion, we have identified, characterized, and investigated common polymorphisms at the CYP17A1 locus that have functional effects on gene transcription in vitro and associate with corticosteroid phenotype in vivo. Of these, rs138009835--which we associate with changes in aldosterone level--is in strong linkage disequilibrium with polymorphisms linked by genome-wide association studies to blood pressure regulation. This finding clearly has implications for the development of high blood pressure in a large proportion of the population and justifies further investigation of rs138009835 and its effects.
Collapse
Affiliation(s)
- Louise A Diver
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Scott M MacKenzie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robert Fraser
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Frances McManus
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - E Marie Freel
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Samantha Alvarez-Madrazo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - John D McClure
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elaine C Friel
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Neil A Hanley
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark J Caulfield
- William Harvey Research Institute and the Barts National Institute for Health Research Biomedical Research Unit, Queen Mary University of London, London, United Kingdom
| | - Patricia B Munroe
- William Harvey Research Institute and the Barts National Institute for Health Research Biomedical Research Unit, Queen Mary University of London, London, United Kingdom
| | - John M Connell
- Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, United Kingdom
| | - Eleanor Davies
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
39
|
Dai CF, Xie X, Ma YT, Yang YN, Li XM, Fu ZY, Liu F, Chen BD, Gai MT. The relationship between the polymorphisms of the CYP17A1 gene and hypertension: A meta-analysis. J Renin Angiotensin Aldosterone Syst 2015; 16:1314-1320. [PMID: 25990650 DOI: 10.1177/1470320315585683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/06/2015] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE With the development of genome-wide association studies (GWAS) concerning hypertension, a growing number of susceptibility genes related to hypertension have been revealed. Subsequently, several studies have investigated the association between CYP17A1 rs1004467 heritable variation and hypertension; however, the results have been inconsistent. In this study, a meta-analysis was performed to assess the association between the CYP17A1 rs1004467 polymorphism and hypertension risk. METHODS The PubMed, ISI Web of Science and Embase databases as well as China Wanfang, Weipu and the Chinese Journal Full-text Database were used to retrieve all publications from 2005 to 2013 related to case-control studies that reported a link between the risk factors for hypertension and the CYP17A1 polymorphism. All association studies were identified, and a meta-analysis was conducted using the RevMan 5.0 estimate for odds ratios (ORs) to determine whether the A allele predicts hypertension outcomes. RESULTS Three articles including five studies (totaling 4495 patients and 3529 controls) were identified. The overall effect suggested that rs1004467 was significantly associated with hypertension (OR=1.22, 95%CI 1.08-1.38, p=0.001). CONCLUSIONS The present meta-analysis confirmed the significant association between a polymorphism of the CYP17A1 gene and hypertension susceptibility. The CYP17A1 A allele should be considered a risk factor for hypertension.
Collapse
Affiliation(s)
- Chuan-Fang Dai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Fen Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Bang-Dang Chen
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Min-Tao Gai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
40
|
Dai CF, Xie X, Ma YT, Yang YN, Li XM, Fu ZY, Liu F, Chen BD, Gai MT. Relationship between CYP17A1 Genetic Polymorphism and Essential Hypertension in a Chinese Population. Aging Dis 2015; 6:486-498. [PMID: 26618050 PMCID: PMC4657820 DOI: 10.14336/ad.2015.0505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/05/2015] [Indexed: 11/01/2022] Open
Abstract
The relationship between CYP17A1 genetic polymorphisms and essential hypertension (EH) remains unclear. The aim of this study was to investigate the association of CYP17A1 genetic polymorphisms with EH in Han and Uighur populations in China. A Han population including 558 people (270 EH patients and 288 controls) and a Uighur population including 473 people (181 EH patients and 292 controls) were selected. Five single-nucleotide polymorphisms (SNPs) (rs4919686, rs1004467, rs4919687, rs10786712, and rs2486758) were genotyped using real-time PCR (TaqMan). In the Uighur population, for the total and the men, rs4919686, rs4919687 and rs10786712 were found to be associated with EH (rs4919686: P≤0.02, rs4919687: P≤0.002, rs10786712: P≤0.004, respectively). The difference remained statistically significant after the multivariate adjustment (all P<0.05). The overall distributions of the haplotypes established by SNP1-SNP3, SNP1-SNP4, SNP1-SNP3-SNP5 and SNP1-SNP4-SNP5 were significantly different between the EH patients and the control subjects (for the total: P=0.013, P=0.008, P=0.032, P=0.010, for men: P<0.001, P=0.001, P=0.010, P=0.00). In the Han population, for men, rs2486758 was found to be associated with EH in a recessive model (P=0.007); the significant difference was not retained after the adjustment for the covariates (date not shown). The A allele of rs4919686 could be a susceptible genetic marker, and the T allele of rs10786712 could be a protective genetic marker of EH. The AC genotype of rs4919686, the AG genotype of rs4919687 and the TT genotype of rs10786712 could be protective genetic markers of EH.
Collapse
Affiliation(s)
- Chuan-Fang Dai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Fen Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Bang-Dang Chen
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Min-Tao Gai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| |
Collapse
|
41
|
Zheng J, Rao DC, Shi G. An update on genome-wide association studies of hypertension. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40535-015-0013-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
A Single Nucleotide Polymorphism near the CYP17A1 Gene Is Associated with Left Ventricular Mass in Hypertensive Patients under Pharmacotherapy. Int J Mol Sci 2015; 16:17456-68. [PMID: 26263970 PMCID: PMC4581202 DOI: 10.3390/ijms160817456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/16/2015] [Accepted: 07/23/2015] [Indexed: 01/11/2023] Open
Abstract
Cytochrome P450 17A1 (CYP17A1) catalyses the formation and metabolism of steroid hormones. They are involved in blood pressure (BP) regulation and in the pathogenesis of left ventricular hypertrophy. Therefore, altered function of CYP17A1 due to genetic variants may influence BP and left ventricular mass. Notably, genome wide association studies supported the role of this enzyme in BP control. Against this background, we investigated associations between single nucleotide polymorphisms (SNPs) in or nearby the CYP17A1 gene with BP and left ventricular mass in patients with arterial hypertension and associated cardiovascular organ damage treated according to guidelines. Patients (n = 1007, mean age 58.0 ± 9.8 years, 83% men) with arterial hypertension and cardiac left ventricular ejection fraction (LVEF) ≥ 40% were enrolled in the study. Cardiac parameters of left ventricular mass, geometry and function were determined by echocardiography. The cohort comprised patients with coronary heart disease (n = 823; 81.7%) and myocardial infarction (n = 545; 54.1%) with a mean LVEF of 59.9% ± 9.3%. The mean left ventricular mass index (LVMI) was 52.1 ± 21.2 g/m2.7 and 485 (48.2%) patients had left ventricular hypertrophy. There was no significant association of any investigated SNP (rs619824, rs743572, rs1004467, rs11191548, rs17115100) with mean 24 h systolic or diastolic BP. However, carriers of the rs11191548 C allele demonstrated a 7% increase in LVMI (95% CI: 1%-12%, p = 0.017) compared to non-carriers. The CYP17A1 polymorphism rs11191548 demonstrated a significant association with LVMI in patients with arterial hypertension and preserved LVEF. Thus, CYP17A1 may contribute to cardiac hypertrophy in this clinical condition.
Collapse
|
43
|
Abstract
PLEKHA7 (pleckstrin homology domain containing family A member 7) has been found in multiple studies as a candidate gene for human hypertension, yet functional data supporting this association are lacking. We investigated the contribution of this gene to the pathogenesis of salt-sensitive hypertension by mutating Plekha7 in the Dahl salt-sensitive (SS/JrHsdMcwi) rat using zinc-finger nuclease technology. After four weeks on an 8% NaCl diet, homozygous mutant rats had lower mean arterial (149 ± 9 mmHg vs. 178 ± 7 mmHg; P < 0.05) and systolic (180 ± 7 mmHg vs. 213 ± 8 mmHg; P < 0.05) blood pressure compared with WT littermates. Albumin and protein excretion rates were also significantly lower in mutant rats, demonstrating a renoprotective effect of the mutation. Total peripheral resistance and perivascular fibrosis in the heart and kidney were significantly reduced in Plekha7 mutant animals, suggesting a potential role of the vasculature in the attenuation of hypertension. Indeed, both flow-mediated dilation and endothelium-dependent vasodilation in response to acetylcholine were improved in isolated mesenteric resistance arteries of Plekha7 mutant rats compared with WT. These vascular improvements were correlated with changes in intracellular calcium handling, resulting in increased nitric oxide bioavailability in mutant vessels. Collectively, these data provide the first functional evidence that Plekha7 may contribute to blood pressure regulation and cardiovascular function through its effects on the vasculature.
Collapse
|
44
|
Alsulami H, Liu X, Beyene J. Pathway-based analysis of rare and common variants to test for association with blood pressure. BMC Proc 2014; 8:S101. [PMID: 25519355 PMCID: PMC4143690 DOI: 10.1186/1753-6561-8-s1-s101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Our goal is to test the effect of both rare and common variants in a blood pressure study. We use a pathway-based approach, gene-set enrichment analysis, to search for related genes affecting 4 phenotypes: systolic blood pressure, diastolic blood pressure, the difference between each of them and mean arterial pressure, which is a weighted linear combination of systolic and diastolic blood pressure. Using the real Genetic Analysis Workshop 18 data, we consider both rare and common variants in our analysis and incorporate other covariates by using a recently proposed test statistic. Our study identified a commonly enriched gene set/pathway for the two derived phenotypes we analyzed: the difference between systolic and diastolic blood pressure and mean arterial pressure, but none is identified with the individual blood pressure phenotypes. The gene CD47, in the enriched gene pathway/set, was reported in previous studies to be related to blood pressure. The findings are not surprising because the sample size we use in our analysis is small, and hence power to detect small but important effects is likely inadequate.
Collapse
Affiliation(s)
- Huda Alsulami
- Statistics Department, King Abdulaziz University, Abdullah Sulayman, Jeddah 22254, Saudi Arabia ; Mathematics and Statistics Department, McMaster University, Hamilton, Ontario, Canada ; Population Genomics Program, Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Xiaofeng Liu
- Population Genomics Program, Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Joseph Beyene
- Mathematics and Statistics Department, McMaster University, Hamilton, Ontario, Canada ; Population Genomics Program, Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
45
|
Zhang F, Lin S. Detection of imprinting effects for hypertension based on general pedigrees utilizing all affected and unaffected individuals. BMC Proc 2014; 8:S52. [PMID: 25519332 PMCID: PMC4143886 DOI: 10.1186/1753-6561-8-s1-s52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Imprinting effects can lead to parent-of-origin patterns in many complex human diseases. For hypertension, previous studies revealed the possible involvement of imprinted genes. Genetic Analysis Workshop 18 real data, with hypertensive phenotype and genotype of more than 1000 individuals from 20 pedigrees, provided us an opportunity to further substantiate such findings. To test for imprinting effects, we developed a pedigree-parental-asymmetry test taking both affected and unaffected offspring into consideration (PPATu). We carried out a simulation study based on the Genetic Analysis Workshop 18 pedigrees to show that PPATu has well-controlled type I error and is indeed more powerful than the pedigree-parental-asymmetry test (PPAT), an existing method that does not utilize information from unaffected offspring. We then applied PPATu to Genetic Analysis Workshop 18 genome-wide association study data from 20 pedigrees. We identified a number of single-nucleotide polymorphisms showing significant imprinting effects that are within genomic regions that have been previously implicated to be associated with hypertension.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Department of Statistics, The Ohio State University, 1958 Neil Avenue Columbus, OH, 43210, USA
| | - Shili Lin
- Department of Statistics, The Ohio State University, 1958 Neil Avenue Columbus, OH, 43210, USA
| |
Collapse
|
46
|
Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 2014; 82:24-45. [PMID: 24698266 DOI: 10.1016/j.neuron.2014.03.016] [Citation(s) in RCA: 456] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Voltage-gated calcium channels are the primary mediators of depolarization-induced calcium entry into neurons. There is great diversity of calcium channel subtypes due to multiple genes that encode calcium channel α1 subunits, coassembly with a variety of ancillary calcium channel subunits, and alternative splicing. This allows these channels to fulfill highly specialized roles in specific neuronal subtypes and at particular subcellular loci. While calcium channels are of critical importance to brain function, their inappropriate expression or dysfunction gives rise to a variety of neurological disorders, including, pain, epilepsy, migraine, and ataxia. This Review discusses salient aspects of voltage-gated calcium channel function, physiology, and pathophysiology.
Collapse
Affiliation(s)
- Brett A Simms
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
47
|
Zhan M, Chen G, Pan CM, Gu ZH, Zhao SX, Liu W, Wang HN, Ye XP, Xie HJ, Yu SS, Liang J, Gao GQ, Yuan GY, Zhang XM, Zuo CL, Su B, Huang W, Ning G, Chen SJ, Chen JL, Song HD. Genome-wide association study identifies a novel susceptibility gene for serum TSH levels in Chinese populations. Hum Mol Genet 2014; 23:5505-17. [PMID: 24852370 DOI: 10.1093/hmg/ddu250] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thyroid-stimulating hormone (TSH) is a sensitive indicator of thyroid function. High and low TSH levels reflect hypothyroidism and hyperthyroidism, respectively. Even within the normal range, small differences in TSH levels, on the order of 0.5-1.0 mU/l, are associated with significant differences in blood pressure, BMI, dyslipidemia, risk of atrial fibrillation and atherosclerosis. Most of the variance in TSH levels is thought to be genetically influenced. We conducted a genome-wide association study of TSH levels in 1346 Chinese Han individuals. In the replication study, we genotyped four candidate SNPs with the top association signals in an independent isolated Chinese She cohort (n = 3235). We identified a novel serum TSH susceptibility locus within XKR4 at 8q12.1 (rs2622590, Pcombined = 2.21 × 10(-10)), and we confirmed two previously reported TSH susceptibility loci near FOXE1 at 9q22.33 and near CAPZB at 1p36.13, respectively. The rs2622590_T allele at XKR4 and the rs925489_C allele near FOXE1 were correlated with low TSH levels and were found to be nominally associated to patients with papillary thyroid carcinoma (PTC) (OR = 1.41, P= 0.014 for rs2622590_T, and OR = 1.61, P= 0.030 for rs925489_C). The rs2622590 and rs925489 genotypes were also correlated with the expression levels of FOXE1 and XKR4, respectively, in PTC tissues (P = 2.41 × 10(-4) and P= 0.02). Our findings suggest that the SNPs in XKR4 and near FOXE1 are involved in the regulation of TSH levels.
Collapse
Affiliation(s)
- Ming Zhan
- State Key Laboratory of Medical Genomics and Shanghai Institute of Endocrinology and Metabolism, Department of Endocrinology, Ruijin Hospital Affiliated to SJTU School of Medicine, Shanghai 200025, China
| | - Gang Chen
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, China
| | | | - Zhao-Hui Gu
- Shanghai Center for Systems Biomedicine, SJTU, Shanghai 200240, China
| | - Shuang-Xia Zhao
- State Key Laboratory of Medical Genomics and Shanghai Institute of Endocrinology and Metabolism, Department of Endocrinology, Ruijin Hospital Affiliated to SJTU School of Medicine, Shanghai 200025, China
| | - Wei Liu
- State Key Laboratory of Medical Genomics and Shanghai Institute of Endocrinology and Metabolism, Department of Endocrinology, Ruijin Hospital Affiliated to SJTU School of Medicine, Shanghai 200025, China
| | | | | | - Hui-Jun Xie
- State Key Laboratory of Medical Genomics and
| | - Sha-Sha Yu
- State Key Laboratory of Medical Genomics and Shanghai Institute of Endocrinology and Metabolism, Department of Endocrinology, Ruijin Hospital Affiliated to SJTU School of Medicine, Shanghai 200025, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province 221109, China
| | - Guan-Qi Gao
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong Province 276003, China
| | - Guo-Yue Yuan
- Department of Endocrinology, The Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province 213001, China
| | - Xiao-Mei Zhang
- Department of Endocrinology, The First Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui Province 233004, China
| | - Chun-Lin Zuo
- Department of Endocrinology, The First Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Bin Su
- Department of Endocrinology, The Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai 201303, China
| | - Guang Ning
- State Key Laboratory of Medical Genomics and Shanghai Institute of Endocrinology and Metabolism, Department of Endocrinology, Ruijin Hospital Affiliated to SJTU School of Medicine, Shanghai 200025, China
| | | | - Jia-Lun Chen
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrinology, Ruijin Hospital Affiliated to SJTU School of Medicine, Shanghai 200025, China
| | - Huai-Dong Song
- State Key Laboratory of Medical Genomics and Shanghai Institute of Endocrinology and Metabolism, Department of Endocrinology, Ruijin Hospital Affiliated to SJTU School of Medicine, Shanghai 200025, China
| | | |
Collapse
|
48
|
Paschoud S, Jond L, Guerrera D, Citi S. PLEKHA7 modulates epithelial tight junction barrier function. Tissue Barriers 2014; 2:e28755. [PMID: 24843844 PMCID: PMC4022608 DOI: 10.4161/tisb.28755] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 12/13/2022] Open
Abstract
PLEKHA7 is a recently identified protein of the epithelial zonula adhaerens (ZA), and is part of a protein complex that stabilizes the ZA, by linking it to microtubules. Since the ZA is important in the assembly and disassembly of tight junctions (TJ), we asked whether PLEKHA7 is involved in modulating epithelial TJ barrier function. We generated clonal MDCK cell lines in which one of four different constructs of PLEKHA7 was inducibly expressed. All constructs were localized at junctions, but constructs lacking the C-terminal region were also distributed diffusely in the cytoplasm. Inducible expression of PLEKHA7 constructs did not affect the expression and localization of TJ proteins, the steady-state value of transepithelial resistance (TER), the development of TER during the calcium switch, and the flux of large molecules across confluent monolayers. In contrast, expression of three out of four constructs resulted both in enhanced recruitment of E-cadherin and associated proteins at the apical ZA and at lateral puncta adherentia (PA), a decreased TER at 18 h after assembly at normal calcium, and an attenuation in the fall in TER after extracellular calcium removal. This latter effect was inhibited when cells were treated with nocodazole. Immunoprecipitation analysis showed that PLEKHA7 forms a complex with the cytoplasmic TJ proteins ZO-1 and cingulin, and this association does not depend on the integrity of microtubules. These results suggest that PLEKHA7 modulates the dynamics of assembly and disassembly of the TJ barrier, through E-cadherin protein complex- and microtubule-dependent mechanisms.
Collapse
Affiliation(s)
- Serge Paschoud
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| | - Lionel Jond
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| | - Diego Guerrera
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| | - Sandra Citi
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| |
Collapse
|
49
|
de Las Fuentes L, Sung YJ, Schwander KL, Kalathiveetil S, Hunt SC, Arnett DK, Rao DC. The role of SNP-loop diuretic interactions in hypertension across ethnic groups in HyperGEN. Front Genet 2013; 4:304. [PMID: 24400021 PMCID: PMC3872290 DOI: 10.3389/fgene.2013.00304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/10/2013] [Indexed: 01/11/2023] Open
Abstract
Blood pressure (BP) is significantly influenced by genetic factors; however, less than 3% of the BP variance has been accounted for by variants identified from genome-wide association studies (GWAS) of primarily European-descent cohorts. Other genetic influences, including gene-environment (GxE) interactions, may explain more of the unexplained variance in BP. African Americans (AA) have a higher prevalence and earlier age of onset of hypertension (HTN) as compared with European Americans (EA); responses to anti-hypertensive drugs vary across race groups. To examine potential interactions between the use of loop diuretics and HTN traits, we analyzed systolic (SBP) and diastolic (DBP) blood BP from 1222 AA and 1231 EA participants in the Hypertension Genetic Epidemiology Network (HyperGEN). Population-specific score tests were used to test associations of SBP and DBP, using a panel of genotyped and imputed single nucleotide polymorphisms (SNPs) for AA (2.9 million SNPs) and EA (2.3 million SNPs). Several promising loci were identified through gene-loop diuretic interactions, although no SNP reached genome-wide significance after adjustment for genomic inflation. In AA, SNPs in or near the genes NUDT12, CHL1, GRIA1, CACNB2, and PYHIN1 were identified for SBP, and SNPs near ID3 were identified for DBP. For EA, promising SNPs for SBP were identified in ESR1 and for DBP in SPATS2L and EYA2. Among these SNPs, none were common across phenotypes or population groups. Biologic plausibility exists for many of the identified genes, suggesting that these are candidate genes for regulation of BP and/or anti-hypertensive drug response. The lack of genome-wide significance is understandable in this small study employing gene-drug interactions. These findings provide a set of prioritized SNPs/candidate genes for future studies in HTN. Studies in more diversified population samples may help identify previously missed variants.
Collapse
Affiliation(s)
- Lisa de Las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of MedicineSt. Louis, MO, USA
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| | - Karen L. Schwander
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| | - Sonia Kalathiveetil
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| | - Steven C. Hunt
- Division of Cardiovascular Genetics, Department of Internal Medicine, University of Utah School of MedicineSalt Lake City, UT, USA
| | - Donna K. Arnett
- Department of Epidemiology, University of Alabama at BirminghamBirmingham, AL, USA
| | - D. C. Rao
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| |
Collapse
|
50
|
Huang GB, Yao LT, Hou JX, Zhang ZJ, Xin YT, Wu XY, Lu GY, Chen ZQ, Huang JP. Epidemiology of migraine in the She ethnic minority group in Fujian province, China. Neurol Res 2013; 35:684-92. [PMID: 23561247 DOI: 10.1179/1743132813y.0000000192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Jun-xia Hou
- Hospital of Ningde CityFuzhou, Fujian, China
| | - Zhi-jian Zhang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | | | | | - Guo-yun Lu
- Hospital of Ningde CityFuzhou, Fujian, China
| | | | | |
Collapse
|