1
|
Luévano-Martínez LA, Méndez-Fernández A, Rueda-Munguía M, Bonilla-Ruelas D, Brunck MEG, García-Rivas G. Glycerol metabolism is activated in both palmitic acid-stimulated and adipose tissue macrophages from a murine model of cardiometabolic heart failure. J Physiol 2025. [PMID: 39977539 DOI: 10.1113/jp287791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Macrophages chronically exposed to saturated fatty acids, such as those encountered in adipose tissue, present a pro-inflammatory phenotype with a characteristic foamy morphology. This feature is caused by the excess uptake of circulating lipids, yielding large cytoplasmic lipid bodies formed by triacylglycerols and cholesteryl derivatives. Palmitic acid (PA) is a potent inflammatory inducer in macrophages after chronic exposure to this fatty acid. However, acute exposure to this fatty acid is unable to activate a pro-inflammatory phenotype, although it is sufficient to induce metabolic reprogramming including the formation of small lipid bodies. In the present study, we used an in vitro model of human monocyte-derived macrophages to unravel the early stages of metabolic reprogramming observed in macrophages exposed to PA. We observed that partial inhibition of the glycerol 3-phosphate shuttle is necessary for supplying glycerol 3-phosphate for triacylglycerol biosynthesis. Furthermore, we characterized an alternative pathway to increase the concentration of glycerol 3-phosphate involving an aquaporin and glycerol kinase. Our results suggested that early lipid bodies biogenesis rises as a response mechanism to buffer excessive PA without inducing a pro-inflammatory program. Additionally, we observed that macrophages chronically exposed to PA eventually upregulate the production of inflammatory cytokines. Finally, our in vitro observations were confirmed in adipose tissue macrophages derived from a preclinical mouse model of cardiometabolic heart failure with preserved ejection fraction characterized by heightened adiposity and inflammation. KEY POINTS: The glycerol 3-phosphate shuttle is partially inhibited in palmitic acid-activated macrophages. Aquaporin 3 expression is upregulated in macrophages exposed to palmitic acid and in adipose tissue macrophages from a murine model of cardiometabolic heart failure. Aquaporin 3 participates in the biosynthesis of triacylglycerols by supplying extracellular glycerol.
Collapse
Affiliation(s)
- Luis Alberto Luévano-Martínez
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, Nuevo León, México
- The Institute for Obesity Research, Tecnologico de Monterrey, Tecnologico, Monterrey, Nuevo León, Mexico
| | - Abraham Méndez-Fernández
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, Nuevo León, México
| | - Mayte Rueda-Munguía
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, Nuevo León, México
| | - Diana Bonilla-Ruelas
- The Institute for Obesity Research, Tecnologico de Monterrey, Tecnologico, Monterrey, Nuevo León, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Nuevo León, Mexico
| | - Marion E G Brunck
- The Institute for Obesity Research, Tecnologico de Monterrey, Tecnologico, Monterrey, Nuevo León, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Nuevo León, Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, Nuevo León, México
- The Institute for Obesity Research, Tecnologico de Monterrey, Tecnologico, Monterrey, Nuevo León, Mexico
| |
Collapse
|
2
|
Kirchhoff R, Kampschulte N, Rothweiler C, Rohwer N, Weylandt K, Schebb NH. An Optimized Ex Vivo n-3 PUFA Supplementation Strategy for Primary Human Macrophages Shows That DHA Suppresses Prostaglandin E2 Formation. Mol Nutr Food Res 2025; 69:e202400716. [PMID: 39676434 PMCID: PMC11704825 DOI: 10.1002/mnfr.202400716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Evidence suggests beneficial effects of long-chain n-3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n-3 PUFA supplementation strategy. M2-like macrophages were supplemented for 2-3 days with 20-40 µM docosahexaenoic acid (DHA) during differentiation. Quality parameters include <3% oxylipins for PUFA-preparation, total fatty acids (FAs) <10 mM, and low oxylipins in plasma, n-3 PUFA <0.25 mM for the selection of donors of plasma as well as %n-6 in highly unsaturated fatty acids (HUFAs) ≥70% for donors of cells. Following supplementation, PUFA pattern of cells was shifted toward one described for blood and tissue from subjects with higher n-3 and lower n-6 PUFAs. This was accompanied by a decrease of arachidonic acid-derived oxylipins in a dose- and time-dependent manner in favor of n-3 PUFA ones. Stimulation with LPS resulted in decreased levels of pro-inflammatory prostaglandins in the DHA-supplemented cells, but no changes in cytokines. In vitro supplementation studies with n-3 PUFA need rigorous controls to exclude the background formation of oxylipins. By accounting for these possible confounders the described approach allows the mechanistic investigation of n-3 PUFAs in primary human immune cells, offering an alternative for intervention studies.
Collapse
Affiliation(s)
- Rebecca Kirchhoff
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| | - Nadja Kampschulte
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| | - Carina Rothweiler
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| | - Nadine Rohwer
- Division of Medicine, Department of Gastroenterology, Metabolism and OncologyUniversity Hospital Ruppin‐Brandenburg, Brandenburg Medical SchoolNeuruppinGermany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of TechnologyBrandenburg Medical School and University of PotsdamPotsdamGermany
- Department of Molecular ToxicologyGerman Institute of Human NutritionPotsdam‐Rehbruecke, NuthetalGermany
| | - Karsten‐Henrich Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and OncologyUniversity Hospital Ruppin‐Brandenburg, Brandenburg Medical SchoolNeuruppinGermany
| | - Nils Helge Schebb
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| |
Collapse
|
3
|
A rat model to investigate quality of recovery after abdominal surgery. Pain Rep 2021; 6:e943. [PMID: 34235345 PMCID: PMC8253582 DOI: 10.1097/pr9.0000000000000943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Major advances in therapies to optimize recovery after surgery have been limited by the lack of an animal model that can mimic major domains of postoperative sickness behavior in humans. We hypothesized that the integration of commonly impaired domains of quality of recovery in humans could be reproduced in a rat model. Objectives To create a rat model that can mimic surgical recovery in humans. Methods Adult male Sprague-Dawley rats were used in the development of a quality of recovery score after surgery. Six physiological parameters or behaviors were tested in naive, sham, and laparotomized animals. A quality of recovery score was constructed and ranged from 18 (no impairment) to 0 (gross impairment). We treated animals with a nutraceutical intervention consisting of aspirin and eicosapentaenoic acid. Inflammatory markers and specialized proresolving mediators were measured in serum and the intestinal mucosa of rats, respectively. Results We observed a significant reduction in quality of recovery scores on postoperative days 1 (median, interquartile: 6 [4.75-8.25] vs naive rats: 17.5 [15.5-18]), 2 (median, interquartile: 13 [11.25-13.25], P < 0.001 vs naive rats: 17 [17-18], P = 0.001), and 3 (median, interquartile: 14.5 [13.5-16] vs naive rats: 17 [15.75-18], P < 0.02). Surgery promoted a significant increase in the concentrations of inflammatory cytokines, but it reduced levels of interleukin-12p70 and macrophage colony-stimulating factor. Lipoxin B4 and 13-HODE were significantly higher in laparotomized rats. Aspirin + eicosapentaenoic acid substantially improved recovery scores and modulated the postsurgical inflammatory response. Conclusion Our novel rat model can be used to study mechanisms governing surgical recovery in rats.
Collapse
|
4
|
Jalili M, Hekmatdoost A. Dietary ω-3 fatty acids and their influence on inflammation via Toll-like receptor pathways. Nutrition 2020; 85:111070. [PMID: 33545546 DOI: 10.1016/j.nut.2020.111070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
Dietary intake of long-chain, highly unsaturated ω-3 fatty acids (FAs) is considered indispensable for humans. The ω-3 FAs have been known to be anti-inflammatory and immunomodulatory dietary factors; however, the modes of action on pathogen recognition receptors (PRRs) and downstream signaling pathways have not been fully elucidated. Dietary sources contain various amounts of ω-3 long-chain fatty acids (LCFAs) of different lengths and the association between intake of these polyunsaturated fatty acids (PUFAs) with underlying mechanisms of various immune-related disorders can be of great interest. The potential anti-inflammatory role for ω-3 LCFAs can be explained by modification of lipid rafts, modulation of inflammatory mediators such as cytokines and PRRs. Toll-like receptors (TLRs) are a group of PRRs that play an important role in the recognition of bacterial infections and ω-3 FAs have been implicated in the modulation of downstream signaling of TLR-4, an important receptor for recognition of gram-negative bacteria. The ω-3 FAs docosahexaenoic acid and eicosapentaenoic acid have been investigated in vivo and in vitro for their effects on the nuclear factor-κB activation pathway. Identification of the effects of ω-3 FAs on other key molecular factors like prostaglandins and leukotrienes and their signals may help the recognition and development of medicines to suppress the main mediators and turn on the expression of anti-inflammatory cytokines and nuclear receptors.
Collapse
Affiliation(s)
- Mahsa Jalili
- Cell, Molecular Biology Group, Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Azita Hekmatdoost
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, National Nutrition and Food Technology Research Institute, Tehran, Iran
| |
Collapse
|
5
|
Boldarine VT, Pedroso AP, Brandão-Teles C, LoTurco EG, Nascimento CMO, Oyama LM, Bueno AA, Martins-de-Souza D, Ribeiro EB. Ovariectomy modifies lipid metabolism of retroperitoneal white fat in rats: a proteomic approach. Am J Physiol Endocrinol Metab 2020; 319:E427-E437. [PMID: 32663100 DOI: 10.1152/ajpendo.00094.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Menopause is often accompanied by visceral obesity. With the aim of exploring the consequences of ovarian failure on visceral fat, we evaluated the effects of ovariectomy and estrogen replacement on the proteome/phosphoproteome and on the fatty acid profile of the retroperitoneal adipose depot (RAT) of rats. Eighteen 3-mo-old female Wistar rats were either ovariectomized or sham operated and fed with standard chow for 3 mo. A subgroup of ovariectomized rats received estradiol replacement. RAT samples were analyzed with data-independent acquisitions LC-MS/MS, and pathway analysis was performed with the differentially expressed/phosphorylated proteins. RAT lipid profile was analyzed by gas chromatography. Ovariectomy induced high adiposity and insulin resistance and promoted alterations in protein expression and phosphorylation. Pathway analysis showed that five pathways were significantly affected by ovariectomy, namely, metabolism of lipids (including fatty acid metabolism and mitochondrial fatty acid β-oxidation), fatty acyl-CoA biosynthesis, innate immune system (including neutrophil degranulation), metabolism of vitamins and cofactors, and integration of energy metabolism (including ChREBP activates metabolic gene expression). Lipid profile analysis showed increased palmitic and palmitoleic acid content. The analysis of the data indicated that ovariectomy favored lipogenesis whereas it impaired fatty acid oxidation and induced a proinflammatory state in the visceral adipose tissue. These effects are consistent with the findings of high adiposity, hyperleptinemia, and impaired insulin sensitivity. The observed alterations were partially attenuated by estradiol replacement. The data point to a role of disrupted lipid metabolism in adipose tissue in the genesis of obesity after menopause.
Collapse
Affiliation(s)
- Valter T Boldarine
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda P Pedroso
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson G LoTurco
- Divisão de Urologia e Reprodução Humana, Departamento de Cirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cláudia M O Nascimento
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lila M Oyama
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Allain A Bueno
- Department of Biological Sciences, College of Health, Life and Environmental Sciences, University of Worcester, Worcester, United Kingdom
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Eliane B Ribeiro
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Bitsi S. The chemokine CXCL16 can rescue the defects in insulin signaling and sensitivity caused by palmitate in C2C12 myotubes. Cytokine 2020; 133:155154. [PMID: 32535333 DOI: 10.1016/j.cyto.2020.155154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
In obesity, macrophages infiltrate peripheral tissues and secrete pro-inflammatory cytokines that impact local insulin sensitivity. Lipopolysaccharide (LPS) and the saturated fatty acid (FA) palmitate polarise macrophages towards a pro-inflammatory phenotype in vitro and indirectly cause insulin resistance (IR) in myotubes. In contrast, unsaturated FAs confer an anti-inflammatory phenotype and counteract the actions of palmitate. To explore paracrine mechanisms of interest, J774 macrophages were exposed to palmitate ± palmitoleate or control medium and the conditioned media generated were screened using a cytokine array. Of the 62 cytokines examined, 8 were significantly differentially expressed following FA treatments. Notably, CXCL16 secretion was downregulated by palmitate. In follow-up experiments using ELISAs, this downregulation was confirmed and reversed by simultaneous addition of palmitoleate or oleate, while LPS also diminished CXCL16 secretion. To dissect potential effects of CXCL16, C2C12 myotubes were treated with palmitate to induce IR, recombinant soluble CXCL16 (sCXCL16), combined treatment, or control medium. Palmitate caused the expected reduction of insulin-stimulated Akt activation and glycogen synthesis, whereas simultaneous treatment with sCXCL16 attenuated these effects. These data indicate a putative role for CXCL16 in preservation of Akt activation and insulin signaling in the context of chronic low-grade inflammation in skeletal muscle.
Collapse
Affiliation(s)
- Stavroula Bitsi
- Comparative Biomedical Sciences Department, Royal Veterinary College, London NW1 0TU, United Kingdom.
| |
Collapse
|
7
|
Modulation of Fatty Acid-Related Genes in the Response of H9c2 Cardiac Cells to Palmitate and n-3 Polyunsaturated Fatty Acids. Cells 2020; 9:cells9030537. [PMID: 32110930 PMCID: PMC7140414 DOI: 10.3390/cells9030537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
While high levels of saturated fatty acids are associated with impairment of cardiovascular functions, n-3 polyunsaturated fatty acids (PUFAs) have been shown to exert protective effects. However the molecular mechanisms underlying this evidence are not completely understood. In the present study we have used rat H9c2 ventricular cardiomyoblasts as a cellular model of lipotoxicity to highlight the effects of palmitate, a saturated fatty acid, on genetic and epigenetic modulation of fatty acid metabolism and fate, and the ability of PUFAs, eicosapentaenoic acid, and docosahexaenoic acid, to contrast the actions that may contribute to cardiac dysfunction and remodeling. Treatment with a high dose of palmitate provoked mitochondrial depolarization, apoptosis, and hypertrophy of cardiomyoblasts. Palmitate also enhanced the mRNA levels of sterol regulatory element-binding proteins (SREBPs), a family of master transcription factors for lipogenesis, and it favored the expression of genes encoding key enzymes that metabolically activate palmitate and commit it to biosynthetic pathways. Moreover, miR-33a, a highly conserved microRNA embedded in an intronic sequence of the SREBP2 gene, was co-expressed with the SREBP2 messenger, while its target carnitine palmitoyltransferase-1b was down-regulated. Manipulation of the levels of miR-33a and SREBPs allowed us to understand their involvement in cell death and hypertrophy. The simultaneous addition of PUFAs prevented the effects of palmitate and protected H9c2 cells. These results may have implications for the control of cardiac metabolism and dysfunction, particularly in relation to dietary habits and the quality of fatty acid intake.
Collapse
|
8
|
Garić D, De Sanctis JB, Dumut DC, Shah J, Peña MJ, Youssef M, Petrof BJ, Kopriva F, Hanrahan JW, Hajduch M, Radzioch D. Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158538. [PMID: 31678518 DOI: 10.1016/j.bbalip.2019.158538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common genetic disease in Caucasians. CF is manifested by abnormal accumulation of mucus in the lungs, which serves as fertile ground for the growth of microorganisms leading to recurrent infections and ultimately, lung failure. Mucus in CF patients consists of DNA from dead neutrophils as well as mucins produced by goblet cells. MUC5AC mucin leads to pathological plugging of the airways whereas MUC5B has a protective role against bacterial infection. Therefore, decreasing the level of MUC5AC while maintaining MUC5B intact would in principle be a desirable mucoregulatory treatment outcome. Fenretinide prevented the lipopolysaccharide-induced increase of MUC5AC gene expression, without affecting the level of MUC5B, in a lung goblet cell line. Additionally, fenretinide treatment reversed the pro-inflammatory imbalance of fatty acids by increasing docosahexaenoic acid and decreasing the levels of arachidonic acid in a lung epithelial cell line and primary leukocytes derived from CF patients. Furthermore, for the first time we also demonstrate the effect of fenretinide on multiple unsaturated fatty acids, as well as differential effects on the levels of long- compared to very-long-chain saturated fatty acids which are important substrates of complex phospholipids. Finally, we demonstrate that pre-treating mice with fenretinide in a chronic model of P. aeruginosa lung infection efficiently decreases the accumulation of mucus. These findings suggest that fenretinide may offer a new approach to therapeutic modulation of pathological mucus production in CF.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Johanna Peña
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Francisek Kopriva
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - John W Hanrahan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Roelands J, Garand M, Hinchcliff E, Ma Y, Shah P, Toufiq M, Alfaki M, Hendrickx W, Boughorbel S, Rinchai D, Jazaeri A, Bedognetti D, Chaussabel D. Long-Chain Acyl-CoA Synthetase 1 Role in Sepsis and Immunity: Perspectives From a Parallel Review of Public Transcriptome Datasets and of the Literature. Front Immunol 2019; 10:2410. [PMID: 31681299 PMCID: PMC6813721 DOI: 10.3389/fimmu.2019.02410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
A potential role for the long-chain acyl-CoA synthetase family member 1 (ACSL1) in the immunobiology of sepsis was explored during a hands-on training workshop. Participants first assessed the robustness of the potential gap in biomedical knowledge identified via an initial screen of public transcriptome data and of the literature associated with ACSL1. Increase in ACSL1 transcript abundance during sepsis was confirmed in several independent datasets. Querying the ACSL1 literature also confirmed the absence of reports associating ACSL1 with sepsis. Inferences drawn from both the literature (via indirect associations) and public transcriptome data (via correlation) point to the likely participation of ACSL1 and ACSL4, another family member, in inflammasome activation in neutrophils during sepsis. Furthermore, available clinical data indicate that levels of ACSL1 and ACSL4 induction was significantly higher in fatal cases of sepsis. This denotes potential translational relevance and is consistent with involvement in pathways driving potentially deleterious systemic inflammation. Finally, while ACSL1 expression was induced in blood in vitro by a wide range of pathogen-derived factors as well as TNF, induction of ACSL4 appeared restricted to flagellated bacteria and pathogen-derived TLR5 agonists and IFNG. Taken together, this joint review of public literature and omics data records points to two members of the acyl-CoA synthetase family potentially playing a role in inflammasome activation in neutrophils. Translational relevance of these observations in the context of sepsis and other inflammatory conditions remain to be investigated.
Collapse
Affiliation(s)
- Jessica Roelands
- Sidra Medicine, Doha, Qatar.,Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | - Emily Hinchcliff
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ying Ma
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Parin Shah
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | | | | | - Amir Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | |
Collapse
|
10
|
Nakanishi S, Hirukawa H, Shimoda M, Tatsumi F, Kohara K, Obata A, Okauchi S, Kinoshita T, Sanada J, Fushimi Y, Nishioka M, Kan Y, Tomita A, Mashiko A, Horiya M, Iwamoto Y, Mune T, Kaku K, Kaneto H. Eicosapentaenoic acid/arachidonic acid ratio and weight loss during hospitalization for glycemic control among overweight Japanese patients with type 2 diabetes: a retrospective observational study. Lipids Health Dis 2019; 18:36. [PMID: 30704490 PMCID: PMC6357375 DOI: 10.1186/s12944-019-0983-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/23/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The study aimed to examine the relationship between levels of serum eicosapentaenoic acid (EPA), arachidonic acid (AA), as well as EPA/AA ratio and weight loss during hospitalization in participants considered to be overweight, with type 2 diabetes. METHODS The study participants included 142 patients who were hospitalized for treatment of type 2 diabetes. We divided the participants into two groups depending on the achievenemt in reduction of bodyweight 3% or more during hospitalization and examined the relationship between serum levels of EPA and AA, as well as ratio of EPA/AA on admission and effectiveness of weight loss under strict dietary therapy during hospitalization, using Cox proportional hazard models. RESULTS After adjustment was made for several confounders, the hazard ratio of effective weight loss for logarithmical serum EPA was 1.59 (95% CI 1.02-2.49, P = 0.04) and for logarithmical EPA/AA ratio 1.64 (1.03-2.61, P = 0.04), whereas the hazard ratio for effective weight loss for logarithmical serum AA was 1.11 (0.45-2.78, P = 0.82). In addition, after dividing EPA/AA ratio and serum EPA into quartiles based on participant number, the hazard ratio for the highest quartile of EPA/AA ratio was 2.33 (1.14-4.77, P = 0.02), and for the highest quartile of serum EPA 1.60 (0.80-3.19, P = 0.18) compared with the lowest quartile. CONCLUSION These results suggest the possibility that EPA is involved in bodyweight change under a caloric-restriction regimen. In addition, EPA/AA ratio was found to be a better predictor of medical intervention for weight loss among overweight patients with type 2 diabetes, compared with serum EPA level.
Collapse
Affiliation(s)
- Shuhei Nakanishi
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Hidenori Hirukawa
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Masashi Shimoda
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Fuminori Tatsumi
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Kenji Kohara
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Atsushi Obata
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Seizo Okauchi
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Tomoe Kinoshita
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Junpei Sanada
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yoshiro Fushimi
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Momoyo Nishioka
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yuki Kan
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Akiko Tomita
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Akiko Mashiko
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Megumi Horiya
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yuichiro Iwamoto
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Tomoatsu Mune
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Kohei Kaku
- Department of Internal Medicine, Kawasaki Medical School, Okayama, Japan
| | - Hideaki Kaneto
- Division of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
11
|
Yamada H, Umemoto T, Kakei M, Momomura SI, Kawakami M, Ishikawa SE, Hara K. Eicosapentaenoic acid shows anti-inflammatory effect via GPR120 in 3T3-L1 adipocytes and attenuates adipose tissue inflammation in diet-induced obese mice. Nutr Metab (Lond) 2017; 14:33. [PMID: 28503189 PMCID: PMC5422876 DOI: 10.1186/s12986-017-0188-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saturated fatty acids have been shown to cause insulin resistance and low-grade chronic inflammation, whereas unsaturated fatty acids suppress inflammation via G-protein coupled receptor 120 (GPR120) in macrophages. However, the anti-inflammatory effects of unsaturated fatty acids in adipocytes have yet to be elucidated. Hence, the aims of the present study were to evaluate the anti-inflammatory effects of eicosapentaenoic acid (EPA) via GPR120 in adipocytes. METHODS We used 250 μM palmitate as a representative saturated fatty acid. 3T3-L1 adipocytes were used for in vitro studies. We further evaluated the effect of EPA supplementation in a high-fat/high-sucrose (HFHS) diet-induced adipose tissue inflammatory mouse model. RESULTS EPA attenuated palmitate-induced increases in inflammatory gene expression and NF-κB phosphorylation in 3T3-L1 adipocytes. Silencing of GPR120 abolished the anti-inflammatory effects of EPA. In GPR120 downstream signal analysis, EPA was found to decrease palmitate-induced increases in TAK1/TAB1 complex expression. EPA supplementation suppressed HFHS-induced crown-like structure formation in epididymal adipose tissue and altered macrophage phenotypes from M1 to M2 in the stromal vascular fraction. Moreover, the EPA-containing diet attenuated increases in adipose p-JNK and phospho-p65 NF-κB levels. CONCLUSIONS In conclusion, the findings of the present study demonstrate that EPA suppresses palmitate-induced inflammation via GPR120 by inhibiting the TAK1/TAB1 interaction in adipocytes. EPA supplementation reduced HFHS diet-induced inflammatory changes in mouse adipose tissues. These results demonstrate adipose GPR120 as a potential therapeutic target for decreasing inflammation.
Collapse
Affiliation(s)
- Hodaka Yamada
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya, Saitama 330-8503 Japan
| | - Tomio Umemoto
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya, Saitama 330-8503 Japan
| | - Masafumi Kakei
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya, Saitama 330-8503 Japan
| | - Shin-Ichi Momomura
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya, Saitama 330-8503 Japan
| | - Masanobu Kawakami
- Internal Medicine, Nerima Hikarigaoka Hospital, 2-11-1 Hikarigaoka, Nerima, Tokyo, 179-0072 Japan
| | - San-E Ishikawa
- Division of Endocrinology and Metabolism, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasushiobara, Tochigi 329-2763 Japan
| | - Kazuo Hara
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya, Saitama 330-8503 Japan
| |
Collapse
|
12
|
Sakamoto A, Saotome M, Hasan P, Satoh T, Ohtani H, Urushida T, Katoh H, Satoh H, Hayashi H. Eicosapentaenoic acid ameliorates palmitate-induced lipotoxicity via the AMP kinase/dynamin-related protein-1 signaling pathway in differentiated H9c2 myocytes. Exp Cell Res 2017; 351:109-120. [PMID: 28088331 DOI: 10.1016/j.yexcr.2017.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Emerging evidence suggested the preferable effects of eicosapentaenoic acid (EPA; n-3 polyunsaturated fatty acid) against cardiac lipotoxicity, which worsens cardiac function by means of excessive serum free fatty acids due to chronic adrenergic stimulation under heart failure. Nonetheless, the precise molecular mechanisms remain elusive. In this study, we focused on dynamin-related protein-1 (Drp1) as a possible modulator of the EPA-mediated cardiac protection against cardiac lipotoxicity, and investigated the causal relation between AMP-activated protein kinase (AMPK) and Drp1. METHODS AND RESULTS When differentiated H9c2 myocytes were exposed to palmitate (PAL; saturated fatty acid, 400µM) for 24h, these myocytes showed activation of caspases 3 and 7, enhanced caspase 3 cleavage, depolarized mitochondrial membrane potential, depleted intracellular ATP, and enhanced production of intracellular reactive oxygen species. These changes suggested lipotoxicity due to excessive PAL. PAL enhanced mitochondrial fragmentation with increased Drp1 expression, as well. EPA (50µM) restored the PAL-induced apoptosis, mitochondrial dysfunction, and mitochondrial fragmentation with increased Drp1 expression by PAL. EPA activated phosphorylation of AMPK, and pharmacological activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleotide ameliorated the PAL-induced apoptosis, mitochondrial dysfunction, and downregulated Drp1. An AMPK knockdown via RNA interference enhanced Drp1 expression and attenuated the protective effects of EPA against the PAL-induced lipotoxicity. CONCLUSION EPA ameliorates the PAL-induced lipotoxicity via AMPK activation, which subsequently suppresses mitochondrial fragmentation and Drp1 expression. Our findings may provide new insights into the molecular mechanisms of EPA-mediated myocardial protection in heart failure.
Collapse
Affiliation(s)
- Atsushi Sakamoto
- Division of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Masao Saotome
- Division of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Prottoy Hasan
- Division of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Terumori Satoh
- Division of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hayato Ohtani
- Division of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Tsuyoshi Urushida
- Division of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hideki Katoh
- Division of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hiroshi Satoh
- Division of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hideharu Hayashi
- Division of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
13
|
Takashima A, Fukuda D, Tanaka K, Higashikuni Y, Hirata Y, Nishimoto S, Yagi S, Yamada H, Soeki T, Wakatsuki T, Taketani Y, Shimabukuro M, Sata M. Combination of n-3 polyunsaturated fatty acids reduces atherogenesis in apolipoprotein E-deficient mice by inhibiting macrophage activation. Atherosclerosis 2016; 254:142-150. [DOI: 10.1016/j.atherosclerosis.2016.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 11/28/2022]
|
14
|
Zhao ZD, Zan LS, Li AN, Cheng G, Li SJ, Zhang YR, Wang XY, Zhang YY. Characterization of the promoter region of the bovine long-chain acyl-CoA synthetase 1 gene: Roles of E2F1, Sp1, KLF15, and E2F4. Sci Rep 2016; 6:19661. [PMID: 26782942 PMCID: PMC4726046 DOI: 10.1038/srep19661] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/16/2015] [Indexed: 01/27/2023] Open
Abstract
The nutritional value and eating qualities of beef are enhanced when the unsaturated fatty acid content of fat is increased. Long-chain acyl-CoA synthetase 1 (ACSL1) plays key roles in fatty acid transport and degradation, as well as lipid synthesis. It has been identified as a plausible functional and positional candidate gene for manipulations of fatty acid composition in bovine skeletal muscle. In the present study, we determined that bovine ACSL1was highly expressed in subcutaneous adipose tissue and longissimus thoracis. To elucidate the molecular mechanisms involved in bovine ACSL1 regulation, we cloned and characterized the promoter region of ACSL1. Applying 5′-rapid amplification of cDNA end analysis (RACE), we identified multiple transcriptional start sites (TSSs) in its promoter region. Using a series of 5′ deletion promoter plasmids in luciferase reporter assays, we found that the proximal minimal promoter of ACSL1 was located within the region −325/−141 relative to the TSS and it was also located in the predicted CpG island. Mutational analysis and electrophoretic mobility shift assays demonstrated that E2F1, Sp1, KLF15 and E2F4 binding to the promoter region drives ACSL1 transcription. Together these interactions integrate and frame a key functional role for ACSL1 in mediating the lipid composition of beef.
Collapse
Affiliation(s)
- Zhi-Dong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - An-Ning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Shi-Jun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Ya-Ran Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Xiao-Yu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Ying-Ying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| |
Collapse
|
15
|
Nakanishi S, Nagano C, Miyahara M, Sawano F. Sex Differences in the Association between the Eicosapentaenoic Acid/Arachidonic Acid Ratio and the Visceral Fat Area among Patients with Type 2 Diabetes. Intern Med 2016; 55:1269-74. [PMID: 27181531 DOI: 10.2169/internalmedicine.55.5624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective To examine the serum levels of eicosapentaenoic acid (EPA) and the ratios of docosahexaenoic acid (DHA), and the EPA/arachidonic acid (AA) and DHA/AA and to clarify their association with the areas of subcutaneous and visceral fat separately by sex among patients with type 2 diabetes. Methods The study participants included 118 men and 96 women who were hospitalized to receive treatment for type 2 diabetes. We examined the serum levels of EPA and DHA and the ratios of EPA/AA and DHA/AA, and analyzed their association with the total fat area (TFA), subcutaneous fat area (SFA), and visceral fat area (VFA), as measured by computed tomography. Results The mean age of the study participants was 62.6±13.6 years. The mean HbA1c level was 9.37±2.27%. Among men, a multivariate regression analysis adjusted for age and BMI, revealed a significant negative association between VFA and the EPA/AA ratio. When the multivariate regression analysis was adjusted for age, BMI, and HbA1c level, VFA was still found to be significantly negatively associated with the EPA/AA ratio. Although a crude analysis revealed a significant negative association between SFA and the EPA/AA ratio in women, no association was observed in multivariate regression analyses. Conclusion These results suggest the possibility that EPA inhibits the accumulation of visceral fat in men. Furthermore, there appear to be marked differences in the relationships between EPA and DHA and visceral fat accumulation.
Collapse
Affiliation(s)
- Shuhei Nakanishi
- Endocrinology and Metabolism, Department of Internal Medicine, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Japan
| | | | | | | |
Collapse
|
16
|
Chan KL, Pillon NJ, Sivaloganathan DM, Costford SR, Liu Z, Théret M, Chazaud B, Klip A. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK). J Biol Chem 2015; 290:16979-88. [PMID: 25987561 DOI: 10.1074/jbc.m115.646992] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 12/16/2022] Open
Abstract
A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues.
Collapse
Affiliation(s)
- Kenny L Chan
- From the Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada, the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| | - Nicolas J Pillon
- From the Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | | | - Sheila R Costford
- From the Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Zhi Liu
- From the Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Marine Théret
- the Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Benedicte Chazaud
- the Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Amira Klip
- From the Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada, the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| |
Collapse
|
17
|
Sekhon-Loodu S, Rupasinghe HPV. Docosahexaenoic acid ester of phloridzin inhibit lipopolysaccharide-induced inflammation in THP-1 differentiated macrophages. Int Immunopharmacol 2015; 25:199-206. [PMID: 25637769 DOI: 10.1016/j.intimp.2015.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/22/2014] [Accepted: 01/21/2015] [Indexed: 01/14/2023]
Abstract
Phloridzin or phlorizin (PZ) is a predominant phenolic compound found in apple and also used in various natural health products. Phloridzin shows poor absorption and cellular uptake due to its hydrophilic nature. The aim was to investigate and compare the effect of docosahexaenoic acid (DHA) ester of PZ (PZ-DHA) and its parent compounds (phloridzin and DHA), phloretin (the aglycone of PZ) and cyclooxygenase inhibitory drugs (diclofenac and nimesulide) on production of pro-inflammatory biomarkers in inflammation-induced macrophages by lipopolysaccharide (LPS)-stimulation. Human THP-1 monocytes were seeded in 24-well plates (5×10(5)/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1μg/mL) for 48h to induce macrophage differentiation. After 48h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4h, followed by the LPS-stimulation (18h). Pre-exposure of PZ-DHA ester was more effective in reducing tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) protein levels compared to DHA and nimesulide. However, diclofenac was the most effective in reducing prostaglandin (PGE2) level by depicting a dose-dependent response. However, PZ-DHA ester and DHA were the most effective in inhibiting the activation of nuclear factor-kappa B (NF-κB) among other test compounds. Our results suggest that PZ-DHA ester might possess potential therapeutic activity to treat inflammation related disorders such as type 2 diabetes, asthma, atherosclerosis and inflammatory bowel disease.
Collapse
Affiliation(s)
- Satvir Sekhon-Loodu
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS, Canada B2N 5E3
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS, Canada B2N 5E3; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada B34 4R2.
| |
Collapse
|
18
|
Seeßle J, Liebisch G, Schmitz G, Stremmel W, Chamulitrat W. Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:549-65. [PMID: 25603556 DOI: 10.1016/j.bbalip.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/18/2014] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
Abstract
Fatty acid transport protein (FATP) 4 is a minor FATP in the liver but it has some activity towards palmitate 16:0 (Pal). We here chose FATP4 as a representative model enzyme for acyl-CoA synthetases (ACSs), and FATPs to determine whether Pal activation would lead to apoptosis and alteration in lipid metabolism. By using FATP4 overexpressed (FATP4) Huh-7 cells, we showed that FATP4 was localized in the endoplasmic reticulum (ER) and mitochondria of FATP4 cells. FATP4 cells were more responsive to Pal than the control GFP cells in increasing palmitoyl-CoA and oleoyl-CoA activities as well as apoptosis by ~2-3 folds. The lipoapoptosis susceptibility by FATP4 was coupled with the increased JNK, PUMA, caspase3, PARP-1 activation as well as Rac-1-mediated cytoskeletal reorganization, and decreased insulin sensitivity. This was associated with increased contents of neutral lipids and significant alteration in composition of phospholipids and sphingolipids including increased lysophosphatidylcholine (LPC), ceramide, and hexosylceramide, as well as an increase of saturated:polyunsaturated fatty acid ratio in LPC and PC, but a decrease of this ratio in phosphatidylethanolamine pool. By use of ceramide synthase inhibitors, our results showed that FATP4-sensitized lipoapoptosis was not mediated by ceramides. Moreover, FATP4 expression was increased in fatty livers in vivo. Thus, our model system has provided a clue that Pal activation FATP4 triggers hepatocellular apoptosis via altered phospholipid composition and steatosis by acylation into complex lipids. This may be a redundant mechanism for other ER-localizing ACSs and FATPs in the liver, and hence their involvement in the development of fatty liver disease.
Collapse
Affiliation(s)
- Jessica Seeßle
- Department of Internal Medicine IV, Gastroenterology and Infectious Disease, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, Gastroenterology and Infectious Disease, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, Gastroenterology and Infectious Disease, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Ishida T, Naoe S, Nakakuki M, Kawano H, Imada K. Eicosapentaenoic Acid Prevents Saturated Fatty Acid-Induced Vascular Endothelial Dysfunction: Involvement of Long-Chain Acyl-CoA Synthetase. J Atheroscler Thromb 2015; 22:1172-85. [DOI: 10.5551/jat.28167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Takayuki Ishida
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical Co., Ltd.,
| | - Satoko Naoe
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical Co., Ltd.,
| | - Masanori Nakakuki
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical Co., Ltd.,
| | - Hiroyuki Kawano
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical Co., Ltd.,
| | - Kazunori Imada
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical Co., Ltd.,
| |
Collapse
|
20
|
Meale SJ, Romao JM, He ML, Chaves AV, McAllister TA, Guan LL. Effect of diet on microRNA expression in ovine subcutaneous and visceral adipose tissues. J Anim Sci 2014; 92:3328-37. [PMID: 24893997 DOI: 10.2527/jas.2014-7710] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Knowledge of the molecular mechanisms that regulate ovine adipogenesis is very limited. MicroRNAs (miRNA) have been reported as one of the regulatory mechanisms of adipogenesis. This study aimed to compare the expression of miRNA related to ovine adipogenesis in different adipose depots and to investigate whether their expression is affected by dietary fatty acid composition. We also investigated the role of miRNA in adipogenic gene regulation. Subcutaneous and visceral adipose tissue samples were collected at slaughter from 12 Canadian Arcott lambs fed a barley-based finishing diet where an algae meal (DHA-Gold; Schizochytrium spp.) replaced flax oil and barley grain at 0 or 3% DM (n = 6). Total RNA from each tissue was subjected to quantitative real time (qRT-) PCR analysis to determine the expression of 15 selected miRNA including 11 identified from bovine adipose tissues and 4 conserved between bovine and ovine species. MicroRNAs were differentially expressed according to diet in each tissue depot (miR-142-5p and miR-376d) in visceral and miR-142-5p, miR-92a, and miR-378 in subcutaneous adipose tissue; P ≤ 0.05) and in each tissue depot depending on diet (miR-101, miR-106, miR-136, miR-16b, miR-196a-1, miR-2368*, miR-2454, miR-296, miR-376d, miR-378, and miR-92a in both control and DHA-G diets and miR-478 in control; P ≤ 0.05). Six miRNA were subjected to functional analysis and 3 genes of interest (ACSL1, PPARα, and C/EBPα) were validated by qRT-PCR. Both diet and tissue depot affected expression levels of all 3 genes (P < 0.05). miR-101, miR-106, and miR-136 were negatively correlated with their respective predicted gene targets C/EBPα, PPARα, and ACSL1 in subcutaneous adipose tissue of lambs fed DHA-G. Yet miR-142-5p and miR-101 showed no correlation with ACSL1 or C/EBPα. The variability in expression patterns of miRNA across adipose depots reflects the tissue specific nature of adipogenic regulation. Although the examined miRNA appear to be conserved across ruminant species, our results indicate the presence of ovine specific regulatory mechanisms that can be influenced by diet.
Collapse
Affiliation(s)
- S J Meale
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - J M Romao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - M L He
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - A V Chaves
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - T A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Namgaladze D, Lips S, Leiker TJ, Murphy RC, Ekroos K, Ferreiros N, Geisslinger G, Brüne B. Inhibition of macrophage fatty acid β-oxidation exacerbates palmitate-induced inflammatory and endoplasmic reticulum stress responses. Diabetologia 2014; 57:1067-77. [PMID: 24488024 DOI: 10.1007/s00125-014-3173-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/02/2014] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Saturated fatty acids (SFAs) such as palmitate activate inflammatory pathways and elicit an endoplasmic reticulum (ER) stress response in macrophages, thereby contributing to the development of insulin resistance linked to the metabolic syndrome. This study addressed the question of whether or not mitochondrial fatty acid β-oxidation (FAO) affects macrophage responses to SFA. METHODS We modulated the activity of carnitine palmitoyl transferase 1A (CPT1A) in macrophage-differentiated THP-1 monocytic cells using genetic or pharmacological approaches, treated the cells with palmitate and analysed the proinflammatory and ER stress signatures. RESULTS To inhibit FAO, we created THP-1 cells with a stable knockdown (KD) of CPT1A and differentiated them to macrophages. Consequently, in CPT1A-silenced cells FAO was reduced. CPT1A KD in THP-1 macrophages increased proinflammatory signalling, cytokine expression and ER stress responses after palmitate treatment. In addition, in human primary macrophages CPT1A KD elevated palmitate-induced inflammatory gene expression. Pharmacological inhibition of FAO with etomoxir recapitulated the CPT1A KD phenotype. Conversely, overexpression of a malonyl-CoA-insensitive CPT1A M593S mutant reduced inflammatory and ER stress responses to palmitate in THP-1 macrophages. Macrophages with a CPT1A KD accumulated diacylglycerols and triacylglycerols after palmitate treatment, while ceramide accumulation remained unaltered. Moreover, lipidomic analysis of ER phospholipids revealed increased palmitate incorporation into phosphatidylethanolamine and phosphatidylserine classes associated with the CPT1A KD. CONCLUSIONS/INTERPRETATION Our data indicate that FAO attenuates inflammatory and ER stress responses in SFA-exposed macrophages, suggesting an anti-inflammatory impact of drugs that activate FAO.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I/ZAFES, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Momiyama Y. Association between serum omega-3 to omega-6 polyunsaturated fatty acid ratio and cardiovascular events in a general Japanese population. Atherosclerosis 2013; 231:281-2. [PMID: 24267240 DOI: 10.1016/j.atherosclerosis.2013.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan.
| |
Collapse
|
23
|
Ninomiya T, Nagata M, Hata J, Hirakawa Y, Ozawa M, Yoshida D, Ohara T, Kishimoto H, Mukai N, Fukuhara M, Kitazono T, Kiyohara Y. Association between ratio of serum eicosapentaenoic acid to arachidonic acid and risk of cardiovascular disease: the Hisayama Study. Atherosclerosis 2013; 231:261-7. [PMID: 24267237 DOI: 10.1016/j.atherosclerosis.2013.09.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We examined the association between the ratio of serum eicosapentaenoic acid to arachidonic acid (EPA/AA) or the docosahexaenoic acid (DHA)/AA and the development of cardiovascular disease in a general Japanese population. METHODS A total of 3103 community-dwelling Japanese individuals aged ≥40 years were followed up for an average of 5.1 years. Serum EPA/AA ratios were categorized into quartiles. The risk estimates were computed using a Cox proportional hazards model. RESULTS During the follow-up period, 127 subjects experienced cardiovascular events. Age- and sex-adjusted incidence rates of cardiovascular disease increased with lower serum EPA/AA ratios in individuals with high-sensitivity C-reactive protein (HS-CRP) of ≥1.0 mg/L (p for trend = 0.006), whereas no clear association was observed in those with HS-CRP of <1.0 mg/L (p for trend = 0.27). The multivariable-adjusted risk of cardiovascular disease increased significantly, by 1.52 times (95% confidence interval 1.12-2.04) per 0.20 decrement in serum EPA/AA ratio in subjects with HS-CRP of ≥1.0 mg/L. A lower serum EPA/AA ratio was significantly associated with an increased risk of coronary heart disease, but there was no evidence of an association with stroke. The magnitude of the influence of the serum EPA/AA ratio on the cardiovascular risk increased significantly with elevating HS-CRP levels taken as a continuous variable (p for heterogeneity = 0.007). However, no such association was observed for DHA/AA ratio. CONCLUSION Our findings suggest that a lower serum EPA/AA ratio is associated with a greater risk of cardiovascular disease, especially coronary heart disease, among subjects with higher HS-CRP levels in the general Japanese population.
Collapse
Affiliation(s)
- Toshiharu Ninomiya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Environmental Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|