1
|
Winner G J, Jain S, Gupta D. Unveiling novel molecules and therapeutic targets in hypertension - A narrative review. Eur J Pharmacol 2024; 984:177053. [PMID: 39393666 DOI: 10.1016/j.ejphar.2024.177053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Hypertension is a prevalent non-communicable disease with serious cardiovascular complications, including heart failure, myocardial infarction, and stroke, often resulting from uncontrolled hypertension. While current treatments primarily target the renin-angiotensin-aldosterone pathway, the therapeutic response remains modest in many patients, with some developing resistant hypertension. Newer therapeutic approaches aim to address hypertension from various aspects beyond conventional drugs, including targeting central nervous system pathways, inflammatory pathways, vascular smooth muscle function, and baroreceptors. Despite these advancements, each therapy faces unique clinical and mechanistic challenges that influence its clinical translatability and long-term viability. This review explores the mechanisms of novel molecules in preclinical and clinical development, highlights potential therapeutic targets, and discusses the challenges and ethical considerations related to hypertension therapeutics and their development.
Collapse
Affiliation(s)
| | - Surbhi Jain
- Aligarh Muslim University, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Rafael-Vidal C, Martínez-Ramos S, Malvar-Fernández B, Altabás-González I, Mouriño C, Veale DJ, Floudas A, Fearon U, Reigosa JMP, García S. Type I Interferons induce endothelial destabilization in Systemic Lupus Erythematosus in a Tie2-dependent manner. Front Immunol 2023; 14:1277267. [PMID: 38162654 PMCID: PMC10756137 DOI: 10.3389/fimmu.2023.1277267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Endothelial cell (EC) dysfunction is a hallmark of Systemic Lupus Erythematosus (SLE) and Tie2 is a receptor essential for vascular stability. Inflammatory processes promote inhibition of Tie2 homeostatic activation, driving vascular dysfunction. In this work we determined whether type I Interferons (IFN) induce Tie2 signalling-mediated endothelial dysfunction in patients with SLE. Serum levels of Angiopoietin (Ang)-1, Ang-2 and soluble (s)Tie1 in patients with SLE and healthy controls were measured by ELISA. Monocytes from patients with SLE and Human Umbilical Vein EC (HUVEC) were stimulated with IFN-α, IFN-β (1000 I.U.) or SLE serum (20%). mRNA and protein expression, phosphorylation and translocation were determined by quantitative PCR, ELISA, Western Blot, flow cytometry and confocal microscopy. Viability and angiogenic capacity were determined by calcein and tube formation assays. We found that sTie1 and Ang-2 serum levels were increased and Ang-1 decreased in patients with SLE and were associated with clinical characteristics. Type I IFN significantly decreased Ang-1 and increased Ang-2 in monocytes from patients with SLE. Type I IFN increased sTie1 and Ang-2 secretion and reduced Tie2 activation in HUVEC. Functionally, type I IFN significantly reduced EC viability and impaired angiogenesis in a Tie2 signalling-dependent manner. Finally, SLE serum increased Ang-2 and sTie1 secretion and significantly decreased tube formation. Importantly, Tie1 and IFNAR1 knockdown reversed these effects in tube formation. Overall, type I IFN play an important role in the stability of EC by inhibiting Tie2 signalling, suggesting that these processes may be implicated in the cardiovascular events observed in patients with SLE.
Collapse
Affiliation(s)
- Carlos Rafael-Vidal
- Rheumatology and Immune-mediated Diseases Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Rheumatology Department, University Hospital of Vigo, Vigo, Spain
| | - Sara Martínez-Ramos
- Rheumatology and Immune-mediated Diseases Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Rheumatology Department, University Hospital of Vigo, Vigo, Spain
| | - Beatriz Malvar-Fernández
- Rheumatology and Immune-mediated Diseases Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Rheumatology Department, University Hospital of Vigo, Vigo, Spain
| | - Irene Altabás-González
- Rheumatology and Immune-mediated Diseases Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Rheumatology Department, University Hospital of Vigo, Vigo, Spain
| | - Coral Mouriño
- Rheumatology and Immune-mediated Diseases Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
| | - Douglas J. Veale
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- European Alliance of Associations for Rheumatology (EULAR) Centre for Arthritis and Rheumatic Diseases, St Vincent’s University Hospital, University College Dublin, Dublin, Ireland
| | | | - Ursula Fearon
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- European Alliance of Associations for Rheumatology (EULAR) Centre for Arthritis and Rheumatic Diseases, St Vincent’s University Hospital, University College Dublin, Dublin, Ireland
| | - José María Pego Reigosa
- Rheumatology and Immune-mediated Diseases Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Rheumatology Department, University Hospital of Vigo, Vigo, Spain
| | - Samuel García
- Rheumatology and Immune-mediated Diseases Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Rheumatology Department, University Hospital of Vigo, Vigo, Spain
| |
Collapse
|
3
|
Burke-Kleinman J, Gotlieb AI. Progression of Arterial Vasa Vasorum from Regulator of Arterial Homeostasis to Promoter of Atherogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1468-1484. [PMID: 37356574 DOI: 10.1016/j.ajpath.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The vasa vasorum (vessels of vessels) are a dynamic microvascular system uniquely distributed to maintain physiological homeostasis of the artery wall by supplying nutrients and oxygen to the outer layers of the artery wall, adventitia, and perivascular adipose tissue, and in large arteries, to the outer portion of the medial layer. Vasa vasorum endothelium and contractile mural cells regulate direct access of bioactive cells and factors present in both the systemic circulation and the arterial perivascular adipose tissue and adventitia to the artery wall. Experimental and human data show that proatherogenic factors and cells gain direct access to the artery wall via the vasa vasorum and may initiate, promote, and destabilize the plaque. Activation and growth of vasa vasorum occur in all blood vessel layers primarily by angiogenesis, producing fragile and permeable new microvessels that may cause plaque hemorrhage and fibrous cap rupture. Ironically, invasive therapies, such as angioplasty and coronary artery bypass grafting, injure the vasa vasorum, leading to treatment failures. The vasa vasorum function both as a master integrator of arterial homeostasis and, once perturbed or injured, as a promotor of atherogenesis. Future studies need to be directed at establishing reliable in vivo and in vitro models to investigate the cellular and molecular regulation of the function and dysfunction of the arterial vasa vasorum.
Collapse
Affiliation(s)
- Jonah Burke-Kleinman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Jia Y, Li D, Yu J, Jiang W, Liu Y, Li F, Zeng R, Wan Z, Liao X. Angiogenesis in Aortic Aneurysm and Dissection: A Literature Review. Rev Cardiovasc Med 2023; 24:223. [PMID: 39076698 PMCID: PMC11266809 DOI: 10.31083/j.rcm2408223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 07/31/2024] Open
Abstract
Aortic aneurysm and aortic dissection (AA/AD) are critical aortic diseases with a hidden onset and sudden rupture, usually resulting in an inevitable death. Several pro- and anti-angiogenic factors that induce new capillary formation in the existing blood vessels regulate angiogenesis. In addition, aortic disease mainly manifests as the proliferation and migration of endothelial cells of the adventitia vasa vasorum. An increasing number of studies have shown that angiogenesis is a characteristic change that may promote AA/AD occurrence, progression, and rupture. Furthermore, neocapillaries are leaky and highly susceptible to injury by cytotoxic agents, which promote extracellular matrix remodeling, facilitate inflammatory cell infiltration, and release coagulation factors and proteases within the wall. Mechanistically, inflammation, hypoxia, and angiogenic factor signaling play important roles in angiogenesis in AA/AD under the complex interaction of multiple cell types, such as smooth muscle cells, fibroblasts, macrophages, mast cells, and neutrophils. Therefore, based on current evidence, this review aims to discuss the manifestation, pathological role, and underlying mechanisms of angiogenesis involved in AA/AD, providing insights into the prevention and treatment of AA/AD.
Collapse
Affiliation(s)
- Yu Jia
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Dongze Li
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Jing Yu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yi Liu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Fanghui Li
- Department of Cardiology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Rui Zeng
- Department of Cardiology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Zhi Wan
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Xiaoyang Liao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| |
Collapse
|
5
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Shirakura K, Baluk P, Nottebaum AF, Ipe U, Peters KG, McDonald DM, Vestweber D. Shear stress control of vascular leaks and atheromas through Tie2 activation by VE-PTP sequestration. EMBO Mol Med 2023; 15:e16128. [PMID: 36740996 PMCID: PMC10086590 DOI: 10.15252/emmm.202216128] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP) influences endothelial barrier function by regulating the activation of tyrosine kinase receptor Tie2. We determined whether this action is linked to the development of atherosclerosis by examining the influence of arterial shear stress on VE-PTP, Tie2 activation, plasma leakage, and atherogenesis. We found that exposure to high average shear stress led to downstream polarization and endocytosis of VE-PTP accompanied by Tie2 activation at cell junctions. In aortic regions with disturbed flow, VE-PTP was not redistributed away from Tie2. Endothelial cells exposed to high shear stress had greater Tie2 activation and less macromolecular permeability than regions with disturbed flow. Deleting endothelial VE-PTP in VE-PTPiECKO mice increased Tie2 activation and reduced plasma leakage in atheroprone regions. ApoE-/- mice bred with VE-PTPiECKO mice had less plasma leakage and fewer atheromas on a high-fat diet. Pharmacologic inhibition of VE-PTP by AKB-9785 had similar anti-atherogenic effects. Together, the findings identify VE-PTP as a novel target for suppression of atherosclerosis.
Collapse
Affiliation(s)
| | - Peter Baluk
- Cardiovascular Research Institute, UCSF Helen Diller Family Comprehensive Cancer Center, and Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
| | | | - Ute Ipe
- Max Planck Institute for Molecular BiomedicineMünsterGermany
| | | | - Donald M McDonald
- Cardiovascular Research Institute, UCSF Helen Diller Family Comprehensive Cancer Center, and Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
| | | |
Collapse
|
7
|
Anisimov A, Fang S, Hemanthakumar KA, Örd T, van Avondt K, Chevre R, Toropainen A, Singha P, Gilani H, Nguyen SD, Karaman S, Korhonen EA, Adams RH, Augustin HG, Öörni K, Soehnlein O, Kaikkonen MU, Alitalo K. The angiopoietin receptor Tie2 is atheroprotective in arterial endothelium. NATURE CARDIOVASCULAR RESEARCH 2023; 2:307-321. [PMID: 37476204 PMCID: PMC7614785 DOI: 10.1038/s44161-023-00224-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 01/26/2023] [Indexed: 07/22/2023]
Abstract
Leukocytes and resident cells in the arterial wall contribute to atherosclerosis, especially at sites of disturbed blood flow. Expression of endothelial Tie1 receptor tyrosine kinase is enhanced at these sites, and attenuation of its expression reduces atherosclerotic burden and decreases inflammation. However, Tie2 tyrosine kinase function in atherosclerosis is unknown. Here we provide genetic evidence from humans and from an atherosclerotic mouse model to show that TIE2 is associated with protection from coronary artery disease. We show that deletion of Tie2, or both Tie2 and Tie1, in the arterial endothelium promotes atherosclerosis by increasing Foxo1 nuclear localization, endothelial adhesion molecule expression and accumulation of immune cells. We also show that Tie2 is expressed in a subset of aortic fibroblasts, and its silencing in these cells increases expression of inflammation-related genes. Our findings indicate that unlike Tie1, the Tie2 receptor functions as the dominant endothelial angiopoietin receptor that protects from atherosclerosis.
Collapse
Affiliation(s)
- Andrey Anisimov
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Shentong Fang
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tiit Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kristof van Avondt
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Raphael Chevre
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Anu Toropainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Prosanta Singha
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Huda Gilani
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Su D. Nguyen
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Present Address: Orion Corporation, Orion Pharma, Turku, Finland
| | - Sinem Karaman
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Emilia A. Korhonen
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Münster, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katariina Öörni
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Endothelial tyrosine kinase Tie2 counteracts atherosclerosis development. NATURE CARDIOVASCULAR RESEARCH 2023; 2:232-233. [PMID: 39196025 DOI: 10.1038/s44161-023-00251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
|
9
|
Wang R, Yang M, Jiang L, Huang M. Role of Angiopoietin-Tie axis in vascular and lymphatic systems and therapeutic interventions. Pharmacol Res 2022; 182:106331. [PMID: 35772646 DOI: 10.1016/j.phrs.2022.106331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022]
Abstract
The Angiopoietin (Ang)-Tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie) axis is an endothelial cell-specific ligand-receptor signaling pathway necessary for vascular and lymphatic development. The Ang-Tie axis is involved in regulating angiogenesis, vascular remodeling, vascular permeability, and inflammation to maintain vascular quiescence. Disruptions in the Ang-Tie axis are involved in many vascular and lymphatic system diseases and play an important role in physiological and pathological vascular conditions. Given recent advances in the Ang-Tie axis in the vascular and lymphatic systems, this review focuses on the multiple functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, atherosclerosis, ocular angiogenesis, tumor angiogenesis, and metastasis. A summary of relevant therapeutic approaches to the Ang-Tie axis, including therapeutic antibodies, recombinant proteins and small molecule drugs are also discussed. The purpose of this review is to provide new hypotheses and identify potential therapeutic strategies based on the Ang-Tie signaling axis for the treatment of vascular and lymphatic-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Moua Yang
- Division of Hemostasis & Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, United States
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| |
Collapse
|
10
|
Skowerski T, Nabrdalik K, Kwiendacz H, Pajak M, Mizia-Stec K, Gasior Z, Gumprecht J. Angiopoietin-2 as a biomarker of non-ST-segment elevation myocardial infarction in patients with or without type 2 diabetes. Arch Med Sci 2022; 18:624-631. [PMID: 35591833 PMCID: PMC9102672 DOI: 10.5114/aoms.2019.89201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/13/2019] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Angiopoietin-2 (Ang-2) is a novel marker of coronary artery disease (CAD) and diabetes (DM). The aim was to evaluate Ang-2 as a potential new biomarker of non-ST elevation myocardial infarction (NSTEMI) in patients with or without type 2 DM (T2DM). MATERIAL AND METHODS This was a multi-center, prospective study that included 138 (males: 91/66%) consecutive patients hospitalized due to NSTEMI, T2DM, or different cardiac disorders. The subjects were divided into four study groups: group A: 28 patients with NSTEMI and T2DM; group B: 47 patients with NSTEMI without T2DM; group C: 31 patients with T2DM, without a history of CAD; group D: 32 patients as a control group. Patients with NSTEMI underwent urgent coronarography. Clinical characteristics including biomarkers (hs-CRP, hsTnT, NT-proBNP, VEGF, HbA1c), SYNTAX SCORE, type of intervention (PCI vs. CABG), and number of implanted stents were taken into account in the analysis. RESULTS Serum Ang-2 concentrations were significantly higher in patients with NSTEMI (group A: 1769 pg/ml; group B: 1757 pg/ml) and patients with T2DM (group C: 1993 pg/ml) as compared to the patients without CAD and without T2DM (group D: 866.8 pg/ml; p < 0.05). The prognostic accuracy of Ang-2 in NSTEMI diagnosis was determined with the area under the ROC curve (area under curve (AUC) = 0.63). CONCLUSIONS Angiopoietin-2 serum concentration is elevated in the presence of NSTEMI in patients with and without T2DM and does not correspond to the degree of myocardial injury and hemodynamic status. Ang-2 remains elevated also in patients with T2DM without a history of CAD.
Collapse
Affiliation(s)
- Tomasz Skowerski
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, Zabrze, Poland
- Department of Cardiology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, Zabrze, Poland
| | - Hanna Kwiendacz
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, Zabrze, Poland
| | - Maciej Pajak
- Roslin Institute, Midlothian, Edinburgh, United Kingdom of Great Britain & Northern Ireland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Zbigniew Gasior
- Department of Cardiology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, Zabrze, Poland
| |
Collapse
|
11
|
Targeting the Ang2/Tie2 Axis with Tanshinone IIA Elicits Vascular Normalization in Ischemic Injury and Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7037786. [PMID: 34804370 PMCID: PMC8598375 DOI: 10.1155/2021/7037786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023]
Abstract
Pathological angiogenesis, as exhibited by aberrant vascular structure and function, has been well deemed to be a hallmark of cancer and various ischemic diseases. Therefore, strategies to normalize vasculature are of potential therapeutic interest in these diseases. Recently, identifying bioactive compounds from medicinal plant extracts to reverse abnormal vasculature has been gaining increasing attention. Tanshinone IIA (Tan IIA), an active component of Salvia miltiorrhiza, has been shown to play significant roles in improving blood circulation and delaying tumor progression. However, the underlying mechanisms responsible for the therapeutic effects of Tan IIA are not fully understood. Herein, we established animal models of HT-29 human colon cancer xenograft and hind limb ischemia to investigate the role of Tan IIA in regulating abnormal vasculature. Interestingly, our results demonstrated that Tan IIA could significantly promote the blood flow, alleviate the hypoxia, improve the muscle quality, and ameliorate the pathological damage after ischemic insult. Meanwhile, we also revealed that Tan IIA promoted the integrity of vascular structure, reduced vascular leakage, and attenuated the hypoxia in HT-29 tumors. Moreover, the circulating angiopoietin 2 (Ang2), which is extremely high in these two pathological states, was substantially depleted in the presence of Tan IIA. Also, the activation of Tie2 was potentiated by Tan IIA, resulting in decreased vascular permeability and elevated vascular integrity. Mechanistically, we uncovered that Tan IIA maintained vascular stability by targeting the Ang2-Tie2-AKT-MLCK cascade. Collectively, our data suggest that Tan IIA normalizes vessels in tumors and ischemic injury via regulating the Ang2/Tie2 signaling pathway.
Collapse
|
12
|
Status of biomarkers for the identification of stable or vulnerable plaques in atherosclerosis. Clin Sci (Lond) 2021; 135:1981-1997. [PMID: 34414413 DOI: 10.1042/cs20210417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/18/2023]
Abstract
Atherosclerosis is a systemic inflammation of the arteries characterized by atherosclerotic plaque due to the accumulation of lipids, inflammatory cells, apoptotic cells, calcium and extracellular matrix (ECM) proteins. Stable plaques present a chronic inflammatory infiltration, whereas vulnerable plaques present an 'active' inflammation involved in the thinning of the fibrous cap that predisposes to plaque rupture. Several complex biological cellular processes lead plaques to evolve from stable to vulnerable predisposing them to rupture and thrombosis. In this review, we analyze some emerging circulating biomarkers related to inflammation, ECM and lipid infiltration, angiogenesis, metalloproteinases and microRNA (miRNA), as possible diagnostic and prognostic indicators of plaque vulnerability.
Collapse
|
13
|
Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int J Mol Sci 2021; 22:ijms22147284. [PMID: 34298897 PMCID: PMC8306829 DOI: 10.3390/ijms22147284] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Pathological vascular wall remodeling refers to the structural and functional changes of the vessel wall that occur in response to injury that eventually leads to cardiovascular disease (CVD). Vessel wall are composed of two major primary cells types, endothelial cells (EC) and vascular smooth muscle cells (VSMCs). The physiological communications between these two cell types (EC–VSMCs) are crucial in the development of the vasculature and in the homeostasis of mature vessels. Moreover, aberrant EC–VSMCs communication has been associated to the promotor of various disease states including vascular wall remodeling. Paracrine regulations by bioactive molecules, communication via direct contact (junctions) or information transfer via extracellular vesicles or extracellular matrix are main crosstalk mechanisms. Identification of the nature of this EC–VSMCs crosstalk may offer strategies to develop new insights for prevention and treatment of disease that curse with vascular remodeling. Here, we will review the molecular mechanisms underlying the interplay between EC and VSMCs. Additionally, we highlight the potential applicable methodologies of the co-culture systems to identify cellular and molecular mechanisms involved in pathological vascular wall remodeling, opening questions about the future research directions.
Collapse
|
14
|
Peplinski BS, Houston BA, Bluemke DA, Kawut SM, Kolb TM, Kronmal RA, Lima JAC, Ralph DD, Rayner SG, Steinberg ZL, Tedford RJ, Leary PJ. Associations of Angiopoietins With Heart Failure Incidence and Severity. J Card Fail 2021; 27:786-795. [PMID: 33872759 PMCID: PMC8277723 DOI: 10.1016/j.cardfail.2021.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Angiopoietin-1 and 2 (Ang1, Ang2) are important mediators of angiogenesis. Angiopoietin levels are perturbed in cardiovascular disease, but it is unclear whether angiopoietin signaling is causative, an adaptive response, or merely epiphenomenon of disease activity. METHODS AND RESULTS In a cohort free of cardiovascular disease at baseline (Multi-Ethnic Study of Atherosclerosis [MESA]), relationships between angiopoietins, cardiac morphology, and subsequent incidence of heart failure or cardiovascular death were evaluated. In cohorts with pulmonary arterial hypertension or left heart disease, associations between angiopoietins, invasive hemodynamics, and adverse clinical outcomes were evaluated. In MESA, Ang2 was associated with a higher incidence of heart failure or cardiovascular death (hazard ratio 1.21 per standard deviation, P < .001). Ang2 was associated with increased right atrial pressure (pulmonary arterial hypertension cohort) and increased wedge pressure and right atrial pressure (left heart disease cohort). Elevated Ang2 was associated with mortality in the pulmonary arterial hypertension cohort. CONCLUSIONS Ang2 was associated with incident heart failure or death among adults without cardiovascular disease at baseline and with disease severity in individuals with existing heart failure. Our finding that Ang2 is increased before disease onset and that elevations reflect disease severity, suggests Ang2 may contribute to heart failure pathogenesis.
Collapse
Affiliation(s)
| | - Brian A Houston
- Medical University of South Carolina, Department of Medicine, Charleston, SC
| | - David A Bluemke
- University of Wisconsin, Department of Radiology, Madison, WI
| | - Steven M Kawut
- Perelman School of Medicine at the University of Pennsylvania, Departments of Medicine and Epidemiology, Philadelphia, PA
| | - Todd M Kolb
- Johns Hopkins Hospital, Department of Medicine, Baltimore, MD
| | | | - Joao A C Lima
- Johns Hopkins Hospital, Department of Medicine, Baltimore, MD; Johns Hopkins Hospital, Department of Radiology, Baltimore, MD
| | - David D Ralph
- University of Washington, Department of Medicine, Seattle, WA
| | - Samuel G Rayner
- University of Washington, Department of Medicine, Seattle, WA
| | | | - Ryan J Tedford
- Medical University of South Carolina, Department of Medicine, Charleston, SC
| | - Peter J Leary
- University of Washington, Department of Medicine, Seattle, WA; University of Washington, Department of Epidemiology, Seattle, WA.
| |
Collapse
|
15
|
Lysophosphatidylcholine in phospholipase A 2-modified LDL triggers secretion of angiopoietin 2. Atherosclerosis 2021; 327:87-99. [PMID: 34020784 DOI: 10.1016/j.atherosclerosis.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Secretory phospholipase A2 (PLA2) hydrolyzes LDL phospholipids generating modified LDL particles (PLA2-LDL) with increased atherogenic properties. Exocytosis of Weibel-Palade bodies (WPB) releases angiopoietin 2 (Ang2) and externalizes P-selectin, which both play important roles in vascular inflammation. Here, we investigated the effects of PLA2-LDL on exocytosis of WPBs. METHODS Human coronary artery endothelial cells (HCAECs) were stimulated with PLA2- LDL, and its uptake and effect on Ang2 release, leukocyte adhesion, and intracellular calcium levels were measured. The effects of PLA2-LDL on Ang2 release and WPB exocytosis were measured in and ex vivo in mice. RESULTS Exposure of HCAECs to PLA2-LDL triggered Ang2 secretion and promoted leukocyte-HCAEC interaction. Lysophosphatidylcholine was identified as a critical component of PLA2-LDL regulating the WPB exocytosis, which was mediated by cell-surface proteoglycans, phospholipase C, intracellular calcium, and cytoskeletal remodeling. PLA2-LDL also induced murine endothelial WPB exocytosis in blood vessels in and ex vivo, as evidenced by secretion of Ang2 in vivo, P-selectin translocation to plasma membrane in intact endothelial cells in thoracic artery and tracheal vessels, and reduced Ang2 staining in tracheal endothelial cells. Finally, in contrast to normal human coronary arteries, in which Ang2 was present only in the endothelial layer, at sites of advanced atherosclerotic lesions, Ang2 was detected also in the intima, media, and adventitia. CONCLUSIONS Our studies reveal PLA2-LDL as a potent agonist of endothelial WPB exocytosis, resulting in increased secretion of Ang2 and translocation of P-selectin. The results provide mechanistic insight into PLA2-LDL-dependent promotion of vascular inflammation and atherosclerosis.
Collapse
|
16
|
Mercier C, Rousseau M, Geraldes P. Growth Factor Deregulation and Emerging Role of Phosphatases in Diabetic Peripheral Artery Disease. Front Cardiovasc Med 2021; 7:619612. [PMID: 33490120 PMCID: PMC7817696 DOI: 10.3389/fcvm.2020.619612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/10/2020] [Indexed: 01/25/2023] Open
Abstract
Peripheral artery disease is caused by atherosclerosis of lower extremity arteries leading to the loss of blood perfusion and subsequent critical ischemia. The presence of diabetes mellitus is an important risk factor that greatly increases the incidence, the progression and the severity of the disease. In addition to accelerated disease progression, diabetic patients are also more susceptible to develop serious impairment of their walking abilities through an increased risk of lower limb amputation. Hyperglycemia is known to alter the physiological development of collateral arteries in response to ischemia. Deregulation in the production of several critical pro-angiogenic factors has been reported in diabetes along with vascular cell unresponsiveness in initiating angiogenic processes. Among the multiple molecular mechanisms involved in the angiogenic response, protein tyrosine phosphatases are potent regulators by dephosphorylating pro-angiogenic tyrosine kinase receptors. However, evidence has indicated that diabetes-induced deregulation of phosphatases contributes to the progression of several micro and macrovascular complications. This review provides an overview of growth factor alterations in the context of diabetes and peripheral artery disease, as well as a description of the role of phosphatases in the regulation of angiogenic pathways followed by an analysis of the effects of hyperglycemia on the modulation of protein tyrosine phosphatase expression and activity. Knowledge of the role of phosphatases in diabetic peripheral artery disease will help the development of future therapeutics to locally regulate phosphatases and improve angiogenesis.
Collapse
Affiliation(s)
- Clément Mercier
- Department of Medicine, Division of Endocrinology, Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marina Rousseau
- Department of Medicine, Division of Endocrinology, Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Geraldes
- Department of Medicine, Division of Endocrinology, Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
17
|
Hayashi SI, Rakugi H, Morishita R. Insight into the Role of Angiopoietins in Ageing-Associated Diseases. Cells 2020; 9:E2636. [PMID: 33302426 PMCID: PMC7762563 DOI: 10.3390/cells9122636] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Angiopoietin (Ang) and its receptor, TIE signaling, contribute to the development and maturation of embryonic vasculature as well as vascular remodeling and permeability in adult tissues. Targeting both this signaling pathway and the major pathway with vascular endothelial growth factor (VEGF) is expected to permit clinical applications, especially in antiangiogenic therapies against tumors. Several drugs targeting the Ang-TIE signaling pathway in cancer patients are under clinical development. Similar to how cancer increases with age, unsuitable angiogenesis or endothelial dysfunction is often seen in other ageing-associated diseases (AADs) such as atherosclerosis, Alzheimer's disease, type 2 diabetes, chronic kidney disease and cardiovascular diseases. Thus, the Ang-TIE pathway is a possible molecular target for AAD therapy. In this review, we focus on the potential role of the Ang-TIE signaling pathway in AADs, especially non-cancer-related AADs. We also suggest translational insights and future clinical applications of this pathway in those AADs.
Collapse
Affiliation(s)
- Shin-ichiro Hayashi
- Department of Clinical Gene Therapy, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Hyperinsulinemia promotes endothelial inflammation via increased expression and release of Angiopoietin-2. Atherosclerosis 2020; 307:1-10. [DOI: 10.1016/j.atherosclerosis.2020.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
|
19
|
Atherosclerotic Pre-Conditioning Affects the Paracrine Role of Circulating Angiogenic Cells Ex-Vivo. Int J Mol Sci 2020; 21:ijms21155256. [PMID: 32722151 PMCID: PMC7432497 DOI: 10.3390/ijms21155256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
In atherosclerosis, circulating angiogenic cells (CAC), also known as early endothelial progenitor cells (eEPC), are thought to participate mainly in a paracrine fashion by promoting the recruitment of other cell populations such as late EPC, or endothelial colony-forming cells (ECFC), to the injured areas. There, ECFC replace the damaged endothelium, promoting neovascularization. However, despite their regenerative role, the number and function of EPC are severely affected under pathological conditions, being essential to further understand how these cells react to such environments in order to implement their use in regenerative cell therapies. Herein, we evaluated the effect of direct incubation ex vivo of healthy CAC with the secretome of atherosclerotic arteries. By using a quantitative proteomics approach, 194 altered proteins were identified in the secretome of pre-conditioned CAC, many of them related to inhibition of angiogenesis (e.g., endostatin, thrombospondin-1, fibulins) and cell migration. Functional assays corroborated that healthy CAC released factors enhanced ECFC angiogenesis, but, after atherosclerotic pre-conditioning, the secretome of pre-stimulated CAC negatively affected ECFC migration, as well as their ability to form tubules on a basement membrane matrix assay. Overall, we have shown here, for the first time, the effect of atherosclerotic factors over the paracrine role of CAC ex vivo. The increased release of angiogenic inhibitors by CAC in response to atherosclerotic factors induced an angiogenic switch, by blocking ECFC ability to form tubules in response to pre-conditioned CAC. Thus, we confirmed here that the angiogenic role of CAC is highly affected by the atherosclerotic environment.
Collapse
|
20
|
Jian W, Guan JH, Zheng WB, Mo CH, Xu YT, Huang QL, Wei CM, Wang C, Yang ZJ, Yang GL, Gui C. Association between serum angiopoietin-2 concentrations and periprocedural myocardial injury in patients undergoing elective percutaneous coronary intervention. Aging (Albany NY) 2020; 12:5140-5151. [PMID: 32182213 PMCID: PMC7138571 DOI: 10.18632/aging.102936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/09/2020] [Indexed: 01/10/2023]
Abstract
Angiopoietin-2 (Ang-2) is a proangiogenic factor that mediates inflammation and atherosclerosis. We evaluated the predictive value of circulating Ang-2 levels for periprocedural myocardial injury (PMI) in 145 patients undergoing elective percutaneous coronary intervention (PCI), and investigated whether post-PCI Ang-2 levels are influenced by PMI. PMI was defined as a post-procedural troponin elevation above the 5×99th percentile upper reference limit. Blood samples for Ang-2 analysis were collected at admission and on postoperative days 1 and 3. PMI occurred in 40 patients (28%). At baseline, there was no difference in Ang-2 levels between PMI and non-PMI patients (P=0.554). However, a significant interaction effect between PMI occurrence and time on Ang-2 levels was observed (interaction P=0.036). Although serum Ang-2 levels in non-PMI patients gradually decreased, Ang-2 levels in PMI patients did not change between different time-points. Multiple logistic regression analysis revealed that age, total stent length, and serum levels of N-terminal pro-brain natriuretic peptide were independent PMI predictors. These findings indicate that pre-procedural Ang-2 levels do not impact PMI occurrence after elective PCI. However, changes in Ang-2 levels after the procedure are closely related to PMI.
Collapse
Affiliation(s)
- Wen Jian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| | - Jia-Hui Guan
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
| | - Wen-Bo Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| | - Chang-Hua Mo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| | - Yu-Tao Xu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| | - Qi-Li Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| | - Chun-Mei Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| | - Can Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| | - Zhi-Jie Yang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| | - Guo-Liang Yang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning 530021, Guangxi, People's Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| |
Collapse
|
21
|
Indexes of Angiogenic Activation in Myocardial Samples of Patients with Advanced Chronic Heart Failure. ACTA ACUST UNITED AC 2019; 55:medicina55120766. [PMID: 31795484 PMCID: PMC6956299 DOI: 10.3390/medicina55120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022]
Abstract
Background and objectives: Ischemic and idiopathic heart failure are characterized by reactive cardiac fibrosis and impaired vasculogenesis involving pro-angiogenic factors such as angiogenin, angiopoietin-1 (Ang-1), and angiopoietin-2 (Ang-2), as demonstrated in experimental models of heart failure. However, differences in the molecular pathways between these cardiomyopathies are still unclear. In this short communication, we evaluate and compare the expression of pro-angiogenic molecules in the heart tissue of patients with advanced chronic heart failure (CHF) of ischemic vs. nonischemic etiology. Materials and Methods: We obtained heart tissue at transplantation from left ventricular walls of 16 explanted native hearts affected by either ischemic (ICM) or nonischemic dilated cardiomyopathy (NIDCM). Tissue samples were examined using immunohistochemistry for angiogenic molecules. Results: We found immunopositivity (I-pos) for angiopoietin-1 mainly in the cardiomyocytes, while we observed I-pos for Ang-2 and Tie-2 receptor mainly in endothelial cells. Expression of Procollagen-I (PICP), angiogenin, Ang-1, and Tie-2 receptor was similar in ICM and NIDCM. In contrast, endothelial immunopositivity for Ang-2 was higher in ICM samples than NIDCM (p = 0.03). Conclusions: In our series of CHF heart samples, distribution of Ang-1 and angiogenin was higher in cardiomyocytes while that of Ang-2 was higher in endothelial cells; moreover, Ang-2 expression was higher in ICS than NIDCM. Despite the small series examined, these findings suggest different patterns of angiogenic stimulation in ICM and NIDCM, or at least a more altered endothelial integrity in ICD. Our data may contribute to a better understanding of the angiogenesis signaling pathways in CHF. Further studies should investigate differences in the biochemical processes leading to heart failure.
Collapse
|
22
|
Wei M, Liu Y, Zheng M, Wang L, Ma F, Qi Y, Liu G. Upregulation of Protease-Activated Receptor 2 Promotes Proliferation and Migration of Human Vascular Smooth Muscle Cells (VSMCs). Med Sci Monit 2019; 25:8854-8862. [PMID: 31756174 PMCID: PMC6883764 DOI: 10.12659/msm.917865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Protease-Activated Receptor 2 (PAR2), a G-protein-coupled receptor, has been proved to be enhanced in human coronary atherosclerosis lesions. We aimed to investigate whether PAR2 actively participates in the atherosclerosis process. Material/Methods PAR2 expression was assessed in blood samples by RT-qPCR from healthy controls and patients with atherosclerosis. Human vascular smooth muscle cells (VSMCs) were treated with oxidative low-density lipoprotein (ox-LDL). After PAR2 overexpression by transfection, cell proliferation was determined by CCK-8, and cell migration was evaluated by Transwell assay. The protein expressions associated with cell growth and migration were measured by Western blot. The distribution of α-SMA in VSMCs was evaluated by immunofluorescence. Results Expression of PAR2 was higher in patients with atherosclerosis compared with normal controls. PAR2 mRNA and protein expression was increased in ox-LDL-treated VSMCs compared with control cells. Induced overexpression of PAR2 in VSMCs led to a reduction in α-SMA expression compared to controls. In addition, PAR2 overexpression caused increased migration compared to normal controls, and upregulated MMP9 and MMP14 expression. PAR-2 overexpression promoted cell proliferation compared to control cells, and increased expression levels of CDK2, and CyclinE1, but reduced levels of p27. We preliminary explored the potential mechanism of PAR2, and results showed that overexpression of PAR2 increased expression levels of VEGFA and Angiopoietin 2 compared to controls. Moreover, overexpression of PAR2 enhanced production of tissue factor and IL-8 compared to normal controls. Conclusions PAR2 promotes cell proliferation and disrupts the quiescent condition of VSMCs, which may be a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Mei Wei
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yongsheng Liu
- Department of General Family Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Mingqi Zheng
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Le Wang
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Fangfang Ma
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yanchao Qi
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Gang Liu
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
23
|
Nicolini G, Forini F, Kusmic C, Iervasi G, Balzan S. Angiopoietin 2 signal complexity in cardiovascular disease and cancer. Life Sci 2019; 239:117080. [PMID: 31756341 DOI: 10.1016/j.lfs.2019.117080] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
The angiopoietin signal transduction system is a complex of vascular-specific kinase pathways that plays a crucial role in angiogenesis and maintenance of vascular homeostasis. Angiopoietin1 (Ang1) and 2 (Ang2), the ligand proteins of the pathway, belong to a family of glycoproteins that signal primarily through the transmembrane Tyrosine-kinase-2 receptor. Despite a considerable sequence homology, Ang1 and Ang2 manifest antagonistic effects in pathophysiological conditions. While Ang1 promotes the activation of survival pathways and the stabilization of the normal mature vessels, Ang2 can either favor vessel destabilization and leakage or promote abnormal EC proliferation in a context-dependent manner. Altered Ang1/Ang2 balance has been reported in various pathological conditions in association with inflammation and deregulated angiogenesis. In particular, increased Ang2 levels have been documented in human cancer and cardiovascular disease (CVD), including ischemic myocardial injury, heart failure and other cardiovascular complications secondary to diabetes, chronic renal damage and hypertension. Despite the obvious phenotypic differences, CVD and cancer share some common Ang2-dependent etiopathological mechanisms such as inflammation, epithelial (or endothelial) to mesenchymal transition, and adverse vascular network remodeling. Interestingly, both cancer and CVD are negatively affected by thyroid hormone dyshomeostasis. This review provides an overview of the complex Ang2-dependent signaling involved in CVD and cancer, as well as a survey of the related clinical literature. Moreover, on the basis of recent molecular acquisitions in an experimental model of post ischemic cardiac disease, the putative novel role of the thyroid hormone in the regulation of Ang1/Ang2 balance is also briefly discussed.
Collapse
Affiliation(s)
| | - Francesca Forini
- Institute of Clinical Physiology, CNR, Via G.Moruzzi 1, 56124 Pisa, Italy.
| | - Claudia Kusmic
- Institute of Clinical Physiology, CNR, Via G.Moruzzi 1, 56124 Pisa, Italy.
| | - Giorgio Iervasi
- Institute of Clinical Physiology, CNR, Via G.Moruzzi 1, 56124 Pisa, Italy.
| | - Silvana Balzan
- Institute of Clinical Physiology, CNR, Via G.Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
24
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
25
|
Bilimoria J, Singh H. The Angiopoietin ligands and Tie receptors: potential diagnostic biomarkers of vascular disease. J Recept Signal Transduct Res 2019; 39:187-193. [PMID: 31429357 DOI: 10.1080/10799893.2019.1652650] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Angiopoietin-1 (Angpt1)/Tie2 signaling pathway is important in regulating vascular function. Angpt1-induced Tie2 activation promotes vascular endothelial cell survival and reduces vascular leakage. Angiopoietin-2 (Angpt2), a weak agonist/antagonist of Tie2, opposes and regulates Angpt1 action. The Tie family of receptor tyrosine kinases, Tie2 and Tie1, exist as either homo-or heterodimers. The molecular complex between the receptors is also crucial in controlling Angpt1 signaling; hence, the molecular balance between Angpt1:Angpt2 and Tie2:Tie1 is important in determining endothelial integrity and vascular stability. This review presents evidence of the change observed in the Angiopoietin/Tie molecules in various pathophysiological conditions and discusses the potential clinical applications of these molecules in vascular complications.
Collapse
Affiliation(s)
- Jay Bilimoria
- Faculty of Health and Life Sciences, Leicester School of Allied Health Sciences, De Montfort University , Leicester , UK
| | - Harprit Singh
- Faculty of Health and Life Sciences, Leicester School of Allied Health Sciences, De Montfort University , Leicester , UK
| |
Collapse
|
26
|
Vulnerable Plaque, Characteristics, Detection, and Potential Therapies. J Cardiovasc Dev Dis 2019; 6:jcdd6030026. [PMID: 31357630 PMCID: PMC6787609 DOI: 10.3390/jcdd6030026] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Plaque development and rupture are hallmarks of atherosclerotic vascular disease. Despite current therapeutic developments, there is an unmet necessity in the prevention of atherosclerotic vascular disease. It remains a challenge to determine at an early stage if atherosclerotic plaque will become unstable and vulnerable. The arrival of molecular imaging is receiving more attention, considering it allows for a better understanding of the biology of human plaque and vulnerabilities. Various plaque therapies with common goals have been tested in high-risk patients with cardiovascular disease. In this work, the process of plaque instability, along with current technologies for sensing and predicting high-risk plaques, is debated. Updates on potential novel therapeutic approaches are also summarized.
Collapse
|
27
|
Scurt FG, Menne J, Brandt S, Bernhardt A, Mertens PR, Haller H, Chatzikyrkou C. Systemic Inflammation Precedes Microalbuminuria in Diabetes. Kidney Int Rep 2019; 4:1373-1386. [PMID: 31701047 PMCID: PMC6829192 DOI: 10.1016/j.ekir.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Aim The aim of the case-control study was to investigate if serum biomarkers indicative of vascular inflammation and endothelial dysfunction can predict the development of microalbuminuria in patients with diabetes mellitus type 2. Methods Among participants enrolled in the ROADMAP (Randomized Olmesartan And Diabetes MicroAlbuminuria Prevention) and observational follow-up (OFU) studies, a panel of 15 serum biomarkers was quantified from samples obtained at initiation of the study and tested for associations with the development of new-onset microalbuminuria during follow-up. A case-control study was conducted with inclusion of 172 patients with microalbuminuria and 188 matched controls. Nonparametric inferential, nonlinear regression, mediation, and bootstrapping statistical methods were used for the analysis. Results The median follow-up time was 37 months. At baseline, mean concentrations of C-X-C motif chemokine ligand 16 (CXCL-16), transforming growth factor (TGF)–β1 and angiopoietin-2 were higher in patients with subsequent microalbuminuria. In the multivariate analysis, after adjustment for age, sex, body mass index, glycated hemoglobin, duration of diabetes, low-density lipoprotein (LDL), smoking status, blood pressure, baseline urine albumin-to-creatinine ratio (UACR), estimated glomerular filtration rate (eGFR), time of follow-up and cardiovascular disease, CXCL-16 (odds ratio [OR] 2.60, 95% confidence interval [CI] 1.71–3.96), angiopoietin-2 (OR 1.50, 95% CI 1.14–1.98) and TGF-β1 (OR 1.03, 95% CI 1.01–1.04) remained significant predictors of new-onset microalbuminuria (P < 0.001). Inclusion of these biomarkers in conventional clinical risk models for prediction of microalbuminuria increased the area under the curve (AUC) from 0.638 to 0.760 (P < 0.001). Conclusion In patients with type 2 diabetes, elevated plasma levels of CXCL-16, angiopoietin-2, and TGF-β1 are independently predictive of microalbuminuria. Thus, these serum markers improve renal risk models beyond established clinical risk factors.
Collapse
Affiliation(s)
- Florian G Scurt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Jan Menne
- Nephrology Section, Hanover Medical School, Hanover, Germany
| | - Sabine Brandt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Hermann Haller
- Nephrology Section, Hanover Medical School, Hanover, Germany
| | - Christos Chatzikyrkou
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Nephrology Section, Hanover Medical School, Hanover, Germany
| | | |
Collapse
|
28
|
Csányi G, Singla B. Arterial Lymphatics in Atherosclerosis: Old Questions, New Insights, and Remaining Challenges. J Clin Med 2019; 8:jcm8040495. [PMID: 30979062 PMCID: PMC6518204 DOI: 10.3390/jcm8040495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
The lymphatic network is well known for its role in the maintenance of tissue fluid homeostasis, absorption of dietary lipids, trafficking of immune cells, and adaptive immunity. Aberrant lymphatic function has been linked to lymphedema and immune disorders for a long time. Discovery of lymphatic cell markers, novel insights into developmental and postnatal lymphangiogenesis, development of genetic mouse models, and the introduction of new imaging techniques have improved our understanding of lymphatic function in both health and disease, especially in the last decade. Previous studies linked the lymphatic vasculature to atherosclerosis through regulation of immune responses, reverse cholesterol transport, and inflammation. Despite extensive research, many aspects of the lymphatic circulation in atherosclerosis are still unknown and future studies are required to confirm that arterial lymphangiogenesis truly represents a therapeutic target in patients with cardiovascular disease. In this review article, we provide an overview of factors and mechanisms that regulate lymphangiogenesis, summarize recent findings on the role of lymphatics in macrophage reverse cholesterol transport, immune cell trafficking and pathogenesis of atherosclerosis, and present an overview of pharmacological and genetic strategies to modulate lymphatic vessel density in cardiovascular tissue.
Collapse
Affiliation(s)
- Gábor Csányi
- Vascular Biology Center, 1460 Laney Walker Blvd., Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Pharmacology & Toxicology, 1460 Laney Walker Blvd., Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Bhupesh Singla
- Vascular Biology Center, 1460 Laney Walker Blvd., Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
29
|
Jian W, Li L, Wei XM, Wu CQ, Gui C. Prognostic value of angiopoietin-2 for patients with coronary heart disease after elective PCI. Medicine (Baltimore) 2019; 98:e14216. [PMID: 30702576 PMCID: PMC6380730 DOI: 10.1097/md.0000000000014216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Patients with coronary heart disease (CHD) frequently have cardiovascular complications after undergoing PCI. Angiopoietin-2 (Ang-2) is an important proangiogenic factor that also plays an important role in atherosclerosis. This study aimed to evaluate the value of Ang-2 in predicting cardiovascular events after elective PCI.This prospective study enrolled 97 patients with CHD who underwent elective PCI from 2013 to 2014. Blood samples were collected in the first morning after admission and within 24 to 48 h after PCI. The primary endpoint was cardiovascular events, defined as a composite of cardiac death, nonfatal myocardial infarction/repeat revascularization, readmission for severe deterioration of angina and readmission for new onset heart failure. Based on the median level of pre-PCI or post-PCI Ang-2, the patients were divided into a low level group and a high level group.During the whole follow-up period (mean, 53 ± 13 months), Kaplan-Meier curves of cardiovascular events showed that there was no significant difference between the two pre-PCI groups (χ = 2.22, P = .137, and log-rank test) or the two post-PCI groups (χ = 2.83, P = .093, and log-rank test). However, in a multivariable Cox regression model, landmark analysis showed that the patients in high level group of post-PCI, not pre-PCI, were associated with remarkable higher risks of cardiovascular events compared to the low level group during the first 1.5 years of follow-up (adjusted HR = 9.99, 95%CI = 1.99-50.13, P = .005). However, that was of no significance from 1.5 years to maximum follow-up years (adjusted HR = 0.82, 95%CI = 0.26-2.59, P = .733).High Ang-2 levels of post-PCI can predict the occurrence of cardiovascular events in the short to medium term.
Collapse
Affiliation(s)
- Wen Jian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning
| | - Xiao-Min Wei
- Department of Cardiology, Gongren Hospital of Wuzhou, Wuzhou
| | - Cheng-Qiang Wu
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, People's Republic of China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning
| |
Collapse
|
30
|
Lee J, Bontekoe J, Trac B, Bansal V, Biller J, Hoppensteadt D, Maia P, Walborn A, Fareed J. Biomarker Profiling of Neurovascular Diseases in Patients with Stage 5 Chronic Kidney Disease. Clin Appl Thromb Hemost 2018; 24:248S-254S. [PMID: 30348002 PMCID: PMC6714821 DOI: 10.1177/1076029618807565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Patients with stage 5 chronic kidney disease (CKD5D) have a higher risk of developing
neurocognitive deficits. Stroke, cervical carotid artery disease (CCAD), and intracranial
atherosclerotic disease (ICAD) are causes of such deficits in CKD5D. Chronic inflammation
from renal failure elevates risk for these diseases through oxidative stress and vascular
dysfunction. The adverse impact on the carotid and intracranial vasculatures contributes
to the multifactorial pathophysiology of stroke. Eleven plasma biomarker levels in
patients with CKD5D (n = 97) and healthy controls (n = 17-50) were measured using sandwich
enzyme-linked immunosorbent assay (ELISA) method. Of the 97 patients with CKD5D, 24 had
CCAD, 19 had ICAD, and 23 had acute stroke. Elevations in NACHT, LRR, and PYD
domains-containing protein 3 (NALP3) levels in patients with CKD5D (+)CCAD (1.80 ± 0.11
ng/mL) compared to patients with (−)CCAD (1.55 ± 0.08 ng/mL) were statistically
significant (P = .0299). Differences in D-dimer levels were also found to
be statistically significant (P = .0258) between CKD5D (+)stroke (1.83 ±
0.42 μg/mL) and (−)stroke (0.89 ± 0.13 μg/mL) groups. The ages of the (+) neurovascular
disease groups were found to be significantly elevated compared to the (−) neurovascular
disease groups (P = .0002 carotid AD; P < .0001 ICAD;
P = .0157 stroke). D-dimer levels were positively correlated with age
in CKD5D (P = .0375). With the possible exception of NALP3 for CCAD,
profiling levels of specific biomarkers for risk stratification of neurovascular diseases
in the CKD5D population warrants further investigation.
Collapse
Affiliation(s)
- Justin Lee
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Jack Bontekoe
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Brandon Trac
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Vinod Bansal
- Department of Nephrology, Loyola University Medical Center, Maywood, IL, USA
| | - José Biller
- Department of Neurology, Loyola University Medical Center, Maywood, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Paula Maia
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Amanda Walborn
- Department of Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Jawed Fareed
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
31
|
Yin J, Wang B, Zhu C, Sun C, Liu X. [Local injection of angiopoietin 2 promotes angiogenesis in tissue engineered bone and repair of bone defect with autophagy induction in vivo]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1150-1156. [PMID: 30129346 PMCID: PMC8413973 DOI: 10.7507/1002-1892.201804105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/09/2018] [Indexed: 01/07/2023]
Abstract
Objective To investigate the mechanism of early vascularization of the tissue engineered bone in the treatment of rabbit radial bone defect by local injection of angiopoietin 2 (Ang-2). Methods A single 1.5 cm long radius defect model (left and right sides randomised) was constructed from 48 New Zealand white rabbits. After implantation of hydroxyapatite/collagen scaffolds in bone defects, the rabbits were randomly divided into 2 groups: control group (group A) and Ang-2 group (group B) were injected with 1 mL normal saline and 1 mL saline-soluble 400 ng/mL Ang-2 daily at the bone defect within 2 weeks after operation, respectively. Western blot was used to detect the expressions of autophagy related protein [microtubule associated protein 1 light chain 3 (LC3), Beclin-1], angiogenesis related protein [vascular endothelial growth factor (VEGF)], and autophagy degradable substrate protein (SQSTMl/p62) in callus. X-ray films examination and Lane-Sandhu X-ray scoring were performed to evaluate the bone defect repair at 4, 8, and 12 weeks after operation. The rabbits were sacrificed at 12 weeks after operation for gross observation, and the angiogenesis of bone defect was observed by HE staining. Results Western blot assay showed that the relative expression of LC3-II/LC3-I, Beclin-1, and VEGF in group B was significantly higher than that in group A, and the relative expression of SQSTMl/p62 was significantly lower than that in group A ( P<0.05). Radiographic and gross observation of specimens showed that only a small number of callus were formed in group A, the bone defect was not repaired; more callus were formed and complete repair of bone defect was observed in group B. The Lane-Sandhu scores in group B were significantly higher than those in group A at 4, 8, and 12 weeks after operation ( P<0.05). HE staining showed that the Harvard tubes in group B were well arranged and the number of new vessels was significantly higher than that in group A ( t=-11.879, P=0.000). Conclusion Local injection of appropriate concentration of Ang-2 may promote early vascularization and bone defect repair of rabbit tissue engineered bone by enhancing autophagy.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Bin Wang
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Chao Zhu
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Chao Sun
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Xinhui Liu
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100,
| |
Collapse
|
32
|
Angiopoietin 2 promotes angiogenesis in tissue-engineered bone and improves repair of bone defects by inducing autophagy. Biomed Pharmacother 2018; 105:932-939. [PMID: 30021387 DOI: 10.1016/j.biopha.2018.06.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022] Open
Abstract
Angiogenesis plays a key role in the repair of large segmental bone defects with tissue-engineered bones. However, there is no effective method of promoting angiogenesis in tissue-engineered bone. Both angiopoietin 2 (Ang2) and autophagy have been shown to be involved in angiogenesis, but their roles in angiogenesis of tissue-engineered bone remains unknown. In this in vivo study, a radius bone defect was created in New Zealand white rabbits, which were then treated by implantation of a hydroxyapatite/collagen scaffold followed by injection of different concentrations of Ang2. Expression of the autophagic modulators microtubule-associated protein 1 light chain 3 (LC3), Beclin-1, and SQSTM1/P62 were measured via western blotting, while the angiogenic modulators VEGF and CD31 were detected by western blotting and immunohistochemistry, respectively. X-ray imaging combined with general observation was used to evaluate bone defect healing. Expression of LC3 -I/LC3-II, Beclin-1, VEGF, and CD31 in the callus area increased and SQSTM1/p62 decreased in a dose-dependent manner with increasing Ang2 concentration. In the group treated with a high concentration of Ang2, the new callus grew well, accompanied by remarkable angiogenesis, leading to good repair of the bone defects. However, in the low concentration of Ang2 group, in spite of the existence of angiogenesis and new bone formation, the bone defects were not repaired. Furthermore, angiogenesis and osteogenesis were both obstructed in the control group. In conclusion, our study demonstrated that a high concentration of Ang2 promoted angiogenesis in tissue-engineered bone and improved repair of bone defects by inducing autophagy.
Collapse
|
33
|
Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J. Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease. Front Immunol 2018; 9:706. [PMID: 29719532 PMCID: PMC5913371 DOI: 10.3389/fimmu.2018.00706] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 01/08/2023] Open
Abstract
Plaque microvascularization and increased endothelial permeability are key players in the development of atherosclerosis, from the initial stages of plaque formation to the occurrence of acute cardiovascular events. First, endothelial dysfunction and increased permeability facilitate the entry of diverse inflammation-triggering molecules and particles such as low-density lipoproteins into the artery wall from the arterial lumen and vasa vasorum (VV). Recognition of entering particles by resident phagocytes in the vessel wall triggers a maladaptive inflammatory response that initiates the process of local plaque formation. The recruitment and accumulation of inflammatory cells and the subsequent release of several cytokines, especially from resident macrophages, stimulate the expansion of existing VV and the formation of new highly permeable microvessels. This, in turn, exacerbates the deposition of pro-inflammatory particles and results in the recruitment of even more inflammatory cells. The progressive accumulation of leukocytes in the intima, which trigger proliferation of smooth muscle cells in the media, results in vessel wall thickening and hypoxia, which further stimulates neoangiogenesis of VV. Ultimately, this highly inflammatory environment damages the fragile plaque microvasculature leading to intraplaque hemorrhage, plaque instability, and eventually, acute cardiovascular events. This review will focus on the pivotal roles of endothelial permeability, neoangiogenesis, and plaque microvascularization by VV during plaque initiation, progression, and rupture. Special emphasis will be given to the underlying molecular mechanisms and potential therapeutic strategies to selectively target these processes.
Collapse
Affiliation(s)
- Daniel G Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jasper A F Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,BHF Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - Jochen Dutzmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Qin C, Zhang L, Wang X, Duan Y, Ye Z, Xie M. Evaluation of Carotid Plaque Neovascularization in Patients With Coronary Heart Disease on Contrast-Enhanced Ultrasonography. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:823-831. [PMID: 29027678 DOI: 10.1002/jum.14410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/05/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES To examine the repeatability of quantitative time-intensity curve analysis of neovascularization within carotid plaques with contrast-enhanced ultrasonography (US) and to investigate carotid plaque neovascularization in patients with coronary heart disease using contrast-enhanced US and the correlation between risk factors and acute coronary syndrome (ACS). METHODS Sixty patients with ACS and 60 with stable coronary artery disease (CAD) underwent conventional carotid and contrast-enhanced US, and plaque enhancement was observed and analyzed quantitatively. Carotid contrast-enhanced US was performed within 1 month of ACS occurrence. Interobserver and intraobserver variability of the measurements was assessed. The peak signal intensity was the maximum number of contrast microbubbles that local tissues could accumulate, reflecting the local microvascular density and representing the capillary volume. RESULTS The ACS group had higher low-density lipoprotein cholesterol (mean ± SD, 3.21 ± 0.75 versus 2.53 ± 0.71 mmol/L; P < .01) and high-sensitivity C-reactive protein (CRP; 3.76 ± 0.19 versus 2. 93 ± 0.15 mg/L; P < .01) levels than the stable CAD group. The proportion of soft plaques in the ACS group (81%) was higher than in the stable CAD group (53%). The proportion of plaque enhancement, peak signal intensity, and plaque-to-carotid lumen enhancement intensity ratio were higher in the ACS group than the stable CAD group. The peak signal intensity was correlated with the high-sensitivity CRP value. Logistic regression analyses indicated that age (65-74 years), high-sensitivity CRP, and enhancement intensity were correlated with the occurrence of ACS. The sensitivity and specificity of the peak signal intensity in carotid plaques were 80.0% and 88.3%, respectively (cutoff value, 9.97 dB; area under the receiver operating characteristic curve, 0.865). The time-intensity curve measurements had good repeatability. CONCLUSIONS Carotid plaque enhancement is a potential independent risk factor for ACS occurrence. These results illustrate the correlation of carotid plaque vulnerability with the coronary artery symptomatic state according to the common pathogenetic mechanism of atherosclerosis.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Department of Ultrasound, Central Hospital, Karamay, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xinfang Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yilian Duan
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zhou Ye
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Ultrasound, Central Hospital, Karamay, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
35
|
van Lith SAM, Roodink I, Verhoeff JJC, Mäkinen PI, Lappalainen JP, Ylä-Herttuala S, Raats J, van Wijk E, Roepman R, Letteboer SJ, Verrijp K, Leenders WPJ. In vivo phage display screening for tumor vascular targets in glioblastoma identifies a llama nanobody against dynactin-1-p150Glued. Oncotarget 2018; 7:71594-71607. [PMID: 27689404 PMCID: PMC5342104 DOI: 10.18632/oncotarget.12261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 12/23/2022] Open
Abstract
Diffuse gliomas are primary brain cancers that are characterised by infiltrative growth. Whereas high-grade glioma characteristically presents with perinecrotic neovascularisation, large tumor areas thrive on pre-existent vasculature as well. Clinical studies have revealed that pharmacological inhibition of the angiogenic process does not improve survival of glioblastoma patients. Direct targeting of tumor vessels may however still be an interesting therapeutic approach as it allows pinching off the blood supply to tumor cells. Such tumor vessel targeting requires the identification of tumor-specific vascular targeting agents (TVTAs). Here we describe a novel TVTA, C-C7, which we identified via in vivo biopanning of a llama nanobody phage display library in an orthotopic mouse model of diffuse glioma. We show that C-C7 recognizes a subpopulation of tumor blood vessels in glioma xenografts and clinical glioma samples. Additionally, C-C7 recognizes macrophages and activated endothelial cells in atherosclerotic lesions. By using C-C7 as bait in yeast-2-hybrid (Y2H) screens we identified dynactin-1-p150Glued as its binding partner. The interaction was confirmed by co-immunostainings with C-C7 and a commercial anti-dynactin-1-p150Glued antibody, and via co-immunoprecipitation/western blot studies. Normal brain vessels do not express dynactin-1-p150Glued and its expression is reduced under anti-VEGF therapy, suggesting that dynactin-1-p150Glued is a marker for activated endothelial cells. In conclusion, we show that in vivo phage display combined with Y2H screenings provides a powerful approach to identify tumor-targeting nanobodies and their binding partners. Using this combination of methods we identify dynactin-1-p150Glued as a novel targetable protein on activated endothelial cells and macrophages.
Collapse
Affiliation(s)
| | - Ilse Roodink
- Department of Pathology, RadboudUMC, 6500 HB, Nijmegen, The Netherlands.,Modiquest BV, LSP, Molenstraat 110, 5342 CC, Oss, The Netherlands
| | | | - Petri I Mäkinen
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Jari P Lappalainen
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, FI-70211, Kuopio, Finland.,Science Service Center and Gene Therapy Unit, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Jos Raats
- Modiquest BV, LSP, Molenstraat 110, 5342 CC, Oss, The Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RadboudUMC, 6500 HB, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Genetics, RadboudUMC, 6500 HB, Nijmegen,The Netherlands
| | - Stef J Letteboer
- Department of Genetics, RadboudUMC, 6500 HB, Nijmegen,The Netherlands
| | - Kiek Verrijp
- Department of Pathology, RadboudUMC, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
36
|
Ma L, Ni M, Hao P, Lu H, Yang X, Xu X, Zhang C, Huang S, Zhao Y, Liu X, Zhang Y. Tongxinluo mitigates atherogenesis by regulating angiogenic factors and inhibiting vasa vasorum neovascularization in apolipoprotein E-deficient mice. Oncotarget 2017; 7:16194-204. [PMID: 26908443 PMCID: PMC4941307 DOI: 10.18632/oncotarget.7477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/08/2016] [Indexed: 02/05/2023] Open
Abstract
Vasa vasorum (VV) neovascularization contributes to atherogenesis and its expansion and distribution is correlated with intraplaque expression of angiogenic factors. The present study investigated the roles of Tongxinluo (TXL), a traditional Chinese medication, on VV proliferation and atherogenesis. In vitro, TXL pre-treatment reversed the tumor necrosis factor-a (TNF-a) induced expression of vascular endothelial growth factor A (VEGF-A) and angiopoietin-1 (ANGPT-1) but not ANGPT-2, leading to increased ratio of ANGPT-1 to ANGPT-2. Consistently, TXL treatment (at a dosage of 0.38, 0.75, 1.5 g/kg/d, respectively) decreased the expression of VEGF-A while increased that of ANGPT-1 in early atherosclerotic lesions of apolipoprotein E deficient (apoE−/−) mice. On aortic ring assay, microvessels sprouting from aortas were significantly inhibited in TXL-treated mice. Moreover, VV neovascularization in plaques was markedly reduced with TXL treatment. Histological and morphological analysis demonstrated that TXL treatment reduced plaque burden, plaque size and changed the plaque composition. These data suggest that TXL inhibits early atherogenesis through regulating angiogenic factor expression and inhibiting VV proliferation in atherosclerotic plaque. Our study shed new light on the anti-atherosclerotic effect of TXL.
Collapse
Affiliation(s)
- Lianyue Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Shandong 250012, P.R. China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, P.R. China
| | - Mei Ni
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Shandong 250012, P.R. China
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Shandong 250012, P.R. China
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Shandong 250012, P.R. China
| | - Xiaoyan Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Shandong 250012, P.R. China
| | - Xingli Xu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Shandong 250012, P.R. China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Shandong 250012, P.R. China
| | - Shanying Huang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Shandong 250012, P.R. China
| | - Yuxia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Shandong 250012, P.R. China
| | - Xiaoling Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Shandong 250012, P.R. China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, P.R. China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Shandong 250012, P.R. China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, P.R. China
| |
Collapse
|
37
|
Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin Sci (Lond) 2017; 131:87-103. [PMID: 27941161 PMCID: PMC5146956 DOI: 10.1042/cs20160129] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/23/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022]
Abstract
Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)-Tie system is a second endothelial cell specific ligand-receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang-Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang-Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang-Tie system in vascular development and pathogenesis of vascular diseases.
Collapse
|
38
|
Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov 2017; 16:635-661. [PMID: 28529319 DOI: 10.1038/nrd.2016.278] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endothelial angiopoietin (ANG)-TIE growth factor receptor pathway regulates vascular permeability and pathological vascular remodelling during inflammation, tumour angiogenesis and metastasis. Drugs that target the ANG-TIE pathway are in clinical development for oncological and ophthalmological applications. The aim is to complement current vascular endothelial growth factor (VEGF)-based anti-angiogenic therapies in cancer, wet age-related macular degeneration and macular oedema. The unique function of the ANG-TIE pathway in vascular stabilization also renders this pathway an attractive target in sepsis, organ transplantation, atherosclerosis and vascular complications of diabetes. This Review covers key aspects of the function of the ANG-TIE pathway in vascular disease and describes the recent development of novel therapeutics that target this pathway.
Collapse
Affiliation(s)
- Pipsa Saharinen
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 5A, University of Oulu, 90220 Oulu, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, FI-00014 Helsinki, Finland
| |
Collapse
|
39
|
Parma L, Baganha F, Quax PHA, de Vries MR. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol 2017; 816:107-115. [PMID: 28435093 DOI: 10.1016/j.ejphar.2017.04.028] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
Abstract
Acute cardiovascular events, due to rupture or erosion of an atherosclerotic plaque, represent the major cause of morbidity and mortality in patients. Growing evidence suggests that plaque neovascularization is an important contributor to plaque growth and instability. The vessels' immaturity, with profound structural and functional abnormalities, leads to recurrent intraplaque hemorrhage. This review discusses new insights of atherosclerotic neovascularization, including the effects of leaky neovessels on intraplaque hemorrhage, both in experimental models and humans. Furthermore, modalities for in vivo imaging and therapeutic interventions to target plaque angiogenesis will be discussed.
Collapse
Affiliation(s)
- Laura Parma
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Fabiana Baganha
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Paul H A Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Margreet R de Vries
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
40
|
Brown RA, Shantsila E, Varma C, Lip GYH. Current Understanding of Atherogenesis. Am J Med 2017; 130:268-282. [PMID: 27888053 DOI: 10.1016/j.amjmed.2016.10.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Scientific understanding of atherogenesis is constantly developing. From Virchow's observations 160 years ago we now recognize the endothelial response to injury as inflammatory, involved in all stages of atherosclerosis. Endothelial activation may cause reversible injury or dysfunction, or lead to irreparable damage. Indeed, early atherosclerosis is reversible. The introduction of genome-wide association testing has furthered the identification of potentially important genetic variants that help explain the heritability of coronary artery disease as well as spontaneous cases of severe coronary artery disease in patients with otherwise minimal risk factors. However, the mechanisms by which many of the newer variants exert their influence remain unknown.
Collapse
Affiliation(s)
- Richard A Brown
- Department of Medicine, University of Birmingham Institute of Cardiovascular Sciences, City Hospital, United Kingdom
| | - Eduard Shantsila
- Department of Medicine, University of Birmingham Institute of Cardiovascular Sciences, City Hospital, United Kingdom; Cardiology Department at Sandwell and West Birmingham Hospitals NHS Trust, City Hospital and Sandwell Hospital, West Bromwich, United Kingdom
| | - Chetan Varma
- Cardiology Department at Sandwell and West Birmingham Hospitals NHS Trust, City Hospital and Sandwell Hospital, West Bromwich, United Kingdom
| | - Gregory Y H Lip
- Department of Medicine, University of Birmingham Institute of Cardiovascular Sciences, City Hospital, United Kingdom; Cardiology Department at Sandwell and West Birmingham Hospitals NHS Trust, City Hospital and Sandwell Hospital, West Bromwich, United Kingdom.
| |
Collapse
|
41
|
Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol 2017; 12:18-34. [PMID: 28212521 PMCID: PMC5312547 DOI: 10.1016/j.redox.2017.01.007] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a multifocal alteration of the vascular wall of medium and large arteries characterized by a local accumulation of cholesterol and non-resolving inflammation. Atherothrombotic complications are the leading cause of disability and mortality in western countries. Neovascularization in atherosclerotic lesions plays a major role in plaque growth and instability. The angiogenic process is mediated by classical angiogenic factors and by additional factors specific to atherosclerotic angiogenesis. In addition to its role in plaque progression, neovascularization may take part in plaque destabilization and thromboembolic events. Anti-angiogenic agents are effective to reduce atherosclerosis progression in various animal models. However, clinical trials with anti-angiogenic drugs, mainly anti-VEGF/VEGFR, used in anti-cancer therapy show cardiovascular adverse effects, and require additional investigations.
Collapse
Affiliation(s)
- Caroline Camaré
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France; Université Paul Sabatier Toulouse III, Faculty of Medicine, Biochemistry Departement, Toulouse, France; CHU Toulouse, Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9, France
| | - Mélanie Pucelle
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France
| | - Anne Nègre-Salvayre
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France.
| | - Robert Salvayre
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France; Université Paul Sabatier Toulouse III, Faculty of Medicine, Biochemistry Departement, Toulouse, France; CHU Toulouse, Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9, France.
| |
Collapse
|
42
|
The therapeutic effect of bevacizumab on plaque neovascularization in a rabbit model of atherosclerosis during contrast-enhanced ultrasonography. Sci Rep 2016; 6:30417. [PMID: 27452862 PMCID: PMC4958919 DOI: 10.1038/srep30417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
Abstract
The purpose of the study was to assess the therapeutic effect of the angiogenesis inhibitor bevacizumab on plaques of various stages in rabbit models using contrast-enhanced ultrasonography (CEUS). Abdominal aortic atherosclerosis was induced in 55 rabbits. Thirty-six randomly selected rabbits were divided into 2 groups according to the timing of the bevacizumab injection: an early-stage plaque group (Group ESP) and a later-stage plaque group (Group LSP). The remainder were considered the control group. Standard ultrasonography and CEUS imaging of the abdominal aorta were performed. The animals were euthanized after CEUS, and plaque specimens were harvested for histological staining of CD31. The control group exhibited a substantially higher enhanced intensity, a higher ratio of enhanced intensity in the plaque to that in the lumen, and an increased number of CD31-positive microvessels in the plaque sections than Groups ESP and LSP (P < 0.05 for all). A higher enhanced intensity (P = 0.044), a higher ratio of enhanced intensity in the plaque to that in the lumen (P = 0.023) and more CD31-positive microvessels in the plaque sections (P = 0.006) were found in Group LSP than in Group ESP. Bevacizumab demonstrated more advanced inhibition of neovascularization in early-stage plaques in rabbits.
Collapse
|
43
|
Li H, Liu Z, Gou Y, Yu H, Siminelakis S, Wang S, Kong D, Zhou Y, Liu Z, Ding Y, Yao D. Estradiol mediates vasculoprotection via ERRα-dependent regulation of lipid and ROS metabolism in the endothelium. J Mol Cell Cardiol 2015; 87:92-101. [PMID: 26271712 DOI: 10.1016/j.yjmcc.2015.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/01/2015] [Accepted: 08/07/2015] [Indexed: 12/24/2022]
Abstract
The estrogen-mediated vasculoprotective effect has been widely reported in many animal studies, although the clinical trials are controversial and the detailed mechanisms remain unclear. In this study, we focused on the molecular mechanism and consequence of 17β-estradiol (E2)-induced ERRα (estrogen-related receptor alpha) expression in endothelium and its potential beneficial effects on vascular function. The human aorta endothelial cells were used to identify the detailed molecular mechanism and consequences for E2-induced ERRα expression through estrogen receptors (ER), where ERα responses E2-induced ERRα activation, and ERβ responses basal ERRα expression. E2-induced ERRα expression increases fatty acid uptake/oxidation with increased mitochondrial replication, ATP generation and attenuated reactive oxygen species (ROS) formation. We have obtained further in vivo proof from high-fat diet mice that the lentivirus-carried endothelium-specific delivery of ERRα expression on the vascular wall normalizes E2 deficiency-induced increased plasma lipids with ameliorated vascular damage. ERRα knockdown worsens the problem, and the E2 could only partly restore this effect. This is the first time we report the detailed mechanism with direct evidence that E2-induced ERRα expression modulates the fatty acid metabolism and reduces the circulating lipids through endothelium. We conclude that E2-induced ERRα expression in endothelium plays an important role for the E2-induced vasculoprotective effect.
Collapse
Affiliation(s)
- Huawen Li
- School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Zhaoyu Liu
- Internal Medicine of Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulan Gou
- Department of Neurology, Wuhan No.1 Hospital, 215 Zhongshan Rd. Wuhan 430022, China
| | - Haibing Yu
- School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Stavros Siminelakis
- Department of Cardiac Surgery, School of Health Science, University of Ioannina, Greece
| | - Shixuan Wang
- Department of Obstetrics and Gynecology of Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Danli Kong
- School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Yikai Zhou
- Institute of Environmental Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengxiang Liu
- Internal Medicine of Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanling Ding
- School of Public Health, Guangdong Medical College, Dongguan 523808, China.
| | - Dachun Yao
- School of Public Health, Guangdong Medical College, Dongguan 523808, China.
| |
Collapse
|
44
|
Abstract
The endothelial TIE1 and TIE2 receptor tyrosine kinases form a distinct subfamily characterized by their unique extracellular domains. Together with the angiopoietin growth factors (ANGPT1, ANGPT2, ANGPT4, also abbreviated as ANG), the TIE receptors form an endothelial specific signaling pathway with important functions in the regulation of lymphatic and cardiovascular development and vascular homeostasis. Angiopoietins exist in multimeric forms that activate the TIE receptors via unique mechanism. In endothelial cell–cell contacts, angiopoietins induce the formation of homomeric in trans TIE receptor complexes extending across the cell junctions, whereas matrix-bound angiopoietin-1 (ANG1) activates the TIE receptors in a cis configuration. In comparison to the vascular endothelial growth factor receptors, the TIE receptors undergo little ubiquitin-mediated degradation after activation, whereas TIE2 signaling is negatively regulated by the vascular endothelial protein tyrosine phosphatase, VE-PTP. ANG1 activation of TIE2 supports vascular stabilization, whereas angiopoietin-2 (ANG2), a context-dependent weak TIE2 agonist/antagonist, promotes pathological tumor angiogenesis, vascular permeability, and inflammation. Recently, ANG2 has been found to mediate some of its vascular destabilizing and angiogenic functions via integrin signalling. The circulating levels of ANG2 are increased in cancer, and in several human diseases associated with inflammation and vascular leak, for example, in sepsis. Blocking of ANG2 has emerged as a potential novel therapeutic strategy for these diseases. In addition, preclinical results demonstrate that genetic TIE1 deletion in mice inhibits the vascularization and growth of tumor isografts and protects from atherosclerosis, with little effect on normal vascular homeostasis in adult mice. The ability of the ANG-TIE pathway to control vessel stability and angiogenesis makes it an interesting vascular target for the treatment of the various diseases.
Collapse
|