1
|
Tamehri Zadeh SST, Pang J, Watts GF. Wheels within wheels: Diagnostic and risk modifiers for familial hypercholesterolemia in the community. Eur J Intern Med 2025:S0953-6205(25)00100-1. [PMID: 40121133 DOI: 10.1016/j.ejim.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Affiliation(s)
| | - Jing Pang
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.
| |
Collapse
|
2
|
Ibrahim S, de Goeij JN, Nurmohamed NS, Pang J, van den Bosch SE, Martens FMAC, Roeters van Lennep JE, Corpeleijn W, Tumkaya T, Hovingh GK, Watts GF, Stroes ESG, Reeskamp LF. Unexpected gaps in knowledge of familial hypercholesterolaemia among Dutch general practitioners. Neth Heart J 2024; 32:213-220. [PMID: 38573436 DOI: 10.1007/s12471-024-01862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Familial hypercholesterolaemia (FH) warrants early diagnosis to prevent premature atherosclerotic cardiovascular disease (CVD). However, underdiagnosis and undertreatment of FH persist. This study aimed to assess the knowledge and practice of FH care among general practitioners (GPs) in the Netherlands. METHODS An internationally standardised, online questionnaire was sent to Dutch GPs between February 2021 and July 2022. The survey assessed knowledge and awareness of FH, encompassing general familiarity, awareness of management guidelines, inheritance, prevalence, CVD risk, and clinical practice related to FH. Comparative analysis was performed using data on primary care physicians from Western Australia, the Asia-Pacific region and the United Kingdom. RESULTS Of the 221 participating GPs, 62.4% rated their familiarity with FH as above average (score > 4 on a 1-7 scale), with 91.4% considering themselves familiar with FH treatment and referral guidelines. Correct identification of the FH definition, typical lipid profile, inheritance pattern, prevalence and CVD risk was reported by 83.7%, 87.8%, 55.7%, 19.5%, and 13.6% of the respondents, respectively. Of the participants, 58.4% answered fewer than half of the 8 knowledge questions correctly. Dutch GPs reported greater FH familiarity and guideline awareness compared with their international counterparts but exhibited similar low performance on FH knowledge questions. CONCLUSION Despite the Netherlands' relatively high FH detection rate, substantial knowledge gaps regarding FH persist among Dutch GPs, mirroring global trends. Enhanced FH education and awareness in primary care are imperative to improve FH detection and ensure adequate treatment. Targeting the global suboptimal understanding of FH might require international efforts.
Collapse
Affiliation(s)
- Shirin Ibrahim
- Department of Vascular Medicine, Amsterdam University Medical Centres, location Amsterdam University Medical Centre-University of Amsterdam, Amsterdam, The Netherlands
| | - Jim N de Goeij
- Department of Vascular Medicine, Amsterdam University Medical Centres, location Amsterdam University Medical Centre-University of Amsterdam, Amsterdam, The Netherlands
| | - Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam University Medical Centres, location Amsterdam University Medical Centre-University of Amsterdam, Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam University Medical Centres, location Vrije Universiteit medical centre, Amsterdam, The Netherlands
| | - Jing Pang
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Sibbeliene E van den Bosch
- Department of Paediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Amsterdam University Medical Centres and Gastroenterology, Endocrinology & Metabolism (AGEM), location Academic Medical Centre-University of Amsterdam, Amsterdam, The Netherlands
| | - Fabrice M A C Martens
- Department of Cardiology, Amsterdam University Medical Centres, location Vrije Universiteit medical centre, Amsterdam, The Netherlands
| | | | - Willemijn Corpeleijn
- Department of Paediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Amsterdam University Medical Centres and Gastroenterology, Endocrinology & Metabolism (AGEM), location Academic Medical Centre-University of Amsterdam, Amsterdam, The Netherlands
| | - Talip Tumkaya
- Department of General Practice, Huisartsenpraktijk Parkhof, Maassluis, The Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam University Medical Centres, location Amsterdam University Medical Centre-University of Amsterdam, Amsterdam, The Netherlands
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, WA, Australia
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centres, location Amsterdam University Medical Centre-University of Amsterdam, Amsterdam, The Netherlands
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam University Medical Centres, location Amsterdam University Medical Centre-University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Constantin AT, Streata I, Covăcescu MS, Riza AL, Roșca I, Delia C, Tudor LM, Dorobanțu Ș, Dragoș A, Ristea D, Ioana M, Gherghina I. Genetic Testing for Familial Hypercholesterolemia in a Pediatric Group: A Romanian Showcase. Diagnostics (Basel) 2023; 13:1988. [PMID: 37370883 DOI: 10.3390/diagnostics13121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disease marked by high levels of LDL-cholesterol. This condition has long-term clinical implications, such as cardiovascular events, that are evident during adult life. Here, we report on a single-center cross-sectional showcase study of genetic testing for FH in a Romanian pediatric group. Genetic testing for FH was performed on 20 Romanian pediatric patients, 10 boys and 10 girls, admitted with LDL-cholesterol levels over 130 mg/mL to the National Institute for Mother and Child Health "Alesssandrescu-Rusescu" in 2020. Genetic testing was performed using the Illumina TruSight Cardio panel. We identified pathogenic/likely pathogenic variants that could explain the phenotype in 5/20 cases. The involved genes were LDLR and APOB. Clinical signs that suggest the diagnosis of FH are scarce for the pediatric patient, although it can be diagnosed early during childhood by lipid panel screening. Prevention could prove lifesaving for some of these patients.
Collapse
Affiliation(s)
- Andreea Teodora Constantin
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| | - Ioana Streata
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Mirela Silvia Covăcescu
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| | - Anca Lelia Riza
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Ioana Roșca
- Faculty of Midwifery and Nursery, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
- Neonatology Department, Clinical Hospital of Obstetrics and Gynecology "Prof. Dr. P.Sârbu", 060251 Bucharest, Romania
| | - Corina Delia
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| | - Lucia Maria Tudor
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| | - Ștefania Dorobanțu
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Adina Dragoș
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Diana Ristea
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Mihai Ioana
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Ioan Gherghina
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| |
Collapse
|
4
|
Ramli AS, Qureshi N, Abdul-Hamid H, Kamal A, Kanchau JD, Shahuri NS, Akyea RK, Silva L, Condon L, Abdul-Razak S, Al-Khateeb A, Chua YA, Mohamed-Yassin MS, Baharudin N, Badlishah-Sham SF, Abdul Aziz AF, Mohd Kasim NA, Sheikh Abdul Kadir SH, Kai J, Leonardi-Bee J, Nawawi H. Reducing Premature Coronary Artery Disease in Malaysia by Early Identification of Familial Hypercholesterolemia Using the Familial Hypercholesterolemia Case Ascertainment Tool (FAMCAT): Protocol for a Mixed Methods Evaluation Study. JMIR Res Protoc 2023; 12:e47911. [PMID: 37137823 PMCID: PMC10276320 DOI: 10.2196/47911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is predominantly caused by mutations in the 4 FH candidate genes (FHCGs), namely, low-density lipoprotein receptor (LDLR), apolipoprotein B-100 (APOB-100), proprotein convertase subtilisin/kexin type 9 (PCSK9), and the LDL receptor adaptor protein 1 (LDLRAP1). It is characterized by elevated low-density lipoprotein cholesterol (LDL-c) levels leading to premature coronary artery disease. FH can be clinically diagnosed using established clinical criteria, namely, Simon Broome (SB) and Dutch Lipid Clinic Criteria (DLCC), and can be identified using the Familial Hypercholesterolemia Case Ascertainment Tool (FAMCAT), a primary care screening tool. OBJECTIVE This study aims to (1) compare the detection rate of genetically confirmed FH and diagnostic accuracy between the FAMCAT, SB, and DLCC in the Malaysian primary care setting; (2) identify the genetic mutation profiles, including novel variants, in individuals with suspected FH in primary care; (3) explore the experience, concern, and expectation of individuals with suspected FH who have undergone genetic testing in primary care; and (4) evaluate the clinical utility of a web-based FH Identification Tool that includes the FAMCAT, SB, and DLCC in the Malaysian primary care setting. METHODS This is a mixed methods evaluation study conducted in 11 Ministry of Health primary care clinics located at the central administrative region of Malaysia. In Work stream 1, the diagnostic accuracy study design is used to compare the detection rate and diagnostic accuracy of the FAMCAT, SB, and DLCC against molecular diagnosis as the gold standard. In Work stream 2, the targeted next-generation sequencing of the 4 FHCGs is used to identify the genetic mutation profiles among individuals with suspected FH. In Work stream 3a, a qualitative semistructured interview methodology is used to explore the experience, concern, and expectation of individuals with suspected FH who have undergone genetic testing. Lastly, in Work stream 3b, a qualitative real-time observation of primary care physicians using the "think-aloud" methodology is applied to evaluate the clinical utility of a web-based FH Identification Tool. RESULTS The recruitment for Work stream 1, and blood sampling and genetic analysis for Work stream 2 were completed in February 2023. Data collection for Work stream 3 was completed in March 2023. Data analysis for Work streams 1, 2, 3a, and 3b is projected to be completed by June 2023, with the results of this study anticipated to be published by December 2023. CONCLUSIONS This study will provide evidence on which clinical diagnostic criterion is the best to detect FH in the Malaysian primary care setting. The full spectrum of genetic mutations in the FHCGs including novel pathogenic variants will be identified. Patients' perspectives while undergoing genetic testing and the primary care physicians experience in utilizing the web-based tool will be established. These findings will have tremendous impact on the management of patients with FH in primary care and subsequently reduce their risk of premature coronary artery disease. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/47911.
Collapse
Affiliation(s)
- Anis Safura Ramli
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Nadeem Qureshi
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Hasidah Abdul-Hamid
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aisyah Kamal
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Johanes Dedi Kanchau
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Nur Syahirah Shahuri
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Ralph Kwame Akyea
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Luisa Silva
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Laura Condon
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Suraya Abdul-Razak
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Cardio Vascular and Lungs Research Institute (CaVaLRI), Hospital Al-Sultan Abdullah, Universiti Teknologi MARA, Bandar Puncak Alam, Selangor, Malaysia
| | - Alyaa Al-Khateeb
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Yung-An Chua
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Mohamed-Syarif Mohamed-Yassin
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Noorhida Baharudin
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Siti Fatimah Badlishah-Sham
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | | | - Noor Alicezah Mohd Kasim
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Joe Kai
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jo Leonardi-Bee
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Hapizah Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
5
|
Tricou EP, Morgan KM, Betts M, Sturm AC. Genetic Testing for Familial Hypercholesterolemia in Clinical Practice. Curr Atheroscler Rep 2023; 25:197-208. [PMID: 37060538 DOI: 10.1007/s11883-023-01094-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW Genetic testing has proven utility in identifying and diagnosing individuals with FH. Here we outline the current landscape of genetic testing for FH, recommendations for testing practices and the efforts underway to improve access, availability, and uptake. RECENT FINDINGS Alternatives to the traditional genetic testing and counseling paradigm for FH are being explored including expanding screening programs, testing in primary care and/or cardiology clinics, leveraging electronic communication tools like chatbots, and implementing direct contact approaches to facilitate genetic testing of both probands and at-risk relatives. There is no consensus on if, when, and how genetic testing or accompanying genetic counseling should be provided for FH, though traditional genetic counseling and/or testing in specialty lipid clinics is often recommended in expert statements and professional guidelines. More evidence is needed to determine whether alternative approaches to the implementation of genetic testing for FH may be more effective.
Collapse
Affiliation(s)
| | - Kelly M Morgan
- Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Megan Betts
- Genomic Medicine Institute, Geisinger, Danville, PA, USA
- Precision Medicine Center-Medical Group, WellSpan, York, PA, USA
| | | |
Collapse
|
6
|
Aparicio A, Villazón F, Suárez-Gutiérrez L, Gómez J, Martínez-Faedo C, Méndez-Torre E, Avanzas P, Álvarez-Velasco R, Cuesta-Llavona E, García-Lago C, Neuhalfen D, Coto E, Lorca R. Clinical Evaluation of Patients with Genetically Confirmed Familial Hypercholesterolemia. J Clin Med 2023; 12:jcm12031030. [PMID: 36769678 PMCID: PMC9917940 DOI: 10.3390/jcm12031030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Familial hypercholesterolemia (FH) is the most common genetic disorder associated with premature atherosclerotic cardiovascular (CV) disease (ASCVD). However, it still is severely underdiagnosed. Initiating lipid-lowering therapy (LLT) in FH patients early in life can substantially reduce their ASCVD risk. As a result, identifying FH is of the utmost importance. The increasing availability of genetic testing may be useful in this regard. We aimed to evaluate the genetic profiles, clinical characteristics, and gender differences between the first consecutive patients referred for genetic testing with FH clinical suspicion in our institution (a Spanish cohort). Clinical information was reviewed, and all participants were sequenced for the main known genes related to FH: LDLR, APOB, PCSK9 (heterozygous FH), LDLRAP1 (autosomal recessive FH), and two other genes related to hyperlipidaemia (APOE and LIPA). The genetic yield was 32%. Their highest recorded LDLc levels were 294 ± 65 SD mg. However, most patients (79%) were under > 1 LLT medication, and their last mean LDLc levels were 135 ± 51 SD. LDLR c.2389+4A>G was one of the most frequent pathogenic/likely pathogenic variants and its carriers had significantly worse LDLc highest recorded levels (348 ± 61 SD vs. 282 ± 60 SD mg/dL, p = 0.002). Moreover, we identified an homozygous carrier of the pathogenic variant LDLRAP1 c.207delC (autosomal recessive FH). Both clinical and genetic hypercholesterolemia diagnosis was significantly established earlier in men than in women (25 years old ± 15 SD vs. 35 years old ± 19 SD, p = 0.02; and 43 ± 17 SD vs. 54 ± 19 SD, p = 0.02, respectively). Other important CV risk factors were found in 44% of the cohort. The prevalence of family history of premature ASCVD was high, whereas personal history was exceptional. Our finding reaffirms the importance of early detection of FH to initiate primary prevention strategies from a young age. Genetic testing can be very useful. As it enables familial cascade genetic testing, early prevention strategies can be extended to all available relatives at concealed high CV risk.
Collapse
Affiliation(s)
- Andrea Aparicio
- Área del Corazón, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
| | - Francisco Villazón
- Servicio de Endocrinología y Nutrición, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Lorena Suárez-Gutiérrez
- Servicio de Endocrinología y Nutrición, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Genética Molecular, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
- Unidad de Cardiopatías Familiares, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Ceferino Martínez-Faedo
- Servicio de Endocrinología y Nutrición, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Edelmiro Méndez-Torre
- Servicio de Endocrinología y Nutrición, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pablo Avanzas
- Área del Corazón, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Medicine Department, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Rut Álvarez-Velasco
- Área del Corazón, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Elías Cuesta-Llavona
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Genética Molecular, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
- Unidad de Cardiopatías Familiares, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Claudia García-Lago
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Genética Molecular, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
| | - David Neuhalfen
- Medicine Department, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Eliecer Coto
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Genética Molecular, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
- Unidad de Cardiopatías Familiares, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
- Medicine Department, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Rebeca Lorca
- Área del Corazón, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Hospital Universitario Central Asturias (HUCA), 33011 Oviedo, Spain
- CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
- Medicine Department, Universidad de Oviedo, 33003 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain
- Correspondence:
| |
Collapse
|
7
|
Homeniuk R, Gallagher J, Collins C. A mixed methods study of the awareness and management of familial hypercholesterolaemia in Irish general practice. Front Med (Lausanne) 2022; 9:1016198. [PMID: 36314005 PMCID: PMC9596980 DOI: 10.3389/fmed.2022.1016198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Familial Hypercholesterolemia (FH) is one of the most common genetic disorders, with an estimated global prevalence of 1:200-500, which leads to premature cardiovascular disease. Nevertheless, public and professional awareness of FH is often lacking, with an estimated 20,000 largely undiagnosed cases in Ireland. Purpose The overall aim of the project was to test the feasibility of a model of care that would include electronic record screening, clinical assessment, and coding of possible FH patients across a network of general practices in Ireland. In addition, a secondary aim was to gauge the awareness and knowledge of FH across the network. Methods This study took part in multiple phases, employing a mixed methods design. The study included a validated questionnaire, tailored online educational resources, a retrospective chart review of patients with a history of elevated LDL cholesterol (LDLc) and an active review with a selection of those patients. Results were analyzed using SPSS V27, where descriptive statistics and relevant correlation tests were employed. Results Eighteen general practices agreed to take part in the study. In the initial survey, respondents rated their personal and practice familiarity with FH as slightly below average. Around one-third of respondents were not aware of FH guidelines. Of over 55,000 adult patient records searched, only 0.2% had a recorded FH diagnosis and 3.9% had ever had an LDLc above 4.9 mmol/l. Eight practices completed 198 chart reviews. Among these, 29.8% of patients had a family history recorded, and 22.2% had a family history of CVD recorded. Female patients had higher averages for highest and recent LDLc. Seventy patients underwent a clinical review-with 27% of these patients identified as "probable" or "definite FH." There was a statistically significant (p = 0.002) relationship between FH status and whether the patient had other CVD risk factors. Conclusion General practitioners in Ireland had similar levels of awareness of FH compared to findings from elsewhere. The activities discussed encouraged clinicians to consider FH when talking to their patients, especially those with elevated LDLc at an early age. Broader awareness of the condition could increase conversations about FH and benefit patient outcomes.
Collapse
Affiliation(s)
- Robyn Homeniuk
- Research Centre, Irish College of General Practitioners, Dublin, Ireland
| | - Joseph Gallagher
- Cardiovascular Clinical Lead, Irish College of General Practitioners, Dublin, Ireland
| | - Claire Collins
- Research Centre, Irish College of General Practitioners, Dublin, Ireland,*Correspondence: Claire Collins
| |
Collapse
|
8
|
Horton AE, Martin AC, Srinivasan S, Justo RN, Poplawski NK, Sullivan D, Brett T, Chow CK, Nicholls SJ, Pang J, Watts GF. Integrated guidance to enhance the care of children and adolescents with familial hypercholesterolaemia: Practical advice for the community clinician. J Paediatr Child Health 2022; 58:1297-1312. [PMID: 35837752 PMCID: PMC9545564 DOI: 10.1111/jpc.16096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Abstract
Familial hypercholesterolaemia (FH) is a highly penetrant monogenic disorder present from birth that markedly elevates plasma low-density lipoprotein (LDL)-cholesterol (LDL-C) concentration and, if untreated, leads to premature atherosclerosis and coronary artery disease (CAD). At a prevalence of 1:250 individuals, with over 90% undiagnosed, recent estimates suggest that there are approximately 22 000 children and adolescents with FH in Australia and New Zealand. However, the overwhelming majority remain undetected and inadequately treated until adulthood or after their first cardiac event. The guidance in this paper aims to increase awareness about paediatric FH and provide practical advice for the diagnosis and management of FH in children and adolescents. Recommendations are given on the detection, diagnosis, assessment and management of FH in children and adolescents. Recommendations are also made on genetic testing, including counselling and the potential for universal screening programmes. Practical guidance on management includes treatment of non-cholesterol risk factors, and safe and appropriate use of LDL-C lowering therapies, including statins, ezetimibe, PCSK9 inhibitors and lipoprotein apheresis. Models of care for FH need to be adapted to local and regional health care needs and available resources. Targeting the detection of FH as a priority in children and young adults has the potential to alter the natural history of atherosclerotic cardiovascular disease and recognise the promise of early detection for improving long-term health outcomes. A comprehensive implementation strategy, informed by further research, including assessments of cost-benefit, will be required to ensure that this new guidance benefits all families with or at risk of FH.
Collapse
Affiliation(s)
- Ari E Horton
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Victoria, Australia
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Andrew C Martin
- Department General Paediatrics, Perth Children's Hospital, Perth, Western Australia, Australia
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Robert N Justo
- Department of Paediatric Cardiology, Queensland Children's Hospital, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Tom Brett
- General Practice and Primary Health Care Research, School of Medicine, University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia
- Cardiovascular Division, George Institute for Global Health, Sydney, New South Wales, Australia
| | - Stephen J Nicholls
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Victoria, Australia
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Lipid Disorders Clinic, Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
- Lipid Disorders Clinic, Cardiometabolic Service, Department of Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Banderali G, Capra ME, Biasucci G, Stracquadaino R, Viggiano C, Pederiva C. Detecting Familial hypercholesterolemia in children and adolescents: potential and challenges. Ital J Pediatr 2022; 48:115. [PMID: 35840982 PMCID: PMC9287900 DOI: 10.1186/s13052-022-01257-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background It is now well established that atherosclerosis begins in childhood and evolves through adolescence and young adulthood, ultimately resulting in myocardial infarction and stroke in adults. Main test Childhood is a critical phase during which atherosclerosis may begin to develop; in the presence of familial hypercholesterolemia, lifelong elevation of Low Density Lipoprotein cholesterol levels greatly accelerates atherosclerosis. These concepts, which have been largely developed from epidemiologic evidence, have not always been simple to implement in the paediatric clinical practice. The purpose of this article is to briefly review but also to highlight the rationale, the motivation and the methods in the process of identifying children and adolescents with familial hypercholesterolemia, an often hidden but very important genetic disease.
Collapse
Affiliation(s)
- Giuseppe Banderali
- Department of General Paediatrics, Clinical Dyslipidemia Service for the Study and Prevention of Atherosclerosis in Children, ASST-Santi Paolo E Carlo, University of Milan, Milan, Italy
| | - Maria Elena Capra
- Centre for Paediatric Dyslipidaemias, Paediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121, Piacenza, Italy. .,Department of Translational Medical and Surgical Sciences, University of Parma, 43126, Parma, Italy.
| | - Giacomo Biasucci
- Centre for Paediatric Dyslipidaemias, Paediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121, Piacenza, Italy
| | - Rita Stracquadaino
- Department of General Paediatrics, Clinical Dyslipidemia Service for the Study and Prevention of Atherosclerosis in Children, ASST-Santi Paolo E Carlo, University of Milan, Milan, Italy
| | - Claudia Viggiano
- Department of General Paediatrics, Clinical Dyslipidemia Service for the Study and Prevention of Atherosclerosis in Children, ASST-Santi Paolo E Carlo, University of Milan, Milan, Italy
| | - Cristina Pederiva
- Department of General Paediatrics, Clinical Dyslipidemia Service for the Study and Prevention of Atherosclerosis in Children, ASST-Santi Paolo E Carlo, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Hamasaki M, Hosaka N, Freeman LA, Sato M, Hara K, Remaley AT, Kotani K. A novel loop-mediated isothermal amplification-based genotyping method and its application for identifying proprotein convertase subtilisin/kexin type 9 variants in familial hypercholesterolemia. Biochim Biophys Acta Gen Subj 2022; 1866:130063. [PMID: 34848321 DOI: 10.1016/j.bbagen.2021.130063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating low-density lipoprotein levels in plasma. While PCSK9 variants are causatively associated with familial hypercholesterolemia (FH), additional genotyping methods for FH targeting PCSK9 variants are required in a clinical setting. Loop-mediated isothermal amplification (LAMP) is a unique amplification method that amplifies a target gene under isothermal conditions (60-65 °C). However, a robust standardized method has not yet been established for LAMP-based genetic screening tests for genetic diseases, including FH. The present study aimed to develop a novel modification of the LAMP method designed to genotype single nucleotide variants (SNVs) and to apply it for the detection of PCSK9 variants. METHODS Using short quenching probes (≤ 10 nucleotides) for the loop structures of LAMP amplicons, accurate detection of SNVs was verified separately for each allele, without any additional procedures, within 3 h. The diagnostic performance of this method in detecting PCSK9 variants was validated in FH patients. RESULTS All PCSK9 variants tested via conventional sequencing in FH patients were successfully detected using this novel LAMP method. CONCLUSIONS We developed a LAMP-based genotyping method to detect PCSK9 variants in FH. Compared to conventional sequencing, our genotyping method is relatively convenient and time-efficient and is suitable for the screening of FH in clinical settings. Future studies on various genes are also warranted.
Collapse
Affiliation(s)
- Masato Hamasaki
- Division of Community and Family Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi 329-0498, Japan; Eiken Chemical Co., Ltd., 143 Nogi, Nogi-Town, Shimotsuga, Tochigi 329-0114, Japan.
| | - Norimitsu Hosaka
- Eiken Chemical Co., Ltd., 143 Nogi, Nogi-Town, Shimotsuga, Tochigi 329-0114, Japan.
| | - Lita A Freeman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892, USA.
| | - Masaki Sato
- Eiken Chemical Co., Ltd., 143 Nogi, Nogi-Town, Shimotsuga, Tochigi 329-0114, Japan; Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892, USA
| | - Kazuo Hara
- Division of Endocrinology and Metabolism, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-City, Saitama 330-8503, Japan
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892, USA.
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi 329-0498, Japan.
| |
Collapse
|
11
|
Rosman N, Nawawi HM, Al-Khateeb A, Chua YA, Chua AL. Development of an Optimized Tetra-Amplification Refractory Mutation System PCR for Detection of 12 Pathogenic Familial Hypercholesterolemia Variants in the Asian Population. J Mol Diagn 2022; 24:120-130. [PMID: 35074074 DOI: 10.1016/j.jmoldx.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Early detection of genetic diseases such as familial hypercholesterolemia (FH), and the confirmation of related pathogenic variants, are crucial in reducing the risk for premature coronary artery disease. Currently, next-generation sequencing is used for detecting FH-related candidate genes but is expensive and time-consuming. There is a lack of kits suitable for the detection of the common FH-related variants in the Asia-Pacific region. Thus, this study addressed that need with the development of an optimized tetra-amplification mutation system (T-ARMS) PCR-based assay for the detection of 12 pathogenic variants of FH in the Asian population. The two important parameters for T-ARMS PCR assay performance-annealing temperature and the ratio of outer/inner primer concentrations-were optimized in this study. The optimal annealing temperature of all 12 T-ARMS PCR reactions was 64.6°C. The ideal ratios of outer/inner primer concentrations with each pathogenic variant were: A1, 1:2; A2, 1:4; L1, 1:10; L2, 1:1; L3, 1:2; L4, 1:8; L5, 1:1; L6, 1:2; L7, 1:8; L8, 1:8; L9, 1:2; and L10, 1:8. The lowest limit of detection using DNA extracted from patients was 0.1 ng. The present article highlights the beneficial findings on T-ARMS PCR as part of the development of a PCR-based detection kit for use in detecting FH in economically developing countries in Asia with a greater prevalence of FH.
Collapse
Affiliation(s)
- Norhidayah Rosman
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia; Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Hapizah M Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia; Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Alyaa Al-Khateeb
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia; Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Yung-An Chua
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Ang-Lim Chua
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia.
| |
Collapse
|
12
|
Begic E, Djozic A, Karavelic E, Zatric N, Sinancevic A, Dzubur A, Durak-Nalbantic A, Begic A, Begic N, Sahbaz A, Hasanagic E, Gogic E, Naser N, Zukic F, Medjedovic E, Iglica A, Halilcevic M, Begic Z. Familial hypercholesterolemia within cardiology practice – single-center experience during 2-year period. Res Cardiovasc Med 2022. [DOI: 10.4103/rcm.rcm_19_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
Qureshi N, Akyea RK, Dutton B, Humphries SE, Abdul Hamid H, Condon L, Weng SF, Kai J. Case-finding and genetic testing for familial hypercholesterolaemia in primary care. Heart 2021; 107:1956-1961. [PMID: 34521694 PMCID: PMC8639929 DOI: 10.1136/heartjnl-2021-319742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Familial hypercholesterolaemia (FH) is a common inherited disorder that remains mostly undetected in the general population. Through FH case-finding and direct access to genetic testing in primary care, this intervention study described the genetic and lipid profile of patients found at increased risk of FH and the outcomes in those with positive genetic test results. METHODS In 14 Central England general practices, a novel case-finding tool (Familial Hypercholetserolaemia Case Ascertainment Tool, FAMCAT1) was applied to the electronic health records of 86 219 patients with cholesterol readings (44.5% of total practices' population), identifying 3375 at increased risk of FH. Of these, a cohort of 336 consenting to completing Family History Questionnaire and detailed review of their clinical data, were offered FH genetic testing in primary care. RESULTS Genetic testing was completed by 283 patients, newly identifying 16 with genetically confirmed FH and 10 with variants of unknown significance. All 26 (9%) were recommended for referral and 19 attended specialist assessment. In a further 153 (54%) patients, the test suggested polygenic hypercholesterolaemia who were managed in primary care. Total cholesterol and low-density lipoprotein-cholesterol levels were higher in those patients with FH-causing variants than those with other genetic test results (p=0.010 and p=0.002). CONCLUSION Electronic case-finding and genetic testing in primary care could improve identification of FH; and the better targeting of patients for specialist assessment. A significant proportion of patients identified at risk of FH are likely to have polygenic hypercholesterolaemia. There needs to be a clearer management plan for these individuals in primary care. TRIAL REGISTRATION NUMBER NCT03934320.
Collapse
Affiliation(s)
- Nadeem Qureshi
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ralph Kwame Akyea
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Brittany Dutton
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | - Hasidah Abdul Hamid
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK,Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Laura Condon
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Stephen F Weng
- Associate Director, Cardiovascular and Metabolism, Janssen Research & Development, High Wycombe, UK
| | - Joe Kai
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
14
|
Qureshi N, Akyea RK, Dutton B, Leonardi-Bee J, Humphries SE, Weng S, Kai J. Comparing the performance of the novel FAMCAT algorithms and established case-finding criteria for familial hypercholesterolaemia in primary care. Open Heart 2021; 8:openhrt-2021-001752. [PMID: 34635577 PMCID: PMC8506870 DOI: 10.1136/openhrt-2021-001752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Familial hypercholesterolaemia (FH) is a common inherited disorder causing premature coronary heart disease (CHD) and death. We have developed the novel Familial Hypercholesterolaemia Case Ascertainment Tool (FAMCAT 1) case-finding algorithm for application in primary care, to improve detection of FH. The performance of this algorithm was further improved by including personal history of premature CHD (FAMCAT 2 algorithm). This study has evaluated their performance, at 95% specificity, to detect genetically confirmed FH in the general population. We also compared these algorithms to established clinical case-finding criteria. METHODS Prospective validation study, in 14 general practices, recruiting participants from the general adult population with cholesterol documented. For 260 participants with available health records, we determined possible FH cases based on FAMCAT thresholds, Dutch Lipid Clinic Network (DLCN) score, Simon-Broome criteria and recommended cholesterol thresholds (total cholesterol >9.0 mmol/L if ≥30 years or >7.5 mmol/L if <30 years), using clinical data from electronic and manual extraction of patient records and family history questionnaires. The reference standard was genetic testing. We examined detection rate (DR), sensitivity and specificity for each case-finding criteria. RESULTS At 95% specificity, FAMCAT 1 had a DR of 27.8% (95% CI 12.5% to 50.9%) with sensitivity of 31.2% (95% CI 11.0% to 58.7%); while FAMCAT 2 had a DR of 45.8% (95% CI 27.9% to 64.9%) with sensitivity of 68.8% (95% CI 41.3% to 89.0%). DLCN score ≥6 points yielded a DR of 35.3% (95% CI 17.3% to 58.7%) and sensitivity of 37.5% (95% CI 15.2% to 64.6%). Using recommended cholesterol thresholds resulted in DR of 28.0% (95% CI 14.3% to 47.6%) with sensitivity of 43.8% (95% CI 19.8% to 70.1%). Simon-Broome criteria had lower DR 11.3% (95% CI 6.0% to 20.0%) and specificity 70.9% (95% CI 64.8% to 76.5%) but higher sensitivity of 56.3% (95% CI 29.9% to 80.2%). CONCLUSIONS In primary care, in patients with cholesterol documented, FAMCAT 2 performs better than other case-finding criteria for detecting genetically confirmed FH, with no prior clinical review required for case finding. TRIAL REGISTRATION NUMBER NCT03934320.
Collapse
Affiliation(s)
- Nadeem Qureshi
- Primary Care Stratified Medicine (PRISM) Research Group, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ralph K Akyea
- Primary Care Stratified Medicine (PRISM) Research Group, School of Medicine, University of Nottingham, Nottingham, UK
| | - Brittany Dutton
- Primary Care Stratified Medicine (PRISM) Research Group, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jo Leonardi-Bee
- Primary Care Stratified Medicine (PRISM) Research Group, School of Medicine, University of Nottingham, Nottingham, UK,Centre for Evidence Based Healthcare, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | - Stephen Weng
- Cardiovascular and Metabolism, Janssen Research & Development, High Wycombe, UK
| | - Joe Kai
- Primary Care Stratified Medicine (PRISM) Research Group, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
15
|
Ibrahim S, Defesche JC, Kastelein JJP. Beyond the Usual Suspects: Expanding on Mutations and Detection for Familial Hypercholesterolemia. Expert Rev Mol Diagn 2021; 21:887-895. [PMID: 34263698 DOI: 10.1080/14737159.2021.1953985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Familial hypercholesterolemia (FH) is a highly prevalent condition, predisposing individuals to premature cardiovascular disease and with a genetic basis more complex than initially thought. Advances in molecular technologies have provided novel insights into the role of next-generation-sequencing, the assessment and classification of newly found variants, the complex genotype-phenotype correlation, and the position of FH in the context of other dyslipidaemias.Areas covered: Understanding the scope of genetic determinants of FH has expanded substantially. This article reviews the current literature on the complexity that comes with this incremental knowledge and highlights the added value of genetic testing as an addition to phenotypic diagnosis of FH. Moreover, we discuss the broad genetic basis of FH, with a focus on the three main FH genes, but we also pay attention to polygenic hypercholesterolemia as well as minor and modulator genes involved in FH.Expert opinion: Both the availability and the need for genetic analysis of FH are on the rise as costs of sequencing continue to drop and new therapies require a genetic diagnosis for reimbursement. However, greater use of genetic testing requires more education of healthcare professionals, since molecular technologies will allow for rapid and accurate evaluation of large numbers of detected variants.
Collapse
Affiliation(s)
- Shirin Ibrahim
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joep C Defesche
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John J P Kastelein
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Carvalho C, Williams C, Raisi-Estabragh Z, Rison S, Patel RS, Timmis A, Robson J. Application of a risk stratification tool for familial hypercholesterolaemia in primary care: an observational cross-sectional study in an unselected urban population. Heart 2021; 107:1220-1225. [PMID: 34016698 DOI: 10.1136/heartjnl-2020-318714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE The Familial Hypercholesterolaemia Case Ascertainment Tool (FAMCAT) has been proposed to enhance case finding in primary care. In this study, we test application of the FAMCAT algorithm to describe risks of familial hypercholesterolaemia (FH) in a large unselected and ethnically diverse primary care cohort. METHOD We studied patients aged 18-65 years from three contiguous areas in inner London. We retrospectively applied the FAMCAT algorithm to routine primary care data and estimated the numbers of possible cases of FH and the potential service implications of subsequent investigation and management. RESULTS Of the 777 128 patients studied, the FAMCAT score estimated between 11 736 and 23 798 (1.5%-3.1%) individuals were likely to have FH, depending on an assumed FH prevalence of 1 in 250 or 1 in 500, respectively. There was over-representation of individuals of South Asian ethnicity among those likely to have FH, with this cohort making up 41.9%-45.1% of the total estimated cases, a proportion which significantly exceeded their 26% representation in the study population. CONCLUSIONS We have demonstrated feasibility of application of the FAMCAT as an aid to case finding for FH using routinely recorded primary care data. Further research is needed on validity of the tool in different ethnic groups and more refined consideration of family history should be explored. While FAMCAT may aid case finding, implementation requires information on the cost-effectiveness of additional health services to investigate, diagnose and manage case ascertainment in those identified as likely to have FH.
Collapse
Affiliation(s)
- Chris Carvalho
- Institute of Population Health Sciences, Queen Mary University of London, London, UK
| | - Crystal Williams
- Institute of Population Health Sciences, Queen Mary University of London, London, UK
| | - Zahra Raisi-Estabragh
- Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
- William Harvey Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Stuart Rison
- Institute of Population Health Sciences, Queen Mary University of London, London, UK
| | - Riyaz S Patel
- Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
- William Harvey Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Adam Timmis
- Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
- William Harvey Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - John Robson
- Institute of Population Health Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
Brett T, Chan DC, Radford J, Heal C, Gill G, Hespe C, Vargas-Garcia C, Condon C, Sheil B, Li IW, Sullivan DR, Vickery AW, Pang J, Arnold-Reed DE, Watts GF. Improving detection and management of familial hypercholesterolaemia in Australian general practice. Heart 2021; 107:1213-1219. [PMID: 34016696 PMCID: PMC8292556 DOI: 10.1136/heartjnl-2020-318813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Familial hypercholesterolaemia (FH) is characterised by elevated low-density lipoprotein (LDL)-cholesterol and increased risk of cardiovascular disease. However, FH remains substantially underdiagnosed and undertreated. We employed a two-stage pragmatic approach to identify and manage patients with FH in primary healthcare. METHODS Medical records for 232 139 patients who attended 15 general practices at least once in the previous 2 years across five Australian States were first screened for potential risk of FH using an electronic tool (TARB-Ex) and confirmed by general practitioner (GP) clinical assessment based on phenotypic Dutch Lipid Clinic Network Criteria (DLCNC) score. Follow-up GP consultation and management was provided for patients with phenotypic FH. RESULTS A total of 1843 patients were identified by TARB-Ex as at potential risk of FH (DLCNC score ≥5). After GP medical record review, 900 of these patients (49%) were confirmed with DLCNC score ≥5 and classified as high-risk of FH. From 556 patients subsequently clinically assessed by GPs, 147 (26%) were diagnosed with phenotypic FH (DLCNC score >6). Follow-up GP consultation and management for 77 patients resulted in a significant reduction in LDL-cholesterol (-16%, p<0.01). A higher proportion of these patients attained the treatment target of 50% reduction in LDL-cholesterol (74% vs 62%, p<0.001) and absolute levels of LDL-cholesterol goals compared with baseline (26% vs 12%, p<0.05). CONCLUSIONS A pragmatic approach integrating electronic medical record tools and clinical GP follow-up consultation is a feasible method to identify and better manage patients with FH in the primary healthcare setting. TRIAL REGISTRATION NUMBER 12616000630415.
Collapse
Affiliation(s)
- Tom Brett
- General Practice and Primary Health Care Research Unit, School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
- General Practitioner, Mosman Park Medical Centre, Perth, Western Australia, Australia
| | - Dick C Chan
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Jan Radford
- Launceston Clinical School, University of Tasmania, Launceston, Tasmania, Australia
| | - Clare Heal
- Mackay Clinical School, James Cook University, Mackay, Queensland, Australia
| | - Gerard Gill
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Charlotte Hespe
- School of Medicine, The University of Notre Dame Australia, Sydney, New South Wales, Australia
| | - Cristian Vargas-Garcia
- General Practice and Primary Health Care Research Unit, School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Carmen Condon
- General Practice and Primary Health Care Research Unit, School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Barbara Sheil
- General Practice and Primary Health Care Research Unit, School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Ian W Li
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia
| | - David R Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Alistair W Vickery
- Division of General Practice, The University of Western Australia, Perth, Western Australia, Australia
| | - Jing Pang
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Diane E Arnold-Reed
- School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Gerald F Watts
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Lipid Disorders Clinic, Cardiometabolic Service, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
18
|
Watts GF, Sullivan DR, Hare DL, Kostner KM, Horton AE, Bell DA, Brett T, Trent RJ, Poplawski NK, Martin AC, Srinivasan S, Justo RN, Chow CK, Pang J. Essentials of a new clinical practice guidance on familial hypercholesterolaemia for physicians. Intern Med J 2021; 51:769-779. [PMID: 34047032 DOI: 10.1111/imj.15327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Familial hypercholesterolaemia (FH) is a common, heritable and preventable cause of premature coronary artery disease. New clinical practice recommendations are presented to assist practitioners in enhancing the care of all patients with FH. Core recommendations are made on the detection, diagnosis, assessment and management of adults, children and adolescents with FH. Management is under-pinned by the precepts of risk stratification, adherence to healthy lifestyles, treatment of non-cholesterol risk factors and appropriate use of low-density lipoprotein (LDL)-cholesterol-lowering therapies including statins, ezetimibe and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. The recommendations need to be utilised using judicious clinical judgement and shared decision-making with patients and families. New government-funded schemes for genetic testing and use of PCSK9 inhibitors, as well as the National Health Genomics Policy Framework, will enable adoption of the recommendations. However, a comprehensive implementation science and practice strategy is required to ensure that the guidance translates into benefit for all families with FH.
Collapse
Affiliation(s)
- Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - David R Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - David L Hare
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.,Department of Cardiology, Austin Health, Melbourne, Victoria, Australia
| | - Karam M Kostner
- Department of Cardiology, Mater Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Ari E Horton
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Victoria, Australia.,Monash Cardiovascular Research Centre, Melbourne, Victoria, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Damon A Bell
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia.,Department of Clinical Biochemistry, Clinipath Pathology, Perth, Western Australia, Australia.,Sonic Genetics, Sonic Pathology, Sydney, New South Wales, Australia
| | - Tom Brett
- General Practice and Primary Health Care Research, School of Medicine, University of Notre Dame Australia, Perth, Western Australia, Australia
| | - Ronald J Trent
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew C Martin
- Department General Paediatrics, Perth Children's Hospital, Perth, Western Australia, Australia.,Division of Paediatrics, University of Western Australia, Perth, Western Australia, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Robert N Justo
- Department of Paediatric Cardiology, Queensland Children's Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, The University of Sydney, Sydney, New South Wales, Australia.,Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia.,George Institute for Global Health, Sydney, New South Wales, Australia
| | - Jing Pang
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
19
|
Kalra S, Chen Z, Deerochanawong C, Shyu KG, Tan RS, Tomlinson B, Yeh HI. Familial Hypercholesterolemia in Asia Pacific: A Review of Epidemiology, Diagnosis, and Management in the Region. J Atheroscler Thromb 2021; 28:417-434. [PMID: 33746137 PMCID: PMC8193778 DOI: 10.5551/jat.56762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 12/22/2020] [Indexed: 01/26/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a common genetic disease that is estimated to affect at least 15 million people in the Asia Pacific region. Affected individuals are at significantly increased risk of premature atherosclerotic cardiovascular disease. A literature review was undertaken to provide an overview of the epidemiology, diagnosis, and management of FH across the region.Currently, epidemiological data relating to FH are lacking across the Asia Pacific. Of the 15 countries and regions considered, locally conducted studies to determine FH prevalence were only identified for Australia, China, India, and Japan. Although practically all national clinical guidelines for dyslipidemia include some commentary on FH, specific guidelines on the management of FH are available for only one third of the countries and regions evaluated. Estimates of current FH diagnosis rates suggest that most affected individuals remain undiagnosed and untreated. Although innovative medications such as proprotein convertase subtilisin/kexin type 9 inhibitors have been approved and are available in most countries and regions considered, they are currently reimbursed in only one quarter.Despite these shortcomings, there is cause for optimism. Early experience with cascade screening in Hong Kong, India, and Vietnam has proven an effective means of identifying family members of probands, as has a reverse screening of family members of children with FH in China. FH registries are gaining momentum across the region, with registries now established in almost half of the countries and regions evaluated. This review concludes with a Call to Action on FH for Asia Pacific to engage healthcare professionals, improve public awareness, and form national FH alliances, comprising all relevant healthcare professional organizations, as a platform to expedite national quality improvement programs in the management of FH.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
| | - Zhenyue Chen
- Cardiology Department, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Kou-Gi Shyu
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ru San Tan
- National Heart Centre Singapore, Duke-NUS Medical Singapore
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Avenida Wai Long, Taipa, Macau, China
| | - Hung-I Yeh
- Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
20
|
Pederiva C, Capra ME, Viggiano C, Rovelli V, Banderali G, Biasucci G. Early Prevention of Atherosclerosis: Detection and Management of Hypercholesterolaemia in Children and Adolescents. Life (Basel) 2021; 11:life11040345. [PMID: 33919973 PMCID: PMC8070896 DOI: 10.3390/life11040345] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022] Open
Abstract
Coronary heart disease (CHD) is the main cause of death and morbidity in the world. There is a strong evidence that the atherosclerotic process begins in childhood and that hypercholesterolaemia is a CHD major risk factor. Hypercholesterolaemia is a modifiable CHD risk factor and there is a tracking of hypercholesterolaemia from birth to adulthood. Familial hypercholesterolaemia (FH) is the most common primitive cause of hypercholesterolaemia, affecting 1:200–250 individuals. Early detection and treatment of hypercholesterolaemia in childhood can literally “save decades of life”, as stated in the European Atherosclerosis Society Consensus. Multiple screening strategies have been proposed. In 2008, the American Academy of Pediatrics published the criteria for targeted screening, while some expert panels recommend universal screening particularly in the young, although cost effectiveness has not been fully analysed. Blood lipid profile evaluation [total cholesterol, Low-Density Lipoprotein Cholesterol (LDL-C), High-Density Lipoprotein Cholesterol (HDL-C) and triglycerides] is the first step. It has to be ideally performed between two and ten years of age. Hypercholesterolaemia has to be confirmed with a second sample and followed by the detection of family history for premature (before 55 years in men and 60 years in women) or subsequent cardio-vascular events and/or hypercholesterolaemia in 1st and 2nd degree relatives. The management of hypercholesterolaemia in childhood primarily involves healthy lifestyle and a prudent low-fat diet, emphasising the benefits of the Mediterranean diet. Statins are the cornerstone of the drug therapy approved in USA and in Europe for use in children. Ezetimibe or bile acid sequestrants may be required to attain LDL-C goal in some patients. Early identification of children with severe hypercholesterolaemia or with FH is important to prevent atherosclerosis at the earliest stage of development, when maximum benefit can still be obtained via lifestyle adaptations and therapy. The purpose of our review is to highlight the importance of prevention and treatment of hypercholesterolaemia starting from the earliest stages of life.
Collapse
Affiliation(s)
- Cristina Pederiva
- Clinical Service for Dyslipidaemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy; (C.P.); (C.V.); (V.R.); (G.B.)
| | - Maria Elena Capra
- Centre for Paediatric Dyslipidaemias, Paediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
- Correspondence:
| | - Claudia Viggiano
- Clinical Service for Dyslipidaemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy; (C.P.); (C.V.); (V.R.); (G.B.)
| | - Valentina Rovelli
- Clinical Service for Dyslipidaemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy; (C.P.); (C.V.); (V.R.); (G.B.)
| | - Giuseppe Banderali
- Clinical Service for Dyslipidaemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy; (C.P.); (C.V.); (V.R.); (G.B.)
| | - Giacomo Biasucci
- Centre for Paediatric Dyslipidaemias, Paediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
| |
Collapse
|
21
|
Ingoe L, Potter A, Musson S, Neely D, Pilkington G, Allen AJ, Reay D, Luvai A, McAnulty C, Camm N, Berry I, Nichols J, Forbes G, Newton J, Carey PE. Improving the identification of patients with a genetic diagnosis of familial hypercholesterolaemia in primary care: A strategy to achieve the NHS long term plan. Atherosclerosis 2021; 325:38-45. [PMID: 33892327 DOI: 10.1016/j.atherosclerosis.2021.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS We aimed to validate a nurse-led process using electronic health records to identify those at risk of familial hypercholesterolaemia (FH) for genetic diagnosis in primary care. METHODS Those at risk of FH were identified using searches developed and refined locally and implemented in primary care by a trained nurse; they were invited for further assessment and genetic testing if indicated. Family members at risk of FH were identified and invited for cascade testing. RESULTS In total 94,444 patient records were screened (expected prevalence of FH (1 in 250); 377). Of 176 records which already had a diagnostic for FH, 15 had been genetically confirmed and one was undergoing DNA testing. A further 572 (0.61%) were identified as high risk of FH. After desktop screening, 113 (15%) were invited for further assessment. Of these, 73 individuals attended the primary care clinic (64%) of whom 61 (54%) underwent proband genetic testing. Pathogenic variants were detected in 22 cases (36%) and variants of unknown significance in a further 4 cases; a total of 26 probands (43%) were therefore referred for family cascade testing. CONCLUSIONS An optimised FH identification pathway, based on the NICE CG71 recommendations for systematic searching of primary care electronic health records, can be deployed successfully in primary care settings.
Collapse
Affiliation(s)
- Lorna Ingoe
- Genetic Medicine, Centre for Life, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, NE1 3BZ, UK; Academic Health Science Network North East and North Cumbria (AHSN), Room 2.13, Biomedical Research Building, The Campus for Ageing and Vitality, Nun's Moor Road, Newcastle, NE4 5PL, UK
| | - Aimee Potter
- Genetic Medicine, Centre for Life, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, NE1 3BZ, UK
| | - Susan Musson
- Genetic Medicine, Centre for Life, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, NE1 3BZ, UK
| | - Dermot Neely
- Academic Health Science Network North East and North Cumbria (AHSN), Room 2.13, Biomedical Research Building, The Campus for Ageing and Vitality, Nun's Moor Road, Newcastle, NE4 5PL, UK
| | - Guy Pilkington
- Newcastle Gateshead CCG, Riverside House, Goldcrest Way, Newburn Riverside Business Park, Newcastle, NE15 8NY, UK
| | - A Joy Allen
- Population Health Sciences Institute, The Medical School, Newcastle University, Newcastle, NE2 4HH, UK; NIHR in Vitro Diagnostics Co-operative Newcastle, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Danielle Reay
- Northern Genetics Service, The Newcastle Upon Tyne Hospitals NHS Trust, Centre for Life, Central Parkway, Newcastle, NE1 3BZ, UK
| | - Ahai Luvai
- Laboratory Medicine, The Newcastle Upon Tyne Hospitals NHS Trust, Newcastle, NE1 3BZ, UK
| | - Ciaron McAnulty
- Northern Genetics Service, The Newcastle Upon Tyne Hospitals NHS Trust, Centre for Life, Central Parkway, Newcastle, NE1 3BZ, UK
| | - Nick Camm
- Yorkshire and North East Genomic Laboratory Hub, Central Lab. Bexley Wing (Level 5), St. James's University Hospital, Beckett Street, Leed, LS9 7TF, UK
| | - Ian Berry
- Yorkshire and North East Genomic Laboratory Hub, Central Lab. Bexley Wing (Level 5), St. James's University Hospital, Beckett Street, Leed, LS9 7TF, UK
| | - Jody Nichols
- Academic Health Science Network North East and North Cumbria (AHSN), Room 2.13, Biomedical Research Building, The Campus for Ageing and Vitality, Nun's Moor Road, Newcastle, NE4 5PL, UK
| | - Gareth Forbes
- Leadgate Surgery, George Ewen House, Watling St, Leadgate, Consett, DH8 6DP, UK
| | - Julia Newton
- Academic Health Science Network North East and North Cumbria (AHSN), Room 2.13, Biomedical Research Building, The Campus for Ageing and Vitality, Nun's Moor Road, Newcastle, NE4 5PL, UK; Population Health Sciences Institute, The Medical School, Newcastle University, Newcastle, NE2 4HH, UK.
| | - Peter E Carey
- South Tyneside and Sunderland NHS Foundation Trust, Kayll Road, Sunderland, Tyne and Wear, SR4 7TP, UK
| |
Collapse
|
22
|
Watts GF, Sullivan DR, Hare DL, Kostner KM, Horton AE, Bell DA, Brett T, Trent RJ, Poplawski NK, Martin AC, Srinivasan S, Justo RN, Chow CK, Pang J. Synopsis of an integrated guidance for enhancing the care of familial hypercholesterolaemia: an Australian perspective. Am J Prev Cardiol 2021; 6:100151. [PMID: 34327493 PMCID: PMC8315409 DOI: 10.1016/j.ajpc.2021.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Familial hypercholesterolaemia (FH) is a common, heritable and preventable cause of premature coronary artery disease, with significant potential for positive impact on public health and healthcare savings. New clinical practice recommendations are presented in an abridged guidance to assist practitioners in enhancing the care of all patients with FH. Main recommendations Core recommendations are made on the detection, diagnosis, assessment and management of adults, children and adolescents with FH. There is a key role for general practitioners (GPs) working in collaboration with specialists with expertise in lipidology. Advice is given on genetic and cholesterol testing and risk notification of biological relatives undergoing cascade testing for FH; all healthcare professionals should develop skills in genomic medicine. Management is under-pinned by the precepts of risk stratification, adherence to healthy lifestyles, treatment of non-cholesterol risk factors, and appropriate use of low-density lipoprotein (LDL)-cholesterol lowering therapies, including statins, ezetimibe and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Recommendations on service design are provided in the full guidance. Potential impact on care of FH These recommendations need to be utilised using judicious clinical judgement and shared decision making with patients and families. Models of care need to be adapted to both local and regional needs and resources. In Australia new government funded schemes for genetic testing and use of PCSK9 inhibitors, as well as the National Health Genomics Policy Framework, will enable adoption of these recommendations. A broad implementation science strategy is, however, required to ensure that the guidance translates into benefit for all families with FH.
Collapse
Affiliation(s)
- Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - David R Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - David L Hare
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia.,Department of Cardiology, Austin Health, Melbourne, Australia
| | - Karam M Kostner
- Department of Cardiology, Mater Hospital, University of Queensland, Brisbane, Australia
| | - Ari E Horton
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Victoria, Australia.,Monash Cardiovascular Research Centre, Melbourne, Victoria, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Damon A Bell
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia.,Department of Clinical Biochemistry, Clinipath Pathology, Perth, Western Australia, Australia.,Sonic Genetics, Sonic Pathology, Australia
| | - Tom Brett
- General Practice and Primary Health Care Research, School of Medicine, University of Notre Dame Australia, Fremantle, Australia
| | - Ronald J Trent
- Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew C Martin
- Department General Paediatrics, Perth Children's Hospital, Perth, Western Australia, Australia.,Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Robert N Justo
- Department of Paediatric Cardiology, Queensland Children's Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, The University of Sydney, Sydney, New South Wales, Australia.,Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia.,George Institute for Global Health, Sydney, New South Wales, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
23
|
Watts GF, Sullivan DR, Hare DL, Kostner KM, Horton AE, Bell DA, Brett T, Trent RJ, Poplawski NK, Martin AC, Srinivasan S, Justo RN, Chow CK, Pang J. Integrated Guidance for Enhancing the Care of Familial Hypercholesterolaemia in Australia. Heart Lung Circ 2020; 30:324-349. [PMID: 33309206 DOI: 10.1016/j.hlc.2020.09.943] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Familial hypercholesterolaemia (FH) is a dominant and highly penetrant monogenic disorder present from birth that markedly elevates plasma low-density lipoprotein (LDL)-cholesterol concentration and, if untreated, leads to premature atherosclerosis and coronary artery disease (CAD). There are approximately 100,000 people with FH in Australia. However, an overwhelming majority of those affected remain undetected and inadequately treated, consistent with FH being a leading challenge for public health genomics. To further address the unmet need, we provide an updated guidance, presented as a series of systematically collated recommendations, on the care of patients and families with FH. These recommendations have been informed by an exponential growth in published works and new evidence over the last 5 years and are compatible with a contemporary global call to action on FH. Recommendations are given on the detection, diagnosis, assessment and management of FH in adults and children. Recommendations are also made on genetic testing and risk notification of biological relatives who should undergo cascade testing for FH. Guidance on management is based on the concepts of risk re-stratification, adherence to heart healthy lifestyles, treatment of non-cholesterol risk factors, and safe and appropriate use of LDL-cholesterol lowering therapies, including statins, ezetimibe, proprotein convertase subtilisin/kexin type 9 inhibitors and lipoprotein apheresis. Broad recommendations are also provided for the organisation and development of health care services. Recommendations on best practice need to be underpinned by good clinical judgment and shared decision making with patients and families. Models of care for FH need to be adapted to local and regional health care needs and available resources. A comprehensive and realistic implementation strategy, informed by further research, including assessments of cost-benefit, will be required to ensure that this new guidance benefits all Australian families with or at risk of FH.
Collapse
Affiliation(s)
- Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Lipid Disorders Clinic, Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia.
| | - David R Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - David L Hare
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Vic, Australia; Department of Cardiology, Austin Health, Melbourne, Vic, Australia
| | - Karam M Kostner
- Department of Cardiology, Mater Hospital, University of Queensland, Brisbane, Qld, Australia
| | - Ari E Horton
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Vic, Australia; Monash Cardiovascular Research Centre, Melbourne, Vic, Australia; Department of Paediatrics, Monash University, Melbourne, Vic, Australia
| | - Damon A Bell
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Lipid Disorders Clinic, Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia; Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, WA, Australia; Department of Clinical Biochemistry, Clinipath Pathology, Perth, WA, Australia; Sonic Genetics, Sonic Pathology, Sydney, NSW, Australia
| | - Tom Brett
- General Practice and Primary Health Care Research, School of Medicine, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Ronald J Trent
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrew C Martin
- Department General Paediatrics, Perth Children's Hospital, Perth, WA, Australia; Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Robert N Justo
- Department of Paediatric Cardiology, Queensland Children's Hospital, Brisbane, Qld, Australia; School of Medicine, University of Queensland, Brisbane, Qld, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; George Institute for Global Health, Sydney, NSW, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | | |
Collapse
|
24
|
Ibrahim S, Reeskamp LF, Stroes ESG, Watts GF. Advances, gaps and opportunities in the detection of familial hypercholesterolemia: overview of current and future screening and detection methods. Curr Opin Lipidol 2020; 31:347-355. [PMID: 33027222 DOI: 10.1097/mol.0000000000000714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Studies reaffirm that familial hypercholesterolemia is more prevalent than initially considered, with a population frequency of approximately one in 300. The majority of patients remains unidentified. This warrants critical evaluation of existing screening methods and exploration of novel methods of detection. RECENT FINDINGS New public policy recommendations on the detection of familial hypercholesterolemia have been made by a global community of experts and advocates. Phenotypic tools for diagnosing index cases remain inaccurate. Genetic testing is the gold standard for familial hypercholesterolemia and a new international position statement has been published. Correction of LDL cholesterol (LDL-C) for the cholesterol content of lipoprotein(a) [Lp(a)] may increase the precision of the phenotypic diagnosis of familial hypercholesterolemia. Cascade cotesting for familial hypercholesterolemia and elevated Lp(a) levels provides a new opportunity to stratify risk in families. Digital technology and machine learning methods, coupled with clinical alert and decision support systems, lead the way in more efficient approaches for detecting and managing index cases. Universal screening of children, combined with child-parent cascade testing, appears to be the most effective method for underpinning a population strategy for maximizing the detection of familial hypercholesterolemia. SUMMARY Detection of familial hypercholesterolemia can be enhanced by optimizing current diagnostic algorithms, probing electronic health records with novel information technologies and integrating universal screening of children with cascade testing of parents and other relatives.
Collapse
Affiliation(s)
- Shirin Ibrahim
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Crawley
- Lipid Disorders Clinic, Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
25
|
Akyea RK, Qureshi N, Kai J, Weng SF. Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care. NPJ Digit Med 2020; 3:142. [PMID: 33145438 PMCID: PMC7603302 DOI: 10.1038/s41746-020-00349-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is a common inherited disorder, causing lifelong elevated low-density lipoprotein cholesterol (LDL-C). Most individuals with FH remain undiagnosed, precluding opportunities to prevent premature heart disease and death. Some machine-learning approaches improve detection of FH in electronic health records, though clinical impact is under-explored. We assessed performance of an array of machine-learning approaches for enhancing detection of FH, and their clinical utility, within a large primary care population. A retrospective cohort study was done using routine primary care clinical records of 4,027,775 individuals from the United Kingdom with total cholesterol measured from 1 January 1999 to 25 June 2019. Predictive accuracy of five common machine-learning algorithms (logistic regression, random forest, gradient boosting machines, neural networks and ensemble learning) were assessed for detecting FH. Predictive accuracy was assessed by area under the receiver operating curves (AUC) and expected vs observed calibration slope; with clinical utility assessed by expected case-review workload and likelihood ratios. There were 7928 incident diagnoses of FH. In addition to known clinical features of FH (raised total cholesterol or LDL-C and family history of premature coronary heart disease), machine-learning (ML) algorithms identified features such as raised triglycerides which reduced the likelihood of FH. Apart from logistic regression (AUC, 0.81), all four other ML approaches had similarly high predictive accuracy (AUC > 0.89). Calibration slope ranged from 0.997 for gradient boosting machines to 1.857 for logistic regression. Among those screened, high probability cases requiring clinical review varied from 0.73% using ensemble learning to 10.16% using deep learning, but with positive predictive values of 15.5% and 2.8% respectively. Ensemble learning exhibited a dominant positive likelihood ratio (45.5) compared to all other ML models (7.0-14.4). Machine-learning models show similar high accuracy in detecting FH, offering opportunities to increase diagnosis. However, the clinical case-finding workload required for yield of cases will differ substantially between models.
Collapse
Affiliation(s)
- Ralph K. Akyea
- Primary Care Stratified Medicine, Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Nadeem Qureshi
- Primary Care Stratified Medicine, Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Joe Kai
- Primary Care Stratified Medicine, Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Stephen F. Weng
- Primary Care Stratified Medicine, Division of Primary Care, University of Nottingham, Nottingham, UK
| |
Collapse
|
26
|
Weng S, Kai J, Akyea R, Qureshi N. Detection of familial hypercholesterolaemia: external validation of the FAMCAT clinical case-finding algorithm to identify patients in primary care. LANCET PUBLIC HEALTH 2020; 4:e256-e264. [PMID: 31054643 PMCID: PMC6506568 DOI: 10.1016/s2468-2667(19)30061-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/17/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND The vast majority of individuals with familial hypercholesterolaemia in the general population remain unidentified worldwide. Recognising patients most likely to have the condition, to enable targeted specialist assessment and treatment, could prevent major coronary morbidity and mortality. We aimed to evaluate a clinical case-finding algorithm, the familial hypercholesterolaemia case ascertainment tool (FAMCAT), and compare it with currently recommended methods for detection of familial hypercholesterolaemia in primary care. METHODS In this external validation study, FAMCAT regression equations were applied to a retrospective cohort of patients aged 16 years or older with cholesterol assessed, who were randomly selected from 1500 primary care practices across the UK contributing to the QResearch database. In the main analysis, we assessed the ability of FAMCAT to detect familial hypercholesterolaemia (ie, its discrimination) and compared it with that of other established clinical case-finding approaches recommended internationally (Simon Broome, Dutch Lipid Clinic Network, Make Early Diagnosis to Prevent Early Deaths [MEDPED] and cholesterol concentrations higher than the 99th percentile of the general population in the UK). We assessed discrimination by area under the receiver operating curve (AUROC; ranging from 0·5, indicating pure chance, to 1, indicating perfect discrimination). Using a probability threshold of more than 1 in 500 (prevalence of familial hypercholesterolaemia), we also assessed sensitivity, specificity, positive predictive values, and negative predictive values in the main analysis. FINDINGS A sample of 750 000 patients who registered in 1500 UK primary care practices that contribute anonymised data to the QResearch database between Jan 1, 1999, and Sept 1, 2017, was randomly selected, of which 747 000 patients were assessed. FAMCAT showed a high degree of discrimination (AUROC 0·832, 95% CI 0·820-0·845), which was higher than that of Simon Broome criteria (0·694, 0·681-0·703), Dutch Lipid Clinic Network criteria (0·724, 0·710-0·738), MEDPED criteria (0·624, 0·609-0·638), and screening cholesterol concentrations higher than the 99th percentile (0·581, 0·570-0·591). Using a 1 in 500 probability threshold, FAMCAT achieved a sensitivity of 84% (1028 predicted vs 1219 observed cases) and specificity of 60% (443 949 predicted vs 745 781 observed non-cases), with a corresponding positive predictive value of 0·84% and a negative predictive value of 99·2%. INTERPRETATION FAMCAT identifies familial hypercholesterolaemia with greater accuracy than currently recommended approaches and could be considered for clinical case finding of patients with the highest likelihood of having hypercholesterolaemia in primary care. FUNDING UK National Institute for Health Research School for Primary Care Research.
Collapse
Affiliation(s)
- Stephen Weng
- Primary Care Stratified Medicine (PRISM), Division of Primary Care, University of Nottingham, Nottingham, UK.
| | - Joe Kai
- Primary Care Stratified Medicine (PRISM), Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Ralph Akyea
- Primary Care Stratified Medicine (PRISM), Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Nadeem Qureshi
- Primary Care Stratified Medicine (PRISM), Division of Primary Care, University of Nottingham, Nottingham, UK
| |
Collapse
|
27
|
Familial hypercholesterolaemia: evolving knowledge for designing adaptive models of care. Nat Rev Cardiol 2020; 17:360-377. [DOI: 10.1038/s41569-019-0325-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2019] [Indexed: 01/05/2023]
|
28
|
Familial Hypercholesterolaemia in 2020: A Leading Tier 1 Genomic Application. Heart Lung Circ 2019; 29:619-633. [PMID: 31974028 DOI: 10.1016/j.hlc.2019.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
Familial hypercholesterolaemia (FH) is caused by a major genetic defect in the low-density lipoprotein (LDL) clearance pathway. Characterised by LDL-cholesterol elevation from birth, FH confers a significant risk for premature coronary artery disease (CAD) if overlooked and untreated. With risk exposure beginning at birth, early detection and intervention is crucial for the prevention of CAD. Lowering LDL-cholesterol with lifestyle and statin therapy can reduce the risk of CAD. However, most individuals with FH will not reach guideline recommended LDL-cholesterol targets. FH has an estimated prevalence of approximately 1:250 in the community. Multiple strategies are required for screening, diagnosing and treating FH. Recent publications on FH provide new data for developing models of care, including new therapies. This review provides an overview of FH and outlines some recent advances in the care of FH for the prevention of CAD in affected families. The future care of FH in Australia should be developed within the context of the National Health Genomics Policy Framework.
Collapse
|
29
|
Carroll NM, Blum‐Barnett E, Madrid SD, Jonas C, Janes K, Alvarado M, Bedoy R, Paolino V, Aziz N, McGlynn EA, Burnett‐Hartman AN. Demographic differences in the utilization of clinical and direct‐to‐consumer genetic testing. J Genet Couns 2019; 29:634-643. [DOI: 10.1002/jgc4.1193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Nikki M. Carroll
- Institute for Health Research Kaiser Permanente Colorado Aurora CO USA
| | | | - Sarah D. Madrid
- Institute for Health Research Kaiser Permanente Colorado Aurora CO USA
| | - Cabell Jonas
- Mid‐Atlantic Permanente Research Institute Kaiser Permanente Mid‐Atlantic States Rockville MD USA
| | - Kristen Janes
- Kaiser Permanente Care Management Institute Oakland CA USA
| | - Monica Alvarado
- Southern California Permanente Medical Group Pasadena CA USA
| | - Ruth Bedoy
- Institute for Health Research Kaiser Permanente Colorado Aurora CO USA
| | - Valerie Paolino
- Institute for Health Research Kaiser Permanente Colorado Aurora CO USA
| | | | | | | |
Collapse
|
30
|
A window into the heart of familial hypercholesterolaemia in the community. THE LANCET PUBLIC HEALTH 2019; 4:e216-e217. [DOI: 10.1016/s2468-2667(19)30055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
|
31
|
Nikolic D, Corina A, Toth PP, Hammad L, Rizzo M. Choosing an ideal pharmacotherapeutic strategy for dyslipidemia in children. Expert Opin Pharmacother 2018; 20:241-244. [PMID: 30521406 DOI: 10.1080/14656566.2018.1552942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dragana Nikolic
- a Biomedical Department of Internal Medicine and Medical Specialties , University of Palermo , Palermo , Italy
| | - Andreea Corina
- a Biomedical Department of Internal Medicine and Medical Specialties , University of Palermo , Palermo , Italy
| | - Peter P Toth
- b Department of Preventive Cardiology , CGH Medical Center , Sterling , IL , USA.,c Department of Family and Community Medicine, School of Medicine , University of Illinois , Peoria , IL , USA.,d Ciccarone Center for Cardiovascular Disease Prevention , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Lubna Hammad
- e Clinical Nutrition Department , National Nutrition Institute , Cairo , Egypt
| | - Manfredi Rizzo
- a Biomedical Department of Internal Medicine and Medical Specialties , University of Palermo , Palermo , Italy
| |
Collapse
|
32
|
|