1
|
Snijckers RPM, Foks AC. Adaptive immunity and atherosclerosis: aging at its crossroads. Front Immunol 2024; 15:1350471. [PMID: 38686373 PMCID: PMC11056569 DOI: 10.3389/fimmu.2024.1350471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Adaptive immunity plays a profound role in atherosclerosis pathogenesis by regulating antigen-specific responses, inflammatory signaling and antibody production. However, as we age, our immune system undergoes a gradual functional decline, a phenomenon termed "immunosenescence". This decline is characterized by a reduction in proliferative naïve B- and T cells, decreased B- and T cell receptor repertoire and a pro-inflammatory senescence associated secretory profile. Furthermore, aging affects germinal center responses and deteriorates secondary lymphoid organ function and structure, leading to impaired T-B cell dynamics and increased autoantibody production. In this review, we will dissect the impact of aging on adaptive immunity and the role played by age-associated B- and T cells in atherosclerosis pathogenesis, emphasizing the need for interventions that target age-related immune dysfunction to reduce cardiovascular disease risk.
Collapse
Affiliation(s)
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
2
|
Huang F, Zhang J, Zhou H, Qu T, Wang Y, Jiang K, Liu Y, Xu Y, Chen M, Chen L. B cell subsets contribute to myocardial protection by inducing neutrophil apoptosis after ischemia and reperfusion. JCI Insight 2024; 9:e167201. [PMID: 38290007 DOI: 10.1172/jci.insight.167201] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
A robust, sterile inflammation underlies myocardial ischemia and reperfusion injury (MIRI). Several subsets of B cells possess the immunoregulatory capacity that limits tissue damage, yet the role of B cells in MIRI remains elusive. Here, we sought to elucidate the contribution of B cells to MIRI by transient ligation of the left anterior descending coronary artery in B cell-depleted or -deficient mice. Following ischemia and reperfusion (I/R), regulatory B cells are rapidly recruited to the heart. B cell-depleted or -deficient mice exhibited exacerbated tissue damage, adverse cardiac remodeling, and an augmented inflammatory response after I/R. Rescue and chimeric experiments indicated that the cardioprotective effect of B cells was not solely dependent on IL-10. Coculture experiments demonstrated that B cells induced neutrophil apoptosis through contact-dependent interactions, subsequently promoting reparative macrophage polarization by facilitating the phagocytosis of neutrophils by macrophages. The in vivo cardioprotective effect of B cells was undetectable in the absence of neutrophils after I/R. Mechanistically, ligand-receptor imputation identified FCER2A as a potential mediator of interactions between B cells and neutrophils. Blocking FCER2A on B cells resulted in a reduction in the percentage of apoptotic neutrophils, contributing to the deterioration of cardiac remodeling. Our findings unveil a potential cardioprotective role of B cells in MIRI through mechanisms involving FCER2A, neutrophils, and macrophages.
Collapse
Affiliation(s)
- Fangyang Huang
- Department of Cardiology
- State Key Laboratory of Biotherapy and Cancer Center
- Laboratory of Heart Valve Disease
| | - Jialiang Zhang
- Department of Cardiology
- Laboratory of Heart Valve Disease
| | - Hao Zhou
- Laboratory of Heart Valve Disease
| | | | - Yan Wang
- Department of Cardiology
- Laboratory of Heart Valve Disease
| | - Kexin Jiang
- Department of Cardiology
- West China School of Medicine, and
| | | | | | - Mao Chen
- Department of Cardiology
- Laboratory of Heart Valve Disease
| | - Li Chen
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Raposo-Gutiérrez I, Rodríguez-Ronchel A, Ramiro AR. Atherosclerosis antigens as targets for immunotherapy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1129-1147. [PMID: 39196152 DOI: 10.1038/s44161-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 08/29/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries that can lead to thrombosis, infarction and stroke, underlying the first cause of mortality worldwide. Adaptive immunity plays critical roles in atherosclerosis, and numerous studies have ascribed both atheroprotective and atherogenic functions to specific subsets of T and B cells. However, less is known on how antigen specificity determines the protective or adverse outcome of such adaptive responses. Understanding antigen triggers in atherosclerosis is crucial to delve deeper into mechanisms of disease initiation and progression and to implement specific immunotherapeutic approaches, including vaccination strategies. Here we review the role of adaptive immunity in atherosclerosis and the insights that single-cell technology has provided into the function of distinct immune cell subsets. We outline the most relevant atherosclerosis antigens and antibodies reported to date and examine their immunotherapeutic potential. Finally, we review the most promising vaccination-based clinical trials targeting the adaptive immune system.
Collapse
Affiliation(s)
- Irene Raposo-Gutiérrez
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Ana Rodríguez-Ronchel
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain.
| |
Collapse
|
4
|
Smit V, de Mol J, Schaftenaar FH, Depuydt MAC, Postel RJ, Smeets D, Verheijen FWM, Bogers L, van Duijn J, Verwilligen RAF, Grievink HW, Bernabé Kleijn MNA, van Ingen E, de Jong MJM, Goncalves L, Peeters JAHM, Smeets HJ, Wezel A, Polansky JK, de Winther MPJ, Binder CJ, Tsiantoulas D, Bot I, Kuiper J, Foks AC. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc Res 2023; 119:2508-2521. [PMID: 37390467 PMCID: PMC10676459 DOI: 10.1093/cvr/cvad099] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 07/02/2023] Open
Abstract
AIMS Aging is a dominant driver of atherosclerosis and induces a series of immunological alterations, called immunosenescence. Given the demographic shift towards elderly, elucidating the unknown impact of aging on the immunological landscape in atherosclerosis is highly relevant. While the young Western diet-fed Ldlr-deficient (Ldlr-/-) mouse is a widely used model to study atherosclerosis, it does not reflect the gradual plaque progression in the context of an aging immune system as occurs in humans. METHODS AND RESULTS Here, we show that aging promotes advanced atherosclerosis in chow diet-fed Ldlr-/- mice, with increased incidence of calcification and cholesterol crystals. We observed systemic immunosenescence, including myeloid skewing and T-cells with more extreme effector phenotypes. Using a combination of single-cell RNA-sequencing and flow cytometry on aortic leucocytes of young vs. aged Ldlr-/- mice, we show age-related shifts in expression of genes involved in atherogenic processes, such as cellular activation and cytokine production. We identified age-associated cells with pro-inflammatory features, including GzmK+CD8+ T-cells and previously in atherosclerosis undefined CD11b+CD11c+T-bet+ age-associated B-cells (ABCs). ABCs of Ldlr-/- mice showed high expression of genes involved in plasma cell differentiation, co-stimulation, and antigen presentation. In vitro studies supported that ABCs are highly potent antigen-presenting cells. In cardiovascular disease patients, we confirmed the presence of these age-associated T- and B-cells in atherosclerotic plaques and blood. CONCLUSIONS Collectively, we are the first to provide comprehensive profiling of aged immunity in atherosclerotic mice and reveal the emergence of age-associated T- and B-cells in the atherosclerotic aorta. Further research into age-associated immunity may contribute to novel diagnostic and therapeutic tools to combat cardiovascular disease.
Collapse
Affiliation(s)
- Virginia Smit
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jill de Mol
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rimke J Postel
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Diede Smeets
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Fenne W M Verheijen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laurens Bogers
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Janine van Duijn
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Robin A F Verwilligen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hendrika W Grievink
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Eva van Ingen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maaike J M de Jong
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Lauren Goncalves
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Judith A H M Peeters
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Julia K Polansky
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Menno P J de Winther
- Amsterdam University Medical Centers—location AMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT25.2, 1090 Vienna, Austria
| | - Dimitrios Tsiantoulas
- Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT25.2, 1090 Vienna, Austria
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
5
|
The Role of Macrophages in the Pathogenesis of Atherosclerosis. Cells 2023; 12:cells12040522. [PMID: 36831189 PMCID: PMC9954519 DOI: 10.3390/cells12040522] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
A wide variety of cell populations, including both immune and endothelial cells, participate in the pathogenesis of atherosclerosis. Among these groups, macrophages deserve special attention because different populations of them can have completely different effects on atherogenesis and inflammation in atherosclerosis. In the current review, the significance of different phenotypes of macrophages in the progression or regression of atherosclerosis will be considered, including their ability to become the foam cells and the consequences of this event, as well as their ability to create a pro-inflammatory or anti-inflammatory medium at the site of atherosclerotic lesions as a result of cytokine production. In addition, several therapeutic strategies directed to the modulation of macrophage activity, which can serve as useful ideas for future drug developments, will be considered.
Collapse
|
6
|
Goh WX, Kok YY, Wong CY. Comparison of Cell-based and Nanoparticle-based Therapeutics in Treating Atherosclerosis. Curr Pharm Des 2023; 29:2827-2840. [PMID: 37936453 DOI: 10.2174/0113816128272185231024115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023]
Abstract
Today, cardiovascular diseases are among the biggest public health threats worldwide. Atherosclerosis, a chronic inflammatory disease with complex aetiology and pathogenesis, predispose many of these conditions, including the high mortality rate-causing ischaemic heart disease and stroke. Nevertheless, despite the alarming prevalence and absolute death rate, established treatments for atherosclerosis are unsatisfactory in terms of efficacy, safety, and patient acceptance. The rapid advancement of technologies in healthcare research has paved new treatment approaches, namely cell-based and nanoparticle-based therapies, to overcome the limitations of conventional therapeutics. This paper examines the different facets of each approach, discusses their principles, strengths, and weaknesses, analyses the main targeted pathways and their contradictions, provides insights on current trends as well as highlights any unique mechanisms taken in recent years to combat the progression of atherosclerosis.
Collapse
Affiliation(s)
- Wen Xi Goh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Yih Yih Kok
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Chiew Yen Wong
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Van Linthout S, Volk HD. Immuno-cardio-oncology: Killing two birds with one stone? Front Immunol 2022; 13:1018772. [PMID: 36466820 PMCID: PMC9714344 DOI: 10.3389/fimmu.2022.1018772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 07/28/2023] Open
Abstract
Inflammation and a dysregulated immune system are common denominators of cancer and cardiovascular disease (CVD). Immuno-cardio-oncology addresses the interconnected immunological aspect in both cancer and CVD and the integration of immunotherapies and anti-inflammatory therapies in both distinct disease entities. Building on prominent examples of convergent inflammation (IL-1ß biology) and immune disbalance (CD20 cells) in cancer and CVD/heart failure, the review tackles both the roadblocks and opportunities of repurposed use of IL-1ß drugs and anti-CD20 antibodies in both fields, and discusses the use of advanced therapies e.g. chimeric antigen receptor (CAR) T cells, that can address the raising burden of both cancer and CVD. Finally, it is discussed how inspired by precision medicine in oncology, the use of biomarker-driven patient stratification is needed to better guide anti-inflammatory/immunomodulatory therapeutic interventions in cardiology.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Institute of Medical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
8
|
Wei N, Xu Y, Li Y, Shi J, Zhang X, You Y, Sun Q, Zhai H, Hu Y. A bibliometric analysis of T cell and atherosclerosis. Front Immunol 2022; 13:948314. [PMID: 36311729 PMCID: PMC9606647 DOI: 10.3389/fimmu.2022.948314] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/30/2022] [Indexed: 08/29/2023] Open
Abstract
Atherosclerosis (AS) is widespread and develops into circulatory system problems. T cells play an essential regulatory role in AS occurrence and development. So far, there is no bibliometric research on T cells and AS. To learn more about T cell and AS development, 4,381 records were retrieved from Web of Science™ Core Collection. Then, these records were scientometrically analyzed using CiteSpace and VOSviewer in terms of spatiotemporal distribution, author distribution, subject categories, topic distribution, references, and keywords. Our analysis provides basic information on research in the field, demonstrates that the field has stabilized over the past decade, and identifies potential partners for interested researchers. Current research hotspots in this field mainly include the inflammatory mechanism, immune mechanism, related diseases, and related cytokines of AS. B cell, mortality, inhibition, and monocyte represent the frontiers of research in this field, undergoing an explosive phase. We hope that this work will provide new ideas for advancing the scientific research and clinical application of T cell and AS.
Collapse
Affiliation(s)
- Namin Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ya’nan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Department of Cardiovascular Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuesong Zhang
- Department of Cardiovascular Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaping You
- Department of Cardiovascular Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qianqian Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huaqiang Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanhui Hu
- Department of Cardiovascular Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Tim-1 mucin domain-mutant mice display exacerbated atherosclerosis. Atherosclerosis 2022; 352:1-9. [DOI: 10.1016/j.atherosclerosis.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/25/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
|
10
|
Farahi L, Sinha SK, Lusis AJ. Roles of Macrophages in Atherogenesis. Front Pharmacol 2021; 12:785220. [PMID: 34899348 PMCID: PMC8660976 DOI: 10.3389/fphar.2021.785220] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that may ultimately lead to local proteolysis, plaque rupture, and thrombotic vascular disease, resulting in myocardial infarction, stroke, and sudden cardiac death. Circulating monocytes are recruited to the arterial wall in response to inflammatory insults and differentiate into macrophages which make a critical contribution to tissue damage, wound healing, and also regression of atherosclerotic lesions. Within plaques, macrophages take up aggregated lipoproteins which have entered the vessel wall to give rise to cholesterol-engorged foam cells. Also, the macrophage phenotype is influenced by various stimuli which affect their polarization, efferocytosis, proliferation, and apoptosis. The heterogeneity of macrophages in lesions has recently been addressed by single-cell sequencing techniques. This article reviews recent advances regarding the roles of macrophages in different stages of disease pathogenesis from initiation to advanced atherosclerosis. Macrophage-based therapies for atherosclerosis management are also described.
Collapse
Affiliation(s)
- Lia Farahi
- Monoclonal Antibody Research Center, Avicenna Research Institute, Tehran, Iran
| | - Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aldons J. Lusis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Grievink HW, Smit V, Verwilligen RAF, Bernabé Kleijn MNA, Smeets D, Binder CJ, Yagita H, Moerland M, Kuiper J, Bot I, Foks AC. Stimulation of the PD-1 Pathway Decreases Atherosclerotic Lesion Development in Ldlr Deficient Mice. Front Cardiovasc Med 2021; 8:740531. [PMID: 34790707 PMCID: PMC8591266 DOI: 10.3389/fcvm.2021.740531] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Signaling through the coinhibitory programmed death (PD)-1/PD-L1 pathway regulates T cell responses and can inhibit ongoing immune responses. Inflammation is a key process in the development of atherosclerosis, the underlying cause for the majority of cardiovascular diseases. Dampening the excessive immune response that occurs during atherosclerosis progression by promoting PD-1/PD-L1 signaling may have a high therapeutic potential to limit disease burden. In this study we therefore aimed to assess whether an agonistic PD-1 antibody can diminish atherosclerosis development. Methods and Results: Ldlr−/− mice were fed a western-type diet (WTD) while receiving 100 μg of an agonistic PD-1 antibody or control vehicle twice a week. Stimulation of the PD-1 pathway delayed the WTD-induced monocyte increase in the circulation up to 3 weeks and reduced T cell activation and proliferation. CD4+ T cell numbers in the atherosclerotic plaque were reduced upon PD-1 treatment. More specifically, we observed a 23% decrease in atherogenic IFNγ-producing splenic CD4+ T cells and a 20% decrease in cytotoxic CD8+ T cells, whereas atheroprotective IL-10 producing CD4+ T cells were increased with 47%. Furthermore, we found an increase in regulatory B cells, B1 cells and associated atheroprotective circulating oxLDL-specific IgM levels in agonistic PD-1-treated mice. This dampened immune activation following agonistic PD-1 treatment resulted in reduced atherosclerosis development (p < 0.05). Conclusions: Our data show that stimulation of the coinhibitory PD-1 pathway inhibits atherosclerosis development by modulation of T- and B cell responses. These data support stimulation of coinhibitory pathways as a potential therapeutic strategy to combat atherosclerosis.
Collapse
Affiliation(s)
- Hendrika W Grievink
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands.,Centre for Human Drug Research, Leiden, Netherlands
| | - Virginia Smit
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Robin A F Verwilligen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Mireia N A Bernabé Kleijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Diede Smeets
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hideo Yagita
- Department of Immunology, Juntendo University, Tokyo, Japan
| | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, Netherlands.,Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| |
Collapse
|
12
|
Xia N, Hasselwander S, Reifenberg G, Habermeier A, Closs EI, Mimmler M, Jung R, Karbach S, Lagrange J, Wenzel P, Daiber A, Münzel T, Hövelmeyer N, Waisman A, Li H. B Lymphocyte-Deficiency in Mice Causes Vascular Dysfunction by Inducing Neutrophilia. Biomedicines 2021; 9:biomedicines9111686. [PMID: 34829915 PMCID: PMC8615852 DOI: 10.3390/biomedicines9111686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/17/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
B lymphocytes have been implicated in the development of insulin resistance, atherosclerosis and certain types of hypertension. In contrast to these studies, which were performed under pathological conditions, the present study provides evidence for the protective effect of B lymphocytes in maintaining vascular homeostasis under physiological conditions. In young mice not exposed to any known risk factors, the lack of B cells led to massive endothelial dysfunction. The vascular dysfunction in B cell-deficient mice was associated with an increased number of neutrophils in the circulating blood. Neutrophil depletion in B cell-deficient mice resulted in the complete normalization of vascular function, indicating a causal role of neutrophilia. Moreover, vascular function in B cell-deficient mice could be restored by adoptive transfer of naive B-1 cells isolated from wild-type mice. Interestingly, B-1 cell transfer also reduced the number of neutrophils in the recipient mice, further supporting the involvement of neutrophils in the vascular pathology caused by B cell-deficiency. In conclusion, we report in the present study the hitherto undescribed role of B lymphocytes in regulating vascular function. B cell dysregulation may represent a crucial mechanism in vascular pathology.
Collapse
Affiliation(s)
- Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (N.X.); (S.H.); (G.R.); (A.H.); (E.I.C.); (M.M.)
| | - Solveig Hasselwander
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (N.X.); (S.H.); (G.R.); (A.H.); (E.I.C.); (M.M.)
| | - Gisela Reifenberg
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (N.X.); (S.H.); (G.R.); (A.H.); (E.I.C.); (M.M.)
| | - Alice Habermeier
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (N.X.); (S.H.); (G.R.); (A.H.); (E.I.C.); (M.M.)
| | - Ellen I. Closs
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (N.X.); (S.H.); (G.R.); (A.H.); (E.I.C.); (M.M.)
| | - Maximilian Mimmler
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (N.X.); (S.H.); (G.R.); (A.H.); (E.I.C.); (M.M.)
| | - Rebecca Jung
- Institute for Molecular Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (R.J.); (N.H.); (A.W.)
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (S.K.); (J.L.); (P.W.)
| | - Susanne Karbach
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (S.K.); (J.L.); (P.W.)
- Department of Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (A.D.); (T.M.)
| | - Jérémy Lagrange
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (S.K.); (J.L.); (P.W.)
- Department of Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (A.D.); (T.M.)
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (S.K.); (J.L.); (P.W.)
- Department of Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (A.D.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (A.D.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (A.D.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (R.J.); (N.H.); (A.W.)
- Research Center for Immunotherapy (FZI), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (R.J.); (N.H.); (A.W.)
- Research Center for Immunotherapy (FZI), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (N.X.); (S.H.); (G.R.); (A.H.); (E.I.C.); (M.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-(6131)-17-9348; Fax: +49-(6131)-17-9329
| |
Collapse
|
13
|
de Mol J, Kuiper J, Tsiantoulas D, Foks AC. The Dynamics of B Cell Aging in Health and Disease. Front Immunol 2021; 12:733566. [PMID: 34675924 PMCID: PMC8524000 DOI: 10.3389/fimmu.2021.733566] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Aging is considered to be an important risk factor for several inflammatory diseases. B cells play a major role in chronic inflammatory diseases by antibody secretion, antigen presentation and T cell regulation. Different B cell subsets have been implicated in infections and multiple autoimmune diseases. Since aging decreases B cell numbers, affects B cell subsets and impairs antibody responses, the aged B cell is expected to have major impacts on the development and progression of these diseases. In this review, we summarize the role of B cells in health and disease settings, such as atherosclerotic disease. Furthermore, we provide an overview of age-related changes in B cell development and function with respect to their impact in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
14
|
Tabares-Guevara JH, Villa-Pulgarin JA, Hernandez JC. Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy 2021; 13:1231-1244. [PMID: 34382409 DOI: 10.2217/imt-2021-0009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory condition in which atheroma accumulates within the intima of the arterial wall, is a life-threatening manifestation of cardiovascular disease, due to atheroma rupture, chronic luminal narrowing and thrombosis. Current knowledge of the role of a protective immune response in atherosclerotic lesions has provided promising opportunities to develop new immunotherapeutic strategies. In particular, Tregs exert an atheroprotective role by releasing anti-inflammatory cytokines (IL-10/TGF-β) and suppressing autoreactive T lymphocytes. In vivo animal experiments have shown that this can be achieved by developing vaccines that stimulate immunological tolerance to atheroma antigens. Here, we present an overview of the current knowledge of the proatherogenic immune response, and we discuss the strategies currently used as immunoregulatory therapy.
Collapse
Affiliation(s)
| | - Janny A Villa-Pulgarin
- Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
15
|
Jiao J, He S, Wang Y, Lu Y, Gu M, Li D, Tang T, Nie S, Zhang M, Lv B, Li J, Xia N, Cheng X. Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration. Basic Res Cardiol 2021; 116:46. [PMID: 34302556 PMCID: PMC8310480 DOI: 10.1007/s00395-021-00886-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023]
Abstract
Overactivated inflammatory responses contribute to adverse ventricular remodeling after myocardial infarction (MI). Regulatory B cells (Bregs) are a newly discovered subset of B cells with immunomodulatory roles in many immune and inflammation-related diseases. Our study aims to determine whether the expansion of Bregs exerts a beneficial effect on ventricular remodeling and explore the mechanisms involved. Here, we showed that adoptive transfer of Bregs ameliorated ventricular remodeling in a murine MI model, as demonstrated by improved cardiac function, decreased scar size and attenuated interstitial fibrosis without changing the survival rate. Reduced Ly6Chi monocyte infiltration was found in the hearts of the Breg-transferred mice, while the infiltration of Ly6Clo monocytes was not affected. In addition, the replenishment of Bregs had no effect on the myocardial accumulation of T cells or neutrophils. Mechanistically, Bregs reduced the expression of C-C motif chemokine receptor 2 (CCR2) in monocytes, which inhibited proinflammatory monocyte recruitment to the heart from the peripheral blood and mobilization from the bone marrow. Breg-mediated protection against MI was abrogated by treatment with an interleukin 10 (IL-10) antibody. Finally, IL-10 neutralization reversed the effect of Bregs on monocyte migration and CCR2 expression. The present study suggests a therapeutic value of Bregs in limiting ventricular remodeling after MI through decreasing CCR2-mediated monocyte recruitment and mobilization.
Collapse
Affiliation(s)
- Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shujie He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqiu Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuzhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Muyang Gu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaofang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
Deroissart J, Porsch F, Koller T, Binder CJ. Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis. Handb Exp Pharmacol 2021; 270:359-404. [PMID: 34251531 DOI: 10.1007/164_2021_505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypercholesterolemia is a major risk factor in atherosclerosis development and lipid-lowering drugs (i.e., statins) remain the treatment of choice. Despite effective reduction of LDL cholesterol in patients, a residual cardiovascular risk persists in some individuals, highlighting the need for further therapeutic intervention. Recently, the CANTOS trial paved the way toward the development of specific therapies targeting inflammation, a key feature in atherosclerosis progression. The pre-existence of multiple drugs modulating both innate and adaptive immune responses has significantly accelerated the number of translational studies applying these drugs to atherosclerosis. Additional preclinical research has led to the discovery of new therapeutic targets, offering promising perspectives for the treatment and prevention of atherosclerosis. Currently, both drugs with selective targeting and broad unspecific anti-inflammatory effects have been tested. In this chapter, we aim to give an overview of current advances in immunomodulatory treatment approaches for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Qazmooz HA, Smesam HN, Mousa RF, Al-Hakeim HK, Maes M. Trace element, immune and opioid biomarkers of unstable angina, increased atherogenicity and insulin resistance: Results of machine learning. J Trace Elem Med Biol 2021; 64:126703. [PMID: 33338984 DOI: 10.1016/j.jtemb.2020.126703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Aberrations in endothelial cells, immune and oxidative pathways are associated with atherosclerosis (ATS) and unstable angina (UA). The role of trace elements, minerals, and the endogenous opioid system (EOS) in UA are less well established. METHODS We measured lipid, insulin resistance (IR), and immune, trace element (copper and zinc), mineral (magnesium, calcium), EOS (β-endorphin and mu-opioid receptor (MOR)) and antioxidant (vitamin D3) biomarkers in patients with ATS (n = 60) and UA (n = 60) and healthy controls (n = 58). RESULTS ATS patients showed increased atherogenic and IR indices, IL-6, IL-10, β-endorphin, copper and magnesium, and lower zinc than healthy controls. Logistic regression showed that UA was significantly discriminated from ATS without UA with an accuracy of 85.5 % using calcium, IL-10, β-endorphin, MOR, triglycerides, IR (all positively), and copper and vitamin D3 (inversely). Neural networks showed that UA was discriminated from ATS without UA with an area under the ROC curve of 0.942 using MOR, β-endorphin, calcium, insulin resistance, vitamin D3 and copper as input variables. We found that 50.0 % of the variance in IR was explained by the regression on copper, IL-10, IL-6 (all positively), and zinc (inversely), while 32.9 % of the variance in the atherogenic index of plasma was explained by copper, IL-10 (both positively), and magnesium (inversely). CONCLUSION UA is not only mediated by insulin resistance, atherogenicity, and immune disorders, but also by aberrations in the endogenous opioid system and trace elements as well as lowered antioxidant levels. Copper appears to play a key role in IR and atherogenicity.
Collapse
Affiliation(s)
| | | | - Rana Fadhil Mousa
- A biochemist at the Faculty of Veterinary Medicine, University of Kerbala, Iraq.
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; School of Medicine, IMPACT Strategic Research Centre, Deakin University, PO Box 281, Geelong, VIC, 3220, Australia.
| |
Collapse
|
18
|
Nus M, Basatemur G, Galan M, Cros-Brunsó L, Zhao TX, Masters L, Harrison J, Figg N, Tsiantoulas D, Geissmann F, Binder CJ, Sage AP, Mallat Z. NR4A1 Deletion in Marginal Zone B Cells Exacerbates Atherosclerosis in Mice-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:2598-2604. [PMID: 32907369 PMCID: PMC7571845 DOI: 10.1161/atvbaha.120.314607] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. NR4A orphan receptors have been well studied in vascular and myeloid cells where they play important roles in the regulation of inflammation in atherosclerosis. NR4A1 (nerve growth factor IB) is among the most highly induced transcription factors in B cells following BCR (B-cell receptor) stimulation. Given that B cells substantially contribute to the development of atherosclerosis, we examined whether NR4A1 regulates B-cell function during atherogenesis.
Collapse
Affiliation(s)
- Meritxell Nus
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.).,CIBER de Enfermedades Cardiovasculares, Spain (M.N., M.G.)
| | - Gemma Basatemur
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Maria Galan
- CIBER de Enfermedades Cardiovasculares, Spain (M.N., M.G.).,Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (M.G.)
| | - Laia Cros-Brunsó
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Tian X Zhao
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Leanne Masters
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - James Harrison
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Nichola Figg
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Dimitrios Tsiantoulas
- Department of Laboratory Medicine, Medical University of Vienna, Austria (D.T., C.J.B.)
| | | | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria (D.T., C.J.B.)
| | - Andrew P Sage
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| |
Collapse
|
19
|
Douna H, Amersfoort J, Schaftenaar FH, Kröner MJ, Kiss MG, Slütter B, Depuydt MAC, Bernabé Kleijn MNA, Wezel A, Smeets HJ, Yagita H, Binder CJ, Bot I, van Puijvelde GHM, Kuiper J, Foks AC. B- and T-lymphocyte attenuator stimulation protects against atherosclerosis by regulating follicular B cells. Cardiovasc Res 2020; 116:295-305. [PMID: 31150053 DOI: 10.1093/cvr/cvz129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/03/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS The immune system is strongly involved in atherosclerosis and immune regulation generally leads to attenuated atherosclerosis. B- and T-lymphocyte attenuator (BTLA) is a novel co-receptor that negatively regulates the activation of B and T cells; however, there have been no reports of BTLA and its function in atherosclerosis or cardiovascular disease (CVD). We aimed to assess the dominant BTLA expressing leucocyte in CVD patients and to investigate whether BTLA has a functional role in experimental atherosclerosis. METHODS AND RESULTS We show that BTLA is primarily expressed on B cells in CVD patients and follicular B2 cells in low-density lipoprotein receptor-deficient (Ldlr-/-) mice. We treated Ldlr-/- mice that were fed a western-type diet (WTD) with phosphate-buffered saline, an isotype antibody, or an agonistic BTLA antibody (3C10) for 6 weeks. We report here that the agonistic BTLA antibody significantly attenuated atherosclerosis. This was associated with a strong reduction in follicular B2 cells, while regulatory B and T cells were increased. The BTLA antibody showed similar immunomodulating effects in a progression study in which Ldlr-/- mice were fed a WTD for 10 weeks before receiving antibody treatment. Most importantly, BTLA stimulation enhanced collagen content, a feature of stable lesions, in pre-existing lesions. CONCLUSION Stimulation of the BTLA pathway in Ldlr-/- mice reduces initial lesion development and increases collagen content of established lesions, presumably by shifting the balance between atherogenic follicular B cells and atheroprotective B cells and directing CD4+ T cells towards regulatory T cells. We provide the first evidence that BTLA is a very promising target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hidde Douna
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jacob Amersfoort
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mara J Kröner
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Máté G Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Bram Slütter
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marie A C Depuydt
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Anouk Wezel
- Department of Surgery, HMC Westeinde, The Hague, The Netherlands
| | - Harm J Smeets
- Department of Surgery, HMC Westeinde, The Hague, The Netherlands
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - I Bot
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijs H M van Puijvelde
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
20
|
Porsch F, Binder CJ. Impact of B-Cell–Targeted Therapies on Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:1705-1714. [DOI: 10.1161/atvbaha.119.311996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is modulated by many immune cell subsets, including B cells. Therefore, targeting the inflammatory component of cardiovascular disease represents a promising therapeutic strategy. In the past years, immunotherapy has revolutionized the treatment of autoimmunity and cancer. Many of these clinically used strategies target B cells. Given the multifaceted role of B cells in atherogenesis, it is conceivable that B-cell–directed therapies can modulate disease development. Here, we review clinically available B-cell–targeted therapies and the possible benefits or detrimental effects on cardiovascular disease.
Collapse
Affiliation(s)
- Florentina Porsch
- From the Department for Laboratory Medicine, Medical University of Vienna, Austria (F.P., C.J.B.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (F.P., C.J.B.)
| | - Christoph J. Binder
- From the Department for Laboratory Medicine, Medical University of Vienna, Austria (F.P., C.J.B.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (F.P., C.J.B.)
| |
Collapse
|
21
|
Koulouri V, Koutsilieris M, Mavragani CP. B cells and atherosclerosis in systemic lupus erythematosus. Expert Rev Clin Immunol 2019; 15:417-429. [DOI: 10.1080/1744666x.2019.1571411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Vasiliki Koulouri
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P. Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|