1
|
Saminathan P, Mathews IT, Alimadadi A, Fung K, Kakugawa K, Joosten LA, Netea MG, Jain M, Cheng S, Hedrick CC, Sharma S. Sex differences in adenosine deaminase activity associate with disparities in SARS-CoV-2 innate immunity. iScience 2025; 28:112418. [PMID: 40343269 PMCID: PMC12059719 DOI: 10.1016/j.isci.2025.112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/08/2025] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
Females demonstrate elevated type-I interferon production and a stronger antiviral immune response; however, the mechanisms underlying sex-based differences in antiviral immunity are incompletely understood. We previously reported that low adenosine deaminase (ADA) activity perturbs the methylation-based transcriptional silencing of endogenous retroviral elements (hERV), which stimulates IFN-Stimulated Genes (ISG) and primes antiviral immunity. Here we demonstrate lower ADA activity in females compared to their male counterparts, which correlated with higher hERV and ISG expression in female lungs. Sex differences in ADA2 were linked to the number and expression profiles of blood and lung-derived monocyte populations. Single-cell RNA sequencing of respiratory cells from patients with COVID-19 showed a significant female bias in hERV-ISG signatures, and implicated IL-18 as a driver of sex-specific ADA2 expression. Observations in healthy and COVID-19 cohorts indicate that higher ADA activity is associated with suppressed antiviral innate immunity in the male respiratory tract, which may drive adverse COVID-19 outcomes.
Collapse
Affiliation(s)
- Priyanka Saminathan
- Center for Sex Differences in the Immune System, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ian T. Mathews
- Center for Sex Differences in the Immune System, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ahmad Alimadadi
- Center for Sex Differences in the Immune System, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Immunology Center of Georgia and Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Kai Fung
- Center for Sex Differences in the Immune System, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kiyokazu Kakugawa
- Laboratory for Inflammatory Immune Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Community Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Community Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn 53127, Germany
| | - Mohit Jain
- Sapient Bioanalytics, San Diego, CA 92121, USA
| | - Susan Cheng
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Catherine C. Hedrick
- Immunology Center of Georgia and Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sonia Sharma
- Center for Sex Differences in the Immune System, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Laboratory for Inflammatory Immune Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Anderson KC, Grammer EE, Stephenson B, Stahl ME, Weeldreyer NR, Liu Z, Love KM, Allen JD, Weltman A. The interrelationship among exercise intensity, endothelial function, and ghrelin in healthy humans. Physiol Rep 2025; 13:e70213. [PMID: 40214273 PMCID: PMC11987205 DOI: 10.14814/phy2.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 04/14/2025] Open
Abstract
Ghrelin circulates in acylated (AG) and deacylated (DAG) isoforms and both may impact endothelial function (EF). Although acute exercise has been shown to modulate ghrelin levels and EF, data on the impact of exercise intensity on these parameters are scarce. To investigate the effect of exercise intensity and sex on EF and ghrelin levels, nine males (age: 43.8 ± 10.3 y; BMI: 22.5 ± 1.8 kg/m2) and eight females (age: 33.75 ± 10.2 y; BMI: 22.4 ± 1.6 kg/m2) completed a maximal cycle ergometer lactate threshold (LT)/VO2peak test. This test determined the exercise intensity for three visits: (a) CON, no exercise; (b) MOD, the power output (PO) at LT; (c) HIGH, the PO associated with 75% of the difference between LT and VO2peak. Ghrelin levels and EF [flow-mediated dilation (FMD), shear rate (SR)] were measured at baseline and then 30-120 min post-exercise. HIGH and MOD increased FMD (p < 0.0001). Each ghrelin isoform was suppressed by HIGH; only females exhibited reduced DAG levels in HIGH compared to MOD and CON (p < 0.0001-0.004). FMD was associated with ghrelin levels in females (r = -0.26-0.47). High-intensity exercise is key for ghrelin suppression and appears to only be weakly/moderately related to EF.
Collapse
Affiliation(s)
- Kara C. Anderson
- Department of Kinesiology, School of Education and Human DevelopmentUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of MedicineUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Emily E. Grammer
- Department of Kinesiology, School of Education and Human DevelopmentUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Benjamin Stephenson
- Department of Kinesiology, School of Education and Human DevelopmentUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Macy E. Stahl
- Department of Kinesiology, School of Education and Human DevelopmentUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Nathan R. Weeldreyer
- Department of Kinesiology, School of Education and Human DevelopmentUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Zhenqi Liu
- Department of MedicineUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kaitlin M. Love
- Department of MedicineUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Jason D. Allen
- Department of Kinesiology, School of Education and Human DevelopmentUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of MedicineUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Arthur Weltman
- Department of Kinesiology, School of Education and Human DevelopmentUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of MedicineUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| |
Collapse
|
3
|
Li HF, Lin H, Liu HT, Lin TJ, Tseng TL. Activating transcription factor-3 orchestrates the modulation of vascular anti-contractile activity and relaxation by governing the secretion of HDL-bound sphingosine-1-phosphate in perivascular adipose tissue. Br J Pharmacol 2025; 182:1763-1782. [PMID: 39843165 DOI: 10.1111/bph.17433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND PURPOSE Perivascular adipose tissues (PVATs) play a critical role in modulating vascular homeostasis and protecting against cardiovascular dysfunction-mediated blood pressure dysregulation. We demonstrated that the activating transcription factor-3 (Atf3) gene in the PVAT is crucial for improving vascular wall tension abnormalities; however, its protective mechanism remains unclear. Herein, we aim to determine whether ATF3 regulates PVAT-derived relaxing factor (PVDRF) biosynthesis and if its secretion contributes to vasorelaxation. EXPERIMENTAL APPROACH This study employed an in vivo animal model using global Atf3-deficient mice, in vitro blood vessel myography, and biochemical analyses to evaluate ATF3-mediated PVDRF release and reactivity in the vasculature. KEY RESULTS Wild-type (WT) mouse thoracic aortic PVAT extracts significantly induced resting tone dilation and attenuated vasoconstrictor-induced contractile responses compared to Atf3-/- mice. Heat-stable PVAT extracts from WT mice caused sustained and reproducible vasodilation without tachyphylaxis in control aortic rings. Biochemical evaluation of PVDRF release revealed that Atf3-/- mice had lower sphingosine-1-phosphate (S1P) and HDL cholesterol (HDL-C) levels than WT mice. Furthermore, PVAT extracts from WT mice induced long-lasting vasorelaxation, which was significantly inhibited by the S1P3 receptor antagonist TY52156 and scavenger receptor class B type 1 receptor antagonist glyburide. CONCLUSION AND IMPLICATIONS ATF3 within the PVAT can modulate vascular function by strengthening sphingosine kinase 1 (sphk1)-S1P-S1P3 receptor lipid signalling and stimulating S1P binding to HDL to form the vasodilator HDL-S1P. ATF3 is an essential modulator for maintaining the physiological function of PVAT, providing a novel target for treatment of obesity-related cardiovascular diseases.
Collapse
Affiliation(s)
- Hsiao-Fen Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jen Lin
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- CardioVascular Research Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Tzu-Ling Tseng
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- CardioVascular Research Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Yang L, Li X, Ni L, Lin Y. Treatment of endothelial cell dysfunction in atherosclerosis: a new perspective integrating traditional and modern approaches. Front Physiol 2025; 16:1555118. [PMID: 40206381 PMCID: PMC11979162 DOI: 10.3389/fphys.2025.1555118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Atherosclerosis (AS), a prime causative factor in cardiovascular disease, originates from endothelial cell dysfunction (ECD). Comprising a vital part of the vascular endothelium, endothelial cells play a crucial role in maintaining vascular homeostasis, optimizing redox balance, and regulating inflammatory responses. More evidence shows that ECD not only serves as an early harbinger of AS but also exhibits a strong association with disease progression. In recent years, the treatment strategies for ECD have been continuously evolving, encompassing interventions ranging from lifestyle modifications to traditional pharmacotherapy aimed at reducing risk factors, which also have demonstrated the ability to improve endothelial cell function. Additionally, novel strategies such as promising biotherapy and gene therapy have drawn attention. These methods have demonstrated enormous potential and promising prospects in improving endothelial function and reversing AS. However, it is essential to remain cognizant that the current treatments still present significant challenges regarding therapeutic efficacy, long-term safety, and ethical issues. This article aims to provide a systematic review of these treatment methods, analyze the mechanisms and efficacy of various therapeutic strategies, with the goal of offering insights and guidance for clinical practice, and further advancing the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
5
|
Zhong J, Gao RR, Zhang X, Yang JX, Liu Y, Ma J, Chen Q. Dissecting endothelial cell heterogeneity with new tools. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:10. [PMID: 40121354 PMCID: PMC11929667 DOI: 10.1186/s13619-025-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China
| | - Xin Zhang
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jia-Xin Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- The Institute of Future Health, South China of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
| | - Qi Chen
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China.
| |
Collapse
|
6
|
Zhang Y, Zheng W, Jiang C, Hao W, Gong W, Yan Y, Wang X, Ma C, Nie S. Sex-Specific Association between Systolic Blood Pressure Time in Target Range and Cardiovascular Outcomes: A Post-Hoc Analysis of the SPRINT Trial. Rev Cardiovasc Med 2025; 26:26262. [PMID: 40160598 PMCID: PMC11951276 DOI: 10.31083/rcm26262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 04/02/2025] Open
Abstract
Background Systolic blood pressure time in target range (SBP TTR) is a novel metric for blood pressure control. Previous studies have demonstrated an inverse association between SBP TTR and risks of cardiovascular events, but sex differences have never been reported. This study aims to investigate the sex-specific differences in the relationship using data from the Systolic Blood Pressure Intervention Trial (SPRINT). Methods This post hoc analysis included 8822 SPRINT participants with at least three follow-up systolic blood pressure (SBP) measurements within the first three months. SBP TTR was calculated using the Rosendaal method of linear interpolation. The primary endpoint was major adverse cardiovascular and cerebrovascular events (MACCE). Cox proportional hazards models and restricted cubic splines (RCS) were used to assess the association between SBP TTR and cardiovascular events. Results Women accounted for 35.3% with a mean age of 68.6 ± 9.5 years, having a higher body mass index (p = 0.007) and a lower SBP TTR compared to men (p < 0.001). In the overall population and in women, each standard deviation (SD) increase in SBP TTR was associated with a reduced risk of MACCE (adjusted hazard ratio (HR) 0.89; 95% confidence interval (CI) 0.82-0.97; p = 0.007, and adjusted HR 0.85; 95% CI 0.74-0.99; p = 0.039, respectively) and acute decompensated heart failure (adjusted HR 0.86; 95% CI 0.73-0.99; p = 0.047, and adjusted HR 0.68; 95% CI 0.51-0.92; p = 0.011, respectively), while this was not observed in men. RCS indicated a similar trend in men only when SBP TTR exceeded 39%. Additional adjustments for mean SBP and SBP variability yielded similar outcomes. Conclusions The study demonstrates that in women, a higher SBP TTR is associated with a reduced risk of MACCE and acute decompensated heart failure, while in men, a similar trend is observed only when SBP TTR is higher, underscoring the necessity of considering sex differences in personalized blood pressure management strategies. Clinical Trial Registration NCT01206062, https://www.clinicaltrials.gov/expert-search?term=NCT01206062.
Collapse
Affiliation(s)
- Yuekun Zhang
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Wen Zheng
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Chao Jiang
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Wen Hao
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Wei Gong
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Yan Yan
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Xiao Wang
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Changsheng Ma
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Shaoping Nie
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| |
Collapse
|
7
|
Zhang Z, Guo J. Deciphering Oxidative Stress in Cardiovascular Disease Progression: A Blueprint for Mechanistic Understanding and Therapeutic Innovation. Antioxidants (Basel) 2024; 14:38. [PMID: 39857372 PMCID: PMC11759168 DOI: 10.3390/antiox14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis and progression of cardiovascular diseases (CVDs). This review focuses on the signaling pathways of oxidative stress during the development of CVDs, delving into the molecular regulatory networks underlying oxidative stress in various disease stages, particularly apoptosis, inflammation, fibrosis, and metabolic imbalance. By examining the dual roles of oxidative stress and the influences of sex differences on oxidative stress levels and cardiovascular disease susceptibility, this study offers a comprehensive understanding of the pathogenesis of cardiovascular diseases. The study integrates key findings from current research in three comprehensive ways. First, it outlines the major CVDs associated with oxidative stress and their respective signaling pathways, emphasizing oxidative stress's central role in cardiovascular pathology. Second, it summarizes the cardiovascular protective effects, mechanisms of action, and animal models of various antioxidants, offering insights into future drug development. Third, it discusses the applications, advantages, limitations, and potential molecular targets of gene therapy in CVDs, providing a foundation for novel therapeutic strategies. These tables underscore the systematic and integrative nature of this study while offering a theoretical basis for precision treatment for CVDs. A major contribution of this study is the systematic review of the differential effects of oxidative stress across different stages of CVDs, in addition to the proposal of innovative, multi-level intervention strategies, which open new avenues for precision treatment of the cardiovascular system.
Collapse
Affiliation(s)
- Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
8
|
Campbell AC, Kuonqui KG, Ashokan G, Rubin J, Shin J, Pollack BL, Roberts A, Sarker A, Park HJ, Kataru RP, Barrio AV, Mehrara BJ. Role of inducible nitric oxide (iNOS) and nitrosative stress in regulating sex differences in secondary lymphedema. Front Physiol 2024; 15:1510389. [PMID: 39691094 PMCID: PMC11649630 DOI: 10.3389/fphys.2024.1510389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Secondary lymphedema is a common complication following surgical treatment of solid tumors. Although more prevalent in women due to higher breast cancer rates, men also develop lymphedema, often with more severe manifestations. Despite these differences in clinical presentation, the cellular mechanisms underlying sex differences are poorly understood. Previous studies have shown that inducible nitric oxide synthase (iNOS) expression by inflammatory cells is an important regulator of lymphatic pumping and leakiness in lymphedema and that lymphatic endothelial cells are highly sensitive to nitrosative stress. Based on this rationale, we used a mouse tail model of lymphedema to study the role of nitric oxide in sex-related differences in disease severity. Consistent with clinical findings, we found that male mice have significantly worse tail edema and higher rates of tail necrosis compared with female mice following tail skin/lymphatic excision (p = 0.001). Our findings correlated with increased tissue infiltration of iNOS + inflammatory cells, increased iNOS protein expression, and increased nitrosative stress in male mouse lymphedematous skin tissues (p < 0.05). Importantly, transgenic male mice lacking the iNOS gene (iNOS-KO) displayed markedly reduced swelling, inflammation, and tissue necrosis rates, whereas no differences were observed between wild-type and iNOS-KO female mice. Overall, our results indicate that iNOS-mediated nitric oxide production contributes to sex-based differences in secondary lymphedema severity, emphasizing the need to consider sex as a biological variable in lymphedema research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Raghu P. Kataru
- Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Babak J. Mehrara
- Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
9
|
Woo J, Kripfgans O, Wang IC, Samal A, Betancourt AR, Fenno JC, Chan HL. Ultrasonographic Evaluation of Vascular Response to Mechanical Compression during Induced Gingival Inflammation. J Dent Res 2024; 103:1403-1411. [PMID: 39582155 DOI: 10.1177/00220345241286807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
The aim of this study was to evaluate the gingival vascular response to mechanical compression during inflammation using ultrasonography. Four female and 4 male Sinclair mini pigs 18 mo of age were included in the study. Pathogenic bacteria-impregnated silk ligatures were placed around the third premolars (PM3), fourth premolars (PM4), and first molars (M1). Ligatures were placed per quadrant at 2-wk intervals in random order. Ultrasonographic study was performed at 2-wk intervals following baseline until the 10th week. Brightness mode (B-mode) images and color flow cine loops were captured at 2 different conditions: 1 with only coupling gel between the ultrasound transducer and the mucosal surface and 1 with the transducer compressing the mucosal surface. The compression was visually adjusted until minimal to no blood flow was detected in color-flow mode. Compression was facilitated using a solid gel pad attached to the transducer. Strain values were obtained from B-mode images of the gel pad and plotted versus study weeks. The t test comparisons were obtained to the baseline (week 0). Data from female and male pigs were plotted and analyzed separately for comparison. Gel pad strain increased with peak around week 4 and gradually decreased in both sexes. In male pigs, the increase in strain was statistically significant in weeks 2, 4, and 6 of all teeth regions and week 8 of PM4 and M1 regions. In female pigs, the increase in strain was significant in only week 4 of PM4. Higher strain required for stoppage of blood flow implies increased gingival blood flow with inflammation, which corresponds with previous studies. Considerably smaller changes in gel pad strain were noted from female pigs, indicating a smaller increase in gingival blood flow compared with males. This study demonstrated a possible application of intraoral ultrasonography for assessment of gingival inflammation.
Collapse
Affiliation(s)
- J Woo
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dentistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - O Kripfgans
- Department of Radiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - I-C Wang
- Department of Periodontics and Oral Medicine, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, IA, USA
| | - A Samal
- Department of Periodontics and Oral Medicine, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, IA, USA
| | - A R Betancourt
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, IL, USA
| | - J C Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - H-L Chan
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Lam TD, Tóth I, Hermenean A, Wilhelm I, Kieda C, Krizbai I, Farkas AE. Senolysis potentiates endothelial progenitor cell adhesion to and integration into the brain vasculature. Stem Cell Res Ther 2024; 15:413. [PMID: 39529098 PMCID: PMC11556082 DOI: 10.1186/s13287-024-04042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND One of the most severe consequences of ageing is cognitive decline, which is associated with dysfunction of the brain microvasculature. Thus, repairing the brain vasculature could result in healthier brain function. METHODS To better understand the potential beneficial effect of endothelial progenitor cells (EPCs) in vascular repair, we studied the adhesion and integration of EPCs using the early embryonic mouse aorta-gonad-mesonephros - MAgEC 10.5 endothelial cell line. The EPC interaction with brain microvasculature was monitored ex vivo and in vivo using epifluorescence, laser confocal and two-photon microscopy in healthy young and old animals. The effects of senolysis, EPC activation and ischaemia (two-vessel occlusion model) were analysed in BALB/c and FVB/Ant: TgCAG-yfp_sb #27 mice. RESULTS MAgEC 10.5 cells rapidly adhered to brain microvasculature and some differentiated into mature endothelial cells (ECs). MAgEC 10.5-derived endothelial cells integrated into microvessels, established tight junctions and co-formed vessel lumens with pre-existing ECs within five days. Adhesion and integration were much weaker in aged mice, but were increased by depleting senescent cells using abt-263 or dasatinib plus quercetin. Furthermore, MAgEC 10.5 cell adhesion to and integration into brain vessels were increased by ischaemia and by pre-activating EPCs with TNFα. CONCLUSIONS Combining progenitor cell therapy with senolytic therapy and the prior activation of EPCs are promising for improving EPC adhesion to and integration into the cerebral vasculature and could help rejuvenate the ageing brain.
Collapse
Affiliation(s)
- Tri Duc Lam
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, 6726, Hungary
| | - István Tóth
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, Szeged, 6720, Hungary
| | - Anca Hermenean
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, 310414, Romania
| | - Imola Wilhelm
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, 310414, Romania
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, Warsaw, 04-141, Poland
- Centre for Molecular Biophysics, UPR 4301 CNRS, Orleans, 45071, France
| | - István Krizbai
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary.
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6726, Hungary.
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, 310414, Romania.
| | - Attila E Farkas
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary.
| |
Collapse
|
11
|
Hou H, Li J, Wang J, Hou R, Li J, Zhang K. Abnormal dermal microvascular endothelial cells in psoriatic excessive angiogenesis. Microvasc Res 2024; 155:104718. [PMID: 39019108 DOI: 10.1016/j.mvr.2024.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Psoriasis is characterized by excessive angiogenesis, with increased distortion and dilation of the dermal blood vessels. These vascular alterations are ascribed, at least in part, to the changes in dermal microvascular endothelial cell functions. However, despite the recognition of vascular normalization as an emerging strategy for the treatment of psoriasis, in-depth studies of human dermal microvascular endothelial cells (HDMECs) have been missing. The difficulty of isolation and culture of HDMECs has impeded the study of endothelial dysfunction in psoriasis. Researchers have done a great deal of work to study the abnormal characteristics of keratinocytes, fibroblasts, and leukocytes in psoriatic skin tissue. Recently, with successful isolation of HDMECs from psoriasis, great progress has been made in the elucidation of the pathogenic role of these cells in psoriasis. It is of great therapeutic significance to study the molecular mechanism of HDMECs in psoriasis. We review here the abnormalities of HDMECs in psoriasis.
Collapse
Affiliation(s)
- Hui Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China
| | - Juanjuan Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, Shanxi Province, China.
| |
Collapse
|
12
|
Dhyani N, Tian C, Gao L, Rudebush TL, Zucker IH. Nrf2-Keap1 in Cardiovascular Disease: Which Is the Cart and Which the Horse? Physiology (Bethesda) 2024; 39:0. [PMID: 38687468 PMCID: PMC11460534 DOI: 10.1152/physiol.00015.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
High levels of oxidant stress in the form of reactive oxidant species are prevalent in the circulation and tissues in various types of cardiovascular disease including heart failure, hypertension, peripheral arterial disease, and stroke. Here we review the role of nuclear factor erythroid 2-related factor 2 (Nrf2), an important and widespread antioxidant and anti-inflammatory transcription factor that may contribute to the pathogenesis and maintenance of cardiovascular diseases. We review studies showing that downregulation of Nrf2 exacerbates heart failure, hypertension, and autonomic function. Finally, we discuss the potential for using Nrf2 modulation as a therapeutic strategy for cardiovascular diseases and autonomic dysfunction.
Collapse
Affiliation(s)
- Neha Dhyani
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Tara L Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
13
|
Maas AHEM. Female-specific risk variables: From innocent bystanders to key players in cardiovascular risk prediction. Maturitas 2024; 186:107970. [PMID: 38580554 DOI: 10.1016/j.maturitas.2024.107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
There is an increasing interest among professionals in cardiovascular medicine in women-specific risk variables related to gynecologic conditions over the life span. Although adverse lifestyle factors, hypertension, dyslipidemia and insulin resistance are recognized as the most important risk factors in older women, there is still uncertainty over how to account for other risk variables. For instance, migraine from puberty onwards, chronic inflammatory conditions and mental stress affect cardiovascular risk in women. As prevention should start as early in life as possible, appropriate risk estimation in women at middle age is crucial. In case of doubt, a coronary artery calcium score with a computed tomography scan at a radiology department can be helpful to discriminate between low and high risk for an individual. This may also pave the way for safe menopausal hormone therapy if needed. In this paper we summarize the current status of women-specific and other relevant risk variables from the perspective of the cardiologist.
Collapse
Affiliation(s)
- Angela H E M Maas
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Chen K, Wang D, Qian M, Weng M, Lu Z, Zhang K, Jin Y. Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 2024; 10:e33340. [PMID: 39027563 PMCID: PMC11255673 DOI: 10.1016/j.heliyon.2024.e33340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal host response to microbial infections. During its pathogenesis, vascular endothelial cells (ECs) play a pivotal role as essential components in maintaining microcirculatory homeostasis. This article aims to comprehensively review the multifaceted physiological functions of vascular ECs, elucidate the alterations in their functionality throughout the course of sepsis, and explore recent advancements in research concerning sepsis-related therapeutic drugs targeting ECs.
Collapse
Affiliation(s)
- Kunwei Chen
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Qian
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengcao Weng
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongteng Lu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Cignarella A, Bolego C, Barton M. Sex and sex steroids as determinants of cardiovascular risk. Steroids 2024; 206:109423. [PMID: 38631602 DOI: 10.1016/j.steroids.2024.109423] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
There are considerable sex differences regarding the risk of cardiovascular disease (CVD), including arterial hypertension, coronary artery disease (CAD) and stroke, as well as chronic renal disease. Women are largely protected from these conditions prior to menopause, and the risk increases following cessation of endogenous estrogen production or after surgical menopause. Cardiovascular diseases in women generally begin to occur at a later age than in men (on average with a delay of 10 years). Cessation of estrogen production also impacts metabolism, increasing the risk of developing obesity and diabetes. In middle-aged individuals, hypertension develops earlier and faster in women than in men, and smoking increases cardiovascular risk to a greater degree in women than it does in men. It is not only estrogen that affects female cardiovascular health and plays a protective role until menopause: other sex hormones such as progesterone and androgen hormones generate a complex balance that differentiates heart and blood vessel function in women compared to men. Estrogens improve vasodilation of epicardial coronary arteries and the coronary microvasculature by augmenting the release of vasodilating factors such as nitric oxide and prostacyclin, which are mechanisms of coronary vasodilatation that are more pronounced in women compared to men. Estrogens are also powerful inhibitors of inflammation, which in part explains their protective effects on CVD and chronic renal disease. Emerging evidence suggests that sex chromosomes also play a significant role in shaping cardiovascular risk. The cardiovascular protection conferred by endogenous estrogens may be extended by hormone therapy, especially using bioidentical hormones and starting treatment early after menopause.
Collapse
Affiliation(s)
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland; Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
16
|
Bačáková L, Chlupáč J, Filová E, Musílková J, Tomšů J, Wu YC, Svobodová L, Pražák Š, Brož A. Vascular Damage and Repair - Are Small-Diameter Vascular Grafts Still the "Holy Grail" of Tissue Engineering? Physiol Res 2024; 73:S335-S363. [PMID: 38836460 PMCID: PMC11412351 DOI: 10.33549/physiolres.935294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases are the most important cause of morbidity and mortality in the civilized world. Stenosis or occlusion of blood vessels leads not only to events that are directly life-threatening, such as myocardial infarction or stroke, but also to a significant reduction in quality of life, for example in lower limb ischemia as a consequence of metabolic diseases. The first synthetic polymeric vascular replacements were used clinically in the early 1950s. However, they proved to be suitable only for larger-diameter vessels, where the blood flow prevents the attachment of platelets, pro-inflammatory cells and smooth muscle cells on their inner surface, whereas in smaller-diameter grafts (6 mm or less), these phenomena lead to stenosis and failure of the graft. Moreover, these polymeric vascular replacements, like biological grafts (decellularized or devitalized), are cell-free, i.e. there are no reconstructed physiological layers of the blood vessel wall, i.e. an inner layer of endothelial cells to prevent thrombosis, a middle layer of smooth muscle cells to perform the contractile function, and an outer layer to provide innervation and vascularization of the vessel wall. Vascular substitutes with these cellular components can be constructed by tissue engineering methods. However, it has to be admitted that even about 70 years after the first polymeric vascular prostheses were implanted into human patients, there are still no functional small-diameter vascular grafts on the market. The damage to small-diameter blood vessels has to be addressed by endovascular approaches or by autologous vascular substitutes, which leads to some skepticism about the potential of tissue engineering. However, new possibilities of this approach lie in the use of modern technologies such as 3D bioprinting and/or electrospinning in combination with stem cells and pre-vascularization of tissue-engineered vascular grafts. In this endeavor, sex-related differences in the removal of degradable biomaterials by the cells and in the behavior of stem cells and pre-differentiated vascular cells need to be taken into account. Key words: Blood vessel prosthesis, Regenerative medicine, Stem cells, Footprint-free iPSCs, sr-RNA, Dynamic bioreactor, Sex-related differences.
Collapse
Affiliation(s)
- L Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Eickelmann C, Lieder HR, Sturek M, Heusch G, Kleinbongard P. Differences in vasomotor function of mesenteric arteries between Ossabaw minipigs with predisposition to metabolic syndrome and Göttingen minipigs. Am J Physiol Heart Circ Physiol 2024; 326:H408-H417. [PMID: 38133620 PMCID: PMC11219054 DOI: 10.1152/ajpheart.00719.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Metabolic syndrome predisposes and contributes to the development and progression of atherosclerosis. The minipig strain "Ossabaw" is characterized by a predisposition to develop metabolic syndrome. We compared vasomotor function in Ossabaw minipigs before they developed their diseased phenotype to that of Göttingen minipigs without such genetic predisposition. Mesenteric arteries of adult Ossabaw and Göttingen minipigs were dissected postmortem and mounted on a myograph for isometric force measurements. Maximal vasoconstriction to potassium chloride (KClmax) was induced. Cumulative concentration-response curves were determined in response to norepinephrine. Endothelium-dependent (with carbachol) and endothelium-independent (with nitroprusside) vasodilation were analyzed after preconstriction by norepinephrine. In a bioinformatic analysis, variants/altered base pairs within genes associated with cardiovascular disease were analyzed. KClmax was similar between the minipig strains (15.6 ± 6.7 vs. 14.1 ± 3.4 ΔmN). Vasoconstriction in response to norepinephrine was more pronounced in Ossabaw than in Göttingen minipigs (increase of force to 143 ± 48 vs. 108 ± 38% of KClmax). Endothelium-dependent and endothelium-independent vasodilation were less pronounced in Ossabaw than in Göttingen minipigs (decrease of force to 46.4 ± 29.6 vs. 16.0 ± 18.4% and to 36.7 ± 25.2 vs. 2.3 ± 3.7% of norepinephrine-induced preconstriction). Vasomotor function was not different between the sexes. More altered base pairs/variants were identified in Ossabaw than in Göttingen minipigs for the exon encoding adrenoceptor-α1A. Vasomotor function in lean Ossabaw minipigs is shifted toward vasoconstriction and away from vasodilation in comparison with Göttingen minipigs, suggesting a genetic predisposition for vascular dysfunction and atherosclerosis in Ossabaw minipigs. Thus, Ossabaw minipigs may be a better model for human cardiovascular disease than Göttingen minipigs.NEW & NOTEWORTHY Animal models with a predisposition to metabolic syndrome and atherosclerosis are attracting growing interest for translational research, as they may better mimic the variability of patients with cardiovascular disease. In Ossabaw minipigs, with a polygenic predisposition to metabolic syndrome, but without the diseased phenotype, vasoconstriction is more and vasodilation is less pronounced in mesenteric arteries than in Göttingen minipigs. Ossabaw minipigs may be a more suitable model of human cardiovascular disease.
Collapse
Affiliation(s)
- Chantal Eickelmann
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Helmut Raphael Lieder
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Michael Sturek
- CorVus Biomedical, LLC, and CorVus Foundation, Inc., Crawfordsville, Indiana, United States
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| |
Collapse
|
18
|
Robbin V, Bansal V, Vellanki K, Siddiqui F, Hoppensteadt-Moorman D, Fareed J, Syed M. Angiopoietin-2 and Mortality Outcomes in End-Stage Renal Disease with Heart Failure as a Comorbidity. Clin Appl Thromb Hemost 2024; 30:10760296241305101. [PMID: 39710933 DOI: 10.1177/10760296241305101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Angiopoeitin-2 (Ang2) is a vascular growth factor involved in regulating angiogenesis and endothelial remodeling. Higher Ang2 levels have been associated with mortality in the general population and among male hemodialysis patients, but its effects on concomitant heart failure with reduced ejection fraction (HFrEF) and end-stage renal disease (ESRD) are unknown. Plasma samples from 73 ESRD patients and 40 healthy patients were analyzed for Ang2 concentrations using ELISA. Patient groups were stratified into those with or without HFrEF (EF < 50%). At two years following sample collection, the medical record was reviewed for mortality. The optimal cut-off value for Ang2 to predict all-cause mortality was 1671 pg/mL (AUC 0.73, sensitivity 0.714, specificity 0.750) based on the regression analysis. Statistical analyses included Mann-Whitney U tests, Cox proportional hazards model, and Log-rank test. Multiple comorbidities were present; coronary artery disease 46%, diabetes 69%, hypertension 97%, and smoking 49%. Patients with one- and two-year mortality had higher Ang2. Ang2 levels above the optimal cut-off are associated with mortality within the entire ESRD sample and within the group with both ESRD and HFrEF. In the Cox proportional hazards analysis, Ang2 levels were associated with mortality within the larger ESRD sample but not in the group with ESRD and HFrEF. Ang2 has potential as a non-specific biomarker for prognostication in patients with cardiorenal syndrome given its association with mortality, despite modest sex-based differences. Future research should be conducted with larger samples to evaluate if it has prognostic value in individuals with HFrEF and ESRD of varying severity and temporality.
Collapse
Affiliation(s)
- Vanessa Robbin
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Vinod Bansal
- Department of Nephrology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Kavitha Vellanki
- Department of Nephrology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Fakiha Siddiqui
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Program in Health Sciences, UCAM - Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - Debra Hoppensteadt-Moorman
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Jawed Fareed
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Mushabbar Syed
- Department of Cardiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
19
|
Labusek N, Ghari P, Mouloud Y, Köster C, Diesterbeck E, Hadamitzky M, Felderhoff-Müser U, Bendix I, Giebel B, Herz J. Hypothermia combined with extracellular vesicles from clonally expanded immortalized mesenchymal stromal cells improves neurodevelopmental impairment in neonatal hypoxic-ischemic brain injury. J Neuroinflammation 2023; 20:280. [PMID: 38012640 PMCID: PMC10680187 DOI: 10.1186/s12974-023-02961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Neonatal encephalopathy following hypoxia-ischemia (HI) is a leading cause of childhood death and morbidity. Hypothermia (HT), the only available but obligatory therapy is limited due to a short therapeutic window and limited efficacy. An adjuvant therapy overcoming limitations of HT is still missing. Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) have shown promising therapeutic effects in various brain injury models. Challenges associated with MSCs' heterogeneity and senescence can be mitigated by the use of EVs from clonally expanded immortalized MSCs (ciMSCs). In the present study, we hypothesized that intranasal ciMSC-EV delivery overcomes limitations of HT. METHODS Nine-day-old C57BL/6 mice were exposed to HI by occlusion of the right common carotid artery followed by 1 h hypoxia (10% oxygen). HT was initiated immediately after insult for 4 h. Control animals were kept at physiological body core temperatures. ciMSC-EVs or vehicle were administered intranasally 1, 3 and 5 days post HI/HT. Neuronal cell loss, inflammatory and regenerative responses were assessed via immunohistochemistry, western blot and real-time PCR 7 days after insult. Long-term neurodevelopmental outcome was evaluated by analyses of cognitive function, activity and anxiety-related behavior 5 weeks after HI/HT. RESULTS In contrast to HT monotherapy, the additional intranasal therapy with ciMSC-EVs prevented HI-induced cognitive deficits, hyperactivity and alterations of anxiety-related behavior at adolescence. This was preceded by reduction of striatal neuronal loss, decreased endothelial, microglia and astrocyte activation; reduced expression of pro-inflammatory and increased expression of anti-inflammatory cytokines. Furthermore, the combination of HT with intranasal ciMSC-EV delivery promoted regenerative and neurodevelopmental processes, including endothelial proliferation, neurotrophic growth factor expression and oligodendrocyte maturation, which were not altered by HT monotherapy. CONCLUSION Intranasal delivery of ciMSC-EVs represents a novel adjunct therapy, overcoming limitations of acute HT thereby offering new possibilities for improving long-term outcomes in neonates with HI-induced brain injury.
Collapse
Affiliation(s)
- Nicole Labusek
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Parnian Ghari
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yanis Mouloud
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Köster
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Eva Diesterbeck
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Hadamitzky
- Institute for Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
20
|
Sakkers TR, Mokry M, Civelek M, Erdmann J, Pasterkamp G, Diez Benavente E, den Ruijter HM. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 2023; 384:117279. [PMID: 37805337 DOI: 10.1016/j.atherosclerosis.2023.117279] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023]
Abstract
Sex differences in coronary artery disease (CAD) presentation, risk factors and prognosis have been widely studied. Similarly, studies on atherosclerosis have shown prominent sex differences in plaque biology. Our understanding of the underlying genetic and molecular mechanisms that drive these differences remains fragmented and largely understudied. Through reviewing genetic and epigenetic studies, we identified more than 40 sex-differential candidate genes (13 within known CAD loci) that may explain, at least in part, sex differences in vascular remodeling, lipid metabolism and endothelial dysfunction. Studies with transcriptomic and single-cell RNA sequencing data from atherosclerotic plaques highlight potential sex differences in smooth muscle cell and endothelial cell biology. Especially, phenotypic switching of smooth muscle cells seems to play a crucial role in female atherosclerosis. This matches the known sex differences in atherosclerotic phenotypes, with men being more prone to lipid-rich plaques, while women are more likely to develop fibrous plaques with endothelial dysfunction. To unravel the complex mechanisms that drive sex differences in CAD, increased statistical power and adjustments to study designs and analysis strategies are required. This entails increasing inclusion rates of women, performing well-defined sex-stratified analyses and the integration of multi-omics data.
Collapse
Affiliation(s)
- Tim R Sakkers
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands; Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, 1335 Lee St, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands.
| |
Collapse
|
21
|
Civieri G, Kerkhof PLM, Montisci R, Iliceto S, Tona F. Sex differences in diagnostic modalities of coronary artery disease: Evidence from coronary microcirculation. Atherosclerosis 2023; 384:117276. [PMID: 37775426 DOI: 10.1016/j.atherosclerosis.2023.117276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Although atherosclerosis is usually considered a disease of the large arteries, risk factors for atherosclerosis also trigger structural and functional abnormalities at a microvascular level. In cardiac disease, microvascular dysfunction is especially relevant in women, among whom the manifestation of ischemic disease due to impaired coronary microcirculation is more common than in men. This sex-specific clinical phenotype has important clinical implications and, given the higher pre-test probability of coronary microvascular dysfunction in females, different diagnostic modalities should be used in women compared to men. In this review, we summarize invasive and non-invasive diagnostic modalities to assess coronary microvascular function, ranging from catheter-based evaluation of endothelial function to Doppler echocardiography and positron emission tomography. Moreover, we discuss different clinical settings in which microvascular disease plays an important role, underlining the importance of choosing the right diagnostic modality depending on the sex of the patients.
Collapse
Affiliation(s)
- Giovanni Civieri
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Peter L M Kerkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VUmc, Amsterdam, the Netherlands
| | - Roberta Montisci
- Clinical Cardiology, AOU Cagliari, Department of Medical Science and Public Health, University of Cagliari, Italy
| | - Sabino Iliceto
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Francesco Tona
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
22
|
Osto E, Roeters van Lennep JE, Tokgözoğlu L, Öörni K. Influence of sex and gender on the biology of atherosclerotic cardiovascular disease: Special issue. Atherosclerosis 2023; 384:117297. [PMID: 37813748 DOI: 10.1016/j.atherosclerosis.2023.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Affiliation(s)
- Elena Osto
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich, Switzerland; Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Jeanine E Roeters van Lennep
- Cardiovascular Institute, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University, Ankara, Turkey
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland; Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland.
| |
Collapse
|
23
|
Murphy CN, Delles C, Davies E, Connelly PJ. Cardiovascular disease in transgender individuals. Atherosclerosis 2023; 384:117282. [PMID: 37821271 DOI: 10.1016/j.atherosclerosis.2023.117282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/23/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
The population of people identifying as transgender has grown rapidly in recent years, resulting in a substantive increase in individuals obtaining gender-affirming medical care to align their secondary sex characteristics with their gender identity. This has established benefits for patients including improvements in gender dysphoria and psychosocial functioning, while reducing adverse mental health outcomes. Despite these potential advantages, recent evidence has suggested that gender-affirming hormone therapy (GAHT) may increase the risk of cardiovascular disease. However, owing to a paucity of research, the mechanisms underpinning these increased risks are poorly understood. Moreover, previous research has been limited by heterogenous methodologies, being underpowered, and lacking appropriate control populations. Consequently, the need for evidence regarding cardiovascular health in LGBTQ + individuals has been recognised as a critical area for future research to facilitate better healthcare and guidance. Recent research investigating the effect of transmasculine (testosterone) GAHT on cardiovascular disease risk points to testosterone effecting the nitric oxide pathway, triggering inflammation, and promoting endothelial dysfunction. Equivalent studies focussing on transfeminine (oestrogen) GAHT are required, representing a crucial area of future research. Furthermore, when examining the effects of GAHT on the vasculature, it cannot be ignored that there are multiple factors that may increase the burden of cardiovascular disease in the transgender population. Such stressors include major psychological stress; increased adverse health behaviours, such as smoking; discrimination; and lowered socioeconomic status; all of which undoubtedly impact upon cardiovascular disease risk and offers the opportunity for intervention.
Collapse
Affiliation(s)
- Charlotte N Murphy
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom
| | - Eleanor Davies
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom
| | - Paul J Connelly
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom.
| |
Collapse
|