1
|
Insight in Hypoxia-Mimetic Agents as Potential Tools for Mesenchymal Stem Cell Priming in Regenerative Medicine. Stem Cells Int 2022; 2022:8775591. [PMID: 35378955 PMCID: PMC8976669 DOI: 10.1155/2022/8775591] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-mimetic agents are new potential tools in MSC priming instead of hypoxia incubators or chambers. Several pharmaceutical/chemical hypoxia-mimetic agents can be used to induce hypoxia in the tissues: deferoxamine (DFO), dimethyloxaloylglycine (DMOG), 2,4-dinitrophenol (DNP), cobalt chloride (CoCl2), and isoflurane (ISO). Hypoxia-mimetic agents can increase cell proliferation, preserve or enhance differentiation potential, increase migration potential, and induce neovascularization in a concentration- and stem cell source-dependent manner. Moreover, hypoxia-mimetic agents may increase HIF-1α, changing the metabolism and enhancing glycolysis like hypoxia. So, there is clear evidence that treatment with hypoxia-mimetic agents is beneficial in regenerative medicine, preserving stem cell capacities. These agents are not studied so wildly as hypoxia but, considering the low cost and ease of use, are believed to find application as pretreatment of many diseases such as ischemic heart disease and myocardial fibrosis and promote cardiac and cartilage regeneration. The knowledge of MSC priming is critical in evaluating safety procedures and use in clinics. In this review, similarities and differences between hypoxia and hypoxia-mimetic agents in terms of their therapeutic efficiency are considered in detail. The advantages, challenges, and future perspectives in MSC priming with hypoxia mimetic agents are also discussed.
Collapse
|
2
|
Sankar KS, Altamentova SM, Rocheleau JV. Hypoxia induction in cultured pancreatic islets enhances endothelial cell morphology and survival while maintaining beta-cell function. PLoS One 2019; 14:e0222424. [PMID: 31600313 PMCID: PMC6786522 DOI: 10.1371/journal.pone.0222424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background Pancreatic islets are heavily vascularized in vivo yet lose this vasculature after only a few days in culture. Determining how to maintain islet vascularity in culture could lead to better outcomes in transplanting this tissue for the treatment of type 1 diabetes as well as provide insight into the complex communication between beta-cells and endothelial cells (ECs). We previously showed that islet ECs die in part due to limited diffusion of serum albumin into the tissue. We now aim to determine the impact of hypoxia on islet vascularization. Methods We induced hypoxia in cultured mouse islets using the hypoxia mimetic cobalt chloride (100 μM CoCl2). We measured the impact on islet metabolism (two-photon NAD(P)H and Rh123 imaging) and function (insulin secretion and survival). We also measured the impact on hypoxia related transcripts (HIF-1α, VEGF-A, PDK-1, LDHA, COX4) and confirmed increased VEGF-A expression and secretion. Finally, we measured the vascularization of islets in static and flowing culture using PECAM-1 immunofluorescence. Results CoCl2 did not induce significant changes in beta cell metabolism (NAD(P)H and Rh123), insulin secretion, and survival. Consistent with hypoxia induction, CoCl2 stimulated HIF-1α, PDK-1, and LDHA transcripts and also stimulated VEGF expression and secretion. We observed a modest switch to the less oxidative isoform of COX4 (isoform 1 to 2) and this switch was noted in the glucose-stimulated cytoplasmic NAD(P)H responses. EC morphology and survival were greater in CoCl2 treated islets compared to exogenous VEGF-A in both static (dish) and microfluidic flow culture. Conclusions Hypoxia induction using CoCl2 had a positive effect on islet EC morphology and survival with limited impact on beta-cell metabolism, function, and survival. The EC response appears to be due to endogenous production and secretion of angiogenic factors (e.g. VEGF-A), and mechanistically independent from survival induced by serum albumin.
Collapse
Affiliation(s)
- Krishana S. Sankar
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Svetlana M. Altamentova
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jonathan V. Rocheleau
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
3
|
Pak JH, Yi J, Ryu S, Kim IK, Kim JW, Baek H, Chung JW. Induction of Redox-Active Gene Expression by CoCl 2 Ameliorates Oxidative Stress-Mediated Injury of Murine Auditory Cells. Antioxidants (Basel) 2019; 8:399. [PMID: 31527445 PMCID: PMC6769615 DOI: 10.3390/antiox8090399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 01/31/2023] Open
Abstract
Free radicals formed in the inner ear in response to high-intensity noise, are regarded as detrimental factors for noise-induced hearing loss (NIHL). We reported previously that intraperitoneal injection of cobalt chloride attenuated the loss of sensory hair cells and NIHL in mice. The present study was designed to understand the preconditioning effect of CoCl2 on oxidative stress-mediated cytotoxicity. Treatment of auditory cells with CoCl2 promoted cell proliferation, with increases in the expressions of two redox-active transcription factors (hypoxia-inducible factor 1α, HIF-1α, nuclear factor erythroid 2-related factor 2; Nrf-2) and an antioxidant enzyme (peroxiredoxin 6, Prdx6). Hydrogen peroxide treatment resulted in the induction of cell death and reduction of these protein expressions, reversed by pretreatment with CoCl2. Knockdown of HIF-1α or Nrf-2 attenuated the preconditioning effect of CoCl2. Luciferase reporter analysis with a Prdx6 promoter revealed transactivation of Prdx6 expression by HIF-1α and Nrf-2. The intense immunoreactivities of HIF-1α, Nrf-2, and Prdx6 in the organ of Corti (OC), spiral ganglion cells (SGC), and stria vascularis (SV) of the cochlea in CoCl2-injected mice suggested CoCl2-induced activation of HIF-1α, Nrf-2, and Prdx6 in vivo. Therefore, we revealed that the protective effect of CoCl2 is achieved through distinctive signaling mechanisms involving HIF-1α, Nrf-2, and Prdx6.
Collapse
Affiliation(s)
- Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea.
| | - Junyeong Yi
- Department of Otolaryngology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea.
| | - Sujin Ryu
- Department of Otolaryngology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea.
| | - In Ki Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea.
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 84 Heuksuk-ro, Dongjak-Gu, Seoul 06974, Korea.
| | - Haeri Baek
- Department of Otolaryngology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea.
| | - Jong Woo Chung
- Department of Otolaryngology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea.
| |
Collapse
|
4
|
Sethi K, Rao K, Bolton D, Patel O, Ischia J. Targeting HIF-1 α to Prevent Renal Ischemia-Reperfusion Injury: Does It Work? Int J Cell Biol 2018; 2018:9852791. [PMID: 30595695 PMCID: PMC6286753 DOI: 10.1155/2018/9852791] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022] Open
Abstract
Partial nephrectomy (open or minimally invasive) usually requires temporary renal arterial occlusion to limit intraoperative bleeding and improve access to intrarenal structures. This is a time-critical step due to the critical ischemia period of renal tissue. Prolonged renal ischemia may lead to irreversible nephron damage in the remaining tissue and, ultimately, chronic kidney disease. This is potentiated by the incompletely understood ischemia-reperfusion injury (IRI). A key mechanism in IRI prevention appears to be the upregulation of an intracellular transcription protein, Hypoxia-Inducible Factor (HIF). HIF mediates metabolic adaptation, angiogenesis, erythropoiesis, cell growth, survival, and apoptosis. Upregulating HIF-1α via ischemic preconditioning (IPC) or drugs that simulate hypoxia (hypoxia-mimetics) has been investigated as a method to reduce IRI. While many promising chemical agents have been trialed for the prevention of IRI in small animal studies, all have failed in human trials. The aim of this review is to highlight the techniques and drugs that target HIF-1α and ameliorate IRI associated with renal ischemia. Developing a technique or drug that could reduce the risk of acute kidney injury associated with renal IRI would have an immediate worldwide impact on multisystem surgeries that would otherwise risk ischemic tissue injury.
Collapse
Affiliation(s)
- Kapil Sethi
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- Urology Unit, Austin Health, Heidelberg, VIC, Australia
| | - Kenny Rao
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- Urology Unit, Austin Health, Heidelberg, VIC, Australia
| | - Damien Bolton
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- Urology Unit, Austin Health, Heidelberg, VIC, Australia
| | - Oneel Patel
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Joseph Ischia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- Urology Unit, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
5
|
Song N, Zhang T, Xu X, Lu Z, Yu X, Fang Y, Hu J, Jia P, Teng J, Ding X. miR-21 Protects Against Ischemia/Reperfusion-Induced Acute Kidney Injury by Preventing Epithelial Cell Apoptosis and Inhibiting Dendritic Cell Maturation. Front Physiol 2018; 9:790. [PMID: 30013485 PMCID: PMC6036242 DOI: 10.3389/fphys.2018.00790] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/06/2018] [Indexed: 02/02/2023] Open
Abstract
Renal tubular injury and innate immune responses induced by hypoxia contribute to acute kidney injury. Accumulating evidence suggests that miR-21 overexpression protects against kidney ischemia injury. Additionally, miR-21 emerges as a key inhibitor in dendritic cell maturation. Thus, we hypothesized that miR-21 protects the kidney from IR injury by suppressing epithelial cell damage and inflammatory reaction. In this study, we investigated effects of miR-21 and its signaling pathways (PTEN/AKT/mTOR/HIF, PDCD4/NFκ-B) on kidney ischemia/reperfusion (IR) injury in vitro and in vivo. The results revealed that IR increased miR-21, HIF1α, and 2α expression in vivo and in vitro. MiR-21 interacted with HIF1α and 2α through the PTEN/AKT/mTOR pathway. Moreover, inhibition of miR-21 activated PDCD4/NFκ-B pathways, which are critical for dendritic cell maturation. Renal IR triggers local inflammation by inducing the dendritic cell maturation and promoting the secretion of IL-12, IL-6, and TNF-α cytokines. Knockdown of miR-21 intensified the effect of IR on tubular epithelial cell apoptosis and dendritic cell maturation. Our results suggested that IR-inducible miR-21 protects epithelial cells from IR injury via a feedback interaction with HIF (PTEN/AKT/mTOR/HIF/miR-21) and by inhibiting maturation of DCs through the PDCD4/NF-κB pathway. These findings highlight new therapeutic opportunities in AKI.
Collapse
Affiliation(s)
- Nana Song
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Ting Zhang
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - XiaLian Xu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Zhihui Lu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaofang Yu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jiachang Hu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Ping Jia
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jie Teng
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| |
Collapse
|
6
|
Littmann E, Autefage H, Solanki A, Kallepitis C, Jones J, Alini M, Peroglio M, Stevens M. Cobalt-containing bioactive glasses reduce human mesenchymal stem cell chondrogenic differentiation despite HIF-1α stabilisation. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 2018; 38:877-886. [PMID: 29456294 PMCID: PMC5738970 DOI: 10.1016/j.jeurceramsoc.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/01/2017] [Indexed: 05/19/2023]
Abstract
Bioactive glasses (BGs) are excellent delivery systems for the sustained release of therapeutic ions and have been extensively studied in the context of bone tissue engineering. More recently, due to their osteogenic properties and expanding application to soft tissue repair, BGs have been proposed as promising materials for use at the osteochondral interface. Since hypoxia plays a critical role during cartilage formation, we sought to investigate the influence of BGs releasing the hypoxia-mimicking agent cobalt (CoBGs) on human mesenchymal stem cell (hMSC) chondrogenesis, as a novel approach that may guide future osteochondral scaffold design. The CoBG dissolution products significantly increased the level of hypoxia-inducible factor-1 alpha in hMSCs in a cobalt dose-dependent manner. Continued exposure to the cobalt-containing BG extracts significantly reduced hMSC proliferation and metabolic activity, as well as chondrogenic differentiation. Overall, this study demonstrates that prolonged exposure to cobalt warrants careful consideration for cartilage repair applications.
Collapse
Affiliation(s)
- E. Littmann
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - H. Autefage
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Corresponding authors at: Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| | - A.K. Solanki
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - C. Kallepitis
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - J.R. Jones
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - M. Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M. Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M.M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Corresponding authors at: Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| |
Collapse
|
7
|
Comparison of various methods of ischaemic cardioprotection on vitality of rat heart grafts. ACTA VET BRNO 2017. [DOI: 10.2754/avb201786020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the study was to compare 4 modes of ischaemic cardioprotection using continuous prograde autologous blood perfusion of the coronary artery in two hypothermic modes (group A, B) or conventional protection by cooled Hartmann solution (group C) or cooled saline (group D) without perfusion of the graft. Male Wistar rats (n = 24) were divided into four groups (A–D). In groups A (22–25 °C) and B (4–8 °C), blood perfusion rate was 10 ml/h and the graft was placed in a water bath. Groups C, D were initially rinsed with cold (4–8 °C) Hartmann solution (C) and cold saline solution (D), next the graft was placed in a water bath of cold (4–8 °C) Hartmann solution (C) or saline solution (D). The observed time was 30 min after the implemented perfusion (A, B) or initial rinsing (C, D). At 30 min, hearts of all the groups were perfused for 10 min with prograde-autologous arterialized blood at room temperature. At perfusion minute 10, blood was collected for biochemical analysis (sample 1). Sample 2 involved blood from a portable syringe infusion pumps (in parallel with sample 1). Pairwise test differences between samples 1 and 2 were significant in all the groups as regards creatine kinase and lactate dehydrogenase values, sampling 1 values being always higher, while cardiac troponin I concentrations were non-significant in the same comparison. The heart rate during the final perfusion was identical in all the groups. Our study has demonstrated that all observed cardioprotection modes are useful for experimental heart grafting.
Collapse
|
8
|
Cheng CI, Lee YH, Chen PH, Lin YC, Chou MH, Kao YH. Cobalt chloride induces RhoA/ROCK activation and remodeling effect in H9c2 cardiomyoblasts: Involvement of PI3K/Akt and MAPK pathways. Cell Signal 2017; 36:25-33. [PMID: 28435089 DOI: 10.1016/j.cellsig.2017.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/07/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
Chronic heart failure is a serious complication of myocardial infarction, one of the major causes of death worldwide that often leads to adverse cardiac hypertrophy and poor prognosis. Hypoxia-induced cardiac tissue remodeling is considered an important underlying etiology. This study aimed to delineate the signaling profiles of RhoA/ROCK, PI3K/Akt, and MAPK and their involvement in regulation of remodeling events in cultured H9c2 cardiomyoblast cells. In addition to its growth-suppressive effect, the hypoxia-mimetic chemical, cobalt chloride (CoCl2) significantly induced RhoA kinase activation as revealed by increased MBS phosphorylation and ROCK1/2 expression in H9c2 cells. CoCl2 treatment up-regulated type I collagen and MMP-9, but did not affect MMP-2, implicating its role in tissue remodeling. Kinetic signal profiling study showed that CoCl2 also elicited Smad2 hyperphosphorylation and its nuclear translocation in the absence of TGF-β1. In addition, CoCl2 activated Akt-, ERK1/2-, JNK-, and p38 MAPK-mediated signaling pathways. Kinase inhibition experiments demonstrated that hydroxyfasudil, a RhoA kinase inhibitor, significantly blocked the CoCl2- and lysophosphatidic acid-evoked Smad2 phosphorylation and overexpression of type I collagen and MMP-9, and that PI3K and ERK interplayed with RhoA and its downstream Smad2 signaling cascade. In conclusion, this study demonstrated that RhoA/ROCK, PI3K/Akt, and MAPK pathways are mechanistically involved in the CoCl2-stimulated tissue remodeling in H9c2 cardiomyoblast cells. Targeting signaling mediators might be used to mitigate hypoxia-related Smad2 phosphorylation and cardiac remodeling events in ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Cheng-I Cheng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Yueh-Hong Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Chun Lin
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ming-Huei Chou
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Abstract
Cobalt can cause a distinctive, rapidly progressive and reversible depression of cardiac systolic function, which is readily distinguished from other causes of cardiomyopathy. Patients present with the subacute onset of severe heart failure, which is accompanied by hypotension and cyanosis, pericardial effusion, low voltage on the electrocardiogram, marked elevation of serum enzymes, and lactic acidosis. They typically have a history of lethargy, anorexia, and weight loss in the months preceding the illness and exhibit other evidence of cobalt’s effects on the body (eg, polycythemia and goiter). The course of cobalt-related cardiomyopathy may be progressive and fatal, but those who survive and cease exposure generally demonstrate complete resolution of symptoms and recovery of cardiac function. Patients presenting with rapid onset of cardiomyopathy, who also exhibit polycythemia, pericardial effusion, or goiter should be evaluated for cobalt exposure. Exposure can be confirmed by the measurement of cobalt in the serum, but serum levels of the ion are not reliably predictive of clinical cardiotoxicity. The clinical emergence of cobalt cardiomyopathy seems to require the coexistence of one or more cofactors, particularly a low-protein diet, thiamine deficiency, alcoholism, and hypothyroidism. As the medicinal use of cobalt has waned and measures to reduce industrial exposure have been implemented, subacute cobalt-related cardiomyopathy had become rare. However, reports describing classical features of the disease have recently surged among patients with a malfunctioning cobalt-alloy hip prosthesis.
Collapse
Affiliation(s)
- Milton Packer
- From the Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX
| |
Collapse
|
10
|
Mishra KP, Chanda S, Singh SB, Ganju L. A comparative immunological analysis of CoCl2 treated cells with in vitro hypoxic exposure. Biometals 2014; 28:175-85. [PMID: 25511110 DOI: 10.1007/s10534-014-9813-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/10/2014] [Indexed: 01/23/2023]
Abstract
The hypoxic preconditioning of mammalian cells has been shown to have beneficial effects against hypoxic injuries. However, very little information is available on the comparative analysis of immunological responses to hypoxic and hypoxia mimetic exposure. Therefore, in the present study, mouse peritoneal macrophages and splenocytes were subjected to hypoxia exposure (0.5 % O2) and hypoxia mimetic Cobalt chloride (CoCl2) treatment to evaluate their effect on immune response and delineate the underlying signaling mechanisms. The results obtained indicated that super oxide generation increased while TLR4 expression and cell surface markers like CD25, CD40 and CD69 were suppressed in both the treatments as compared to normoxia. Cobalt chloride treatment increased NF-κB expression, nitric oxide (NO) and iNOS expression, cytokines TNF-α and IL-6 as compared to hypoxia exposure. Our study showed that CoCl2 stabilizes HIF-1α to create hypoxia like conditions but it mainly influences the inflammatory response via NF-κB signaling pathway by skewing the production of proinflammatory molecules like TNF-α, IL-6 and NO.
Collapse
|
11
|
Wu K, Xu W, You Q, Guo R, Feng J, Zhang C, Wu W. Increased expression of heat shock protein 90 under chemical hypoxic conditions protects cardiomyocytes against injury induced by serum and glucose deprivation. Int J Mol Med 2012; 30:1138-44. [PMID: 22922826 DOI: 10.3892/ijmm.2012.1099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/04/2012] [Indexed: 11/06/2022] Open
Abstract
Heat shock proteins (HSPs) are critical for adaptation to hypoxia and/or ischemia. Previously, we demonstrated that cobalt chloride (CoCl2), a well-known hypoxia mimetic agent, is an inducer of HSP90. In the present study, we tested the hypothesis that CoCl₂-induced upregulation of HSP90 is able to provide cardioprotection in serum and glucose-deprived H9c2 cardiomyocytes (H9c2 cells). Cell viability was detected using a CCK-8 assay, while HSP90 expression was detected via western blotting. The findings of this study showed that serum and glucose deprivation (SGD) induced significant cytotoxicity, overproduction of reactive oxygen species (ROS) and a loss of mitochondrial membrane potential (MMP) in H9c2 cells. In addition, SGD downregulated the expression of HSP90 in a time-dependent manner. The selective inhibitor of HSP90 17-allylamino-17-demethoxygeldanamycin (17-AAG) aggravated SGD-induced cytotoxicity. CoCl₂ at 100 µM time-dependently enhanced the expression of HSP90. Treatment with CoCl₂ from 50 to 200 µM significantly attenuated cytotoxicity and the downregulation of HSP90 expression induced by SGD for 24 h, respectively. Notably, pretreatment of H9c2 cells with 17-AAG at 2 µM for 60 min before exposure to both CoCl2 (100 µM) and SGD significantly blocked the CoCl2-induced cardioprotective effect, demonstrated by decreased cell viability and MMP loss, as well as increased ROS generation. Taken together, these results suggest that HSP90 may be one of the endogenous defensive mechanisms for resisting ischemia-like injury in H9c2 cells, and that HSP90 plays an important role in chemical hypoxia-induced cardioprotection against SGD-induced injury by its antioxidation and preservation of mitochondrial function.
Collapse
Affiliation(s)
- Keng Wu
- Department of Cardiology, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Ong SG, Hausenloy DJ. Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther 2012; 136:69-81. [PMID: 22800800 DOI: 10.1016/j.pharmthera.2012.07.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
Hypoxia inducible factor (HIF) is an oxygen-sensitive transcription factor that enables aerobic organisms to adapt to hypoxia. This is achieved through the transcriptional activation of up to 200 genes, many of which are critical to cell survival. Under conditions of normoxia, the hydroxylation of HIF by prolyl hydroxylase domain-containing (PHD) enzymes targets it for polyubiquitination and proteosomal degradation by the von Hippel-Lindau protein (VHL). However, under hypoxic conditions, PHD activity is inhibited, thereby allowing HIF to accumulate and translocate to the nucleus, where it binds to the hypoxia-responsive element sequences of target gene promoters. Experimental studies suggest that HIF may act as a mediator of ischemic preconditioning, and that the genetic or pharmacological stabilization of HIF under normoxic conditions, may protect the heart against the detrimental effects of acute ischemia-reperfusion injury. The mechanisms underlying the cardioprotective effect of HIF are unclear, but it may be attributed to the transcriptional activation of genes associated with cardioprotection such as erythropoietin, heme oxygenase-1, and inducible nitric oxide synthase or it may be due to reprogramming of cell metabolism. In this review article, we highlight the role of HIF in mediating both adaptive and pathological processes in the heart, as well as focusing on the therapeutic potential of the HIF-signaling pathway as a target for cardioprotection.
Collapse
Affiliation(s)
- Sang-Ging Ong
- The Hatter Cardiovascular Institute, University College London Hospital, 67 Chenies Mews, London WC1E 6HX, United Kingdom
| | | |
Collapse
|
13
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Preconditioning effect of cobalt chloride supplementation on hypoxia induced oxidative stress in male albino rats. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bionut.2010.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Hausenloy DJ, Baxter G, Bell R, Bøtker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM. Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 2010; 105:677-86. [PMID: 20865418 PMCID: PMC2965360 DOI: 10.1007/s00395-010-0121-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 12/18/2022]
Abstract
Ischemic heart disease (IHD) is the leading cause of death worldwide. Novel cardioprotective strategies are therefore required to improve clinical outcomes in patients with IHD. Although a large number of novel cardioprotective strategies have been discovered in the research laboratory, their translation to the clinical setting has been largely disappointing. The reason for this failure can be attributed to a number of factors including the inadequacy of the animal ischemia-reperfusion injury models used in the preclinical cardioprotection studies and the inappropriate design and execution of the clinical cardioprotection studies. This important issue was the main topic of discussion of the UCL-Hatter Cardiovascular Institute 6th International Cardioprotection Workshop, the outcome of which has been published in this article as the "Hatter Workshop Recommendations". These have been proposed to provide guidance on the design and execution of both preclinical and clinical cardioprotection studies in order to facilitate the translation of future novel cardioprotective strategies for patient benefit.
Collapse
Affiliation(s)
- Derek J. Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospitals and Medical School, 67 Chenies Mews, London, WC1E 6HX UK
| | - Gary Baxter
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB UK
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London Hospitals and Medical School, 67 Chenies Mews, London, WC1E 6HX UK
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Aarhus, Denmark
| | - Sean M. Davidson
- The Hatter Cardiovascular Institute, University College London Hospitals and Medical School, 67 Chenies Mews, London, WC1E 6HX UK
| | - James Downey
- University of South Alabama College of Medicine, Mobile, AL 36688 USA
| | - Gerd Heusch
- Institute of Pathophysiology, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Masafumi Kitakaze
- Cardiovascular Division of Medicine, National Cardiovascular Centre, Suita, Osaka Japan
| | - Sandrine Lecour
- Hatter Institute for Cardiology Research, University of Cape Town, Cape Town, South Africa
| | - Robert Mentzer
- School of Medicine, Wayne State University, Detroit, MI USA
| | - Mihaela M. Mocanu
- The Hatter Cardiovascular Institute, University College London Hospitals and Medical School, 67 Chenies Mews, London, WC1E 6HX UK
| | - Michel Ovize
- Hôpital L. Pradel, Hospices Civils de Lyon, 59, Blvd. Pinel, 69394 Lyon Cedex 03, France
| | - Rainer Schulz
- Institute of Pathophysiology, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Richard Shannon
- Department of Medicine, Penn Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Malcolm Walker
- The Hatter Cardiovascular Institute, University College London Hospitals and Medical School, 67 Chenies Mews, London, WC1E 6HX UK
| | - Gail Walkinshaw
- FibroGen, Inc., 409 Illinois Street, San Francisco, CA 94158 USA
| | - Derek M. Yellon
- The Hatter Cardiovascular Institute, University College London Hospitals and Medical School, 67 Chenies Mews, London, WC1E 6HX UK
| |
Collapse
|
16
|
Saxena S, Shukla D, Saxena S, Khan YA, Singh M, Bansal A, Sairam M, Jain SK. Hypoxia preconditioning by cobalt chloride enhances endurance performance and protects skeletal muscles from exercise-induced oxidative damage in rats. Acta Physiol (Oxf) 2010; 200:249-63. [PMID: 20384596 DOI: 10.1111/j.1748-1716.2010.02136.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Training under hypoxia has several advantages over normoxic training in terms of enhancing the physical performance. Therefore, we tested the protective effect of hypoxia preconditioning by hypoxia mimetic cobalt chloride against exercise-induced oxidative damage in the skeletal muscles and improvement of physical performance. METHOD Male Sprague-Dawley rats were randomly divided into four groups (n=8), namely control, cobalt-supplemented, training and cobalt with training. The red gastrocnemius muscle was examined for all measurements, viz. free radical generation, lipid peroxidation, muscle damage and antioxidative capacity. RESULTS Hypoxic preconditioning with cobalt along with training significantly increased physical performance (33%, P<0.01) in rats compared with training-only rats. Cobalt supplementation activated cellular oxygen sensing system in rat skeletal muscle. It also protected against training-induced oxidative damage as observed by an increase in the GSH/GSSG ratio (36%, P<0.001; 28%, P<0.01 respectively) and reduced lipid peroxidation (15%, P<0.01; 31%, P<0.01 respectively) in both trained and untrained rats compared with their respective controls. Cobalt supplementation along with training enhanced the expression of antioxidant proteins haem oxygenase-1 (HO-1; 1.2-fold, P<0.05) and metallothionein (MT; 4.8-fold, P<0.001) compared with training only. A marked reduction was observed in exercise-induced muscle fibre damage as indicated by decreased necrotic muscle fibre, decreased lipofuscin content of muscle and plasma creatine kinase level (16%, P<0.01) in rats preconditioned with cobalt. CONCLUSION Our study provides strong evidence that hypoxic preconditioning with cobalt chloride enhances physical performance and protects muscle from exercise-induced oxidative damage via GSH, HO-1 and MT-mediated antioxidative capacity.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Cell Hypoxia
- Cobalt/pharmacology
- Creatine Kinase, MM Form/blood
- Cytoprotection
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Glutathione/metabolism
- Heme Oxygenase (Decyclizing)/metabolism
- Lactic Acid/blood
- Lipid Peroxidation/drug effects
- Lipofuscin/metabolism
- Male
- Metallothionein/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/etiology
- Muscular Diseases/metabolism
- Muscular Diseases/pathology
- Muscular Diseases/physiopathology
- Muscular Diseases/prevention & control
- Necrosis
- Oxidative Stress/drug effects
- Physical Endurance/drug effects
- Physical Exertion
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- S Saxena
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Since its discovery in early 1990s, hypoxia inducible factor 1 (HIF-1) has been increasingly recognized for its key role in transcriptional control of more than a hundred genes that regulate a wide-spectrum of cellular functional events, including angiogenesis, vasomotor control, glucose and energy metabolism, erythropoiesis, iron homeostasis, pH regulation, cell proliferation and viability. Evidence accumulated during the past 7 years suggests a critical role for HIF-1alpha in mediating cardioprotection. The purpose of our present article is to provide an updated overview on this important regulator of gene expression in the cellular stress-responsive and adaptive process. We have particularly emphasized the involvement of HIF-1 in the induction of cardioprotective molecules, such as inducible nitric oxide synthase (iNOS), hemeoxygenase 1 (HO-1), and erythropoietin (EPO), which in turn alleviate myocardial damages caused by harmful events such as ischemia-reperfusion injury. Despite these advances, further in-depth studies are needed to elucidate the possible coordination or interaction between HIF-1alpha and other key transcription factors in regulating protein expression that leads to cardioprotection.
Collapse
|
18
|
Liu XB, Wang JA, Ogle ME, Wei L. Prolyl hydroxylase inhibitor dimethyloxalylglycine enhances mesenchymal stem cell survival. J Cell Biochem 2009; 106:903-11. [PMID: 19229863 DOI: 10.1002/jcb.22064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising approach in the therapy of ischemic heart or CNS diseases; however, the poor viability of MSCs after transplantation critically limits the efficacy of this new strategy. Prolyl hydroxylase inhibition followed by HIF-1alpha up-regulation participates in the regulation of apoptosis and cell survival, which have been shown in cancer cells and neurons. The role of prolyl hydroxylase inhibition by dimethyloxalylglycine (DMOG) in regulation of cell survival has not been investigated in MSCs. In the present investigation with MSCs, apoptosis and cell death induced by serum deprivation were assessed by caspase-3 activation and trypan blue staining, respectively. The mitochondrial apoptotic pathway and PI3K/Akt cell survival pathway were evaluated. DMOG significantly attenuated apoptosis and cell death of MSCs, stabilized HIF-1alpha and induced downstream glucose transport 1 (Glut-1) synthesis. DMOG treatment reduced mitochondrial cytochrome c release, nuclear translocation of apoptosis inducing factor (AIF), and promoted Akt phosphorylation. A specific PI3K inhibitor, wortmannin, blocked Akt phosphorylation and abrogated the beneficial effect of DMOG. These data suggest that the DMOG protection of MSCs may provide a novel approach to promote cell survival during cell stress.
Collapse
Affiliation(s)
- Xian-Bao Liu
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | |
Collapse
|