1
|
Yin S, Feng Z, Mo A, Ding Y, Wu J. Effect of Shenfu Injection on Isolated Empty Beating Hearts from Miniature Pigs. Braz J Cardiovasc Surg 2020; 35:484-489. [PMID: 32864928 PMCID: PMC7454632 DOI: 10.21470/1678-9741-2019-0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To investigate the effect of Shenfu (SF) injection on donor heart preservation. METHODS Twelve pigs were randomly divided into SF group (n=6) and control group (n=6). After eight hours of perfusion, the differences in hemoglobin, the expression of Bcl-2 and BAX, and changes in the myocardial ultrastructure were compared to illustrate the effects of SF injection in heart preservation. RESULTS The differences in free hemoglobin between the SF group and the control group were statistically significant (P=0.001), and there was significant interaction of groups with times (P=0.019), but the perfusion time may not be associated with the hemoglobin concentration (P=0.616). According to Western blotting analysis, the expression of Bcl-2 was higher in the SF group than in the control group, while the expression of BAX was not different between the two groups. As to ultrastructural changes, both groups exhibited mitochondrial swelling and myofilament lysis, but the degree of damage in the SF group was smaller. CONCLUSION Our study suggests that the application of SF injection for heart preservation may protect against cardiomyocytes and erythrocytes apoptosis, and Bcl-2 protein may play a role in these physiological processes.
Collapse
Affiliation(s)
- Shijie Yin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhiqiang Feng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, People's Republic of China
| | - Ansheng Mo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, People's Republic of China
| | - Yi Ding
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, People's Republic of China
| | - Jun Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
2
|
A nonrandomized open-label phase 2 trial of nonischemic heart preservation for human heart transplantation. Nat Commun 2020; 11:2976. [PMID: 32532991 PMCID: PMC7293246 DOI: 10.1038/s41467-020-16782-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/20/2020] [Indexed: 01/14/2023] Open
Abstract
Pre-clinical heart transplantation studies have shown that ex vivo non-ischemic heart preservation (NIHP) can be safely used for 24 h. Here we perform a prospective, open-label, non-randomized phase II study comparing NIHP to static cold preservation (SCS), the current standard for adult heart transplantation. All adult recipients on waiting lists for heart transplantation were included in the study, unless they met any exclusion criteria. The same standard acceptance criteria for donor hearts were used in both study arms. NIHP was scheduled in advance based on availability of device and trained team members. The primary endpoint was a composite of survival free of severe primary graft dysfunction, free of ECMO use within 7 days, and free of acute cellular rejection ≥2R within 180 days. Secondary endpoints were I/R-tissue injury, immediate graft function, and adverse events. Of the 31 eligible patients, six were assigned to NIHP and 25 to SCS. The median preservation time was 223 min (IQR, 202–263) for NIHP and 194 min (IQR, 164–223) for SCS. Over the first six months, all of the patients assigned to NIHP achieved event-free survival, compared with 18 of those assigned to SCS (Kaplan-Meier estimate of event free survival 72.0% [95% CI 50.0–86.0%]). CK-MB assessed 6 ± 2 h after ending perfusion was 76 (IQR, 50–101) ng/mL for NIHP compared with 138 (IQR, 72–198) ng/mL for SCS. Four deaths within six months after transplantation and three cardiac-related adverse events were reported in the SCS group compared with no deaths or cardiac-related adverse events in the NIHP group. This first-in-human study shows the feasibility and safety of NIHP for clinical use in heart transplantation. ClinicalTrial.gov, number NCT03150147 Ischemia and reperfusion damage contribute to early graft dysfunction and recipient’s death. Here the authors show the feasibility and safety of a non-ischemic heart preservation method for heart transplantation in a non-randomized trial.
Collapse
|
3
|
Normothermic Ex Vivo Heart Perfusion: Effects of Live Animal Blood and Plasma Cross Circulation. ASAIO J 2018; 63:766-773. [PMID: 28394815 DOI: 10.1097/mat.0000000000000583] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Prolonged normothermic ex vivo heart perfusion could transform cardiac transplantation. To help identify perfusate components that might enable long-term perfusion, we evaluated the effects of cross-circulated whole blood and cross-circulated plasma from a live paracorporeal animal on donor porcine hearts preserved via normothermic ex vivo heart perfusion. Standard perfusion (SP; n = 40) utilized red blood cell/plasma perfusate and Langendorff technique for a goal of 12 hours. Cross-circulation groups used a similar circuit with the addition of cross-circulated venous whole blood (XC-blood; n = 6) or cross-circulated filtered plasma (XC-plasma; n = 7) between a live paracorporeal pig under anesthesia and the perfusate reservoir. Data included oxygen metabolism, vascular resistance, lactate production, left ventricular function, myocardial electrical impedance, and histopathologic injury score. All cross-circulation hearts were successfully perfused for 12 hours, compared with 22 of 40 SP hearts (55%; p = 0.002). Both cross-circulation groups demonstrated higher oxygen consumption and vascular resistance than standard hearts from hours 3-12. No significant differences were seen between XC-blood and XC-plasma hearts in any variable, including left ventricular dP/dT after 12 hours (1478 ± 700 mm Hg/s vs. 872 ± 500; p = 0.17). We conclude that cross circulation of whole blood or plasma from a live animal improves preservation of function of perfused hearts, and cross-circulated plasma performs similarly to cross-circulated whole blood.
Collapse
|
4
|
Abstract
Although total body perfusion with extracorporeal life support (ECLS) can be maintained for weeks, individual organ perfusion beyond 12 hours has yet to be achieved clinically. Normothermic ex situ heart perfusion (ESHP) offers the potential for prolonged cardiac preservation. We developed an ESHP system to study the effect of perfusate variables on organ preservation, with the ultimate goal of extending organ perfusion for ≥24 hours. Forty porcine hearts were perfused for a target of 12 hours. Hearts that maintained electromechanical activity and had a <3× increase in vascular resistance were considered successful preservations. Perfusion variables, metabolic byproducts, and histopathology were monitored and sampled to identify factors associated with preservation failure. Twenty-two of 40 hearts were successfully preserved at 12 hours. Successful 12 hour experiments demonstrated lower potassium (4.3 ± 0.8 vs. 5.0 ± 1.2 mmol/L; p = 0.018) and lactate (3.5 ± 2.8 vs. 4.5 ± 2.9 mmol/L; p = 0.139) levels, and histopathology revealed less tissue damage (p = 0.003) and less weight gain (p = 0.072). Results of these early experiments suggest prolonged ESHP is feasible, and that elevated lactate and potassium levels are associated with organ failure. Further studies are necessary to identify the ideal perfusate for normothermic ESHP.
Collapse
|
5
|
Intermediate outcomes with ex-vivo allograft perfusion for heart transplantation. J Heart Lung Transplant 2017; 36:258-263. [DOI: 10.1016/j.healun.2016.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 11/21/2022] Open
|
6
|
The Critical Role of Bioenergetics in Donor Cardiac Allograft Preservation. J Cardiovasc Transl Res 2016; 9:176-183. [PMID: 27164961 DOI: 10.1007/s12265-016-9692-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/19/2016] [Indexed: 01/16/2023]
Abstract
The traditional philosophy of ex vivo organ preservation has been to limit metabolic activity by storing organs in hypothermic, static conditions. This methodology cannot provide longevity of hearts for more than 4-6 h and is thereby insufficient to expand the number of available organs. Albeit at lower rate, the breakdown of ATP still occurs during hypothermia. Furthermore, cold static preservation does not prevent the permanent damage that occurs upon reperfusion known as ischemia-reperfusion (IR) injury. This damage is caused by increased reactive oxygen species (ROS) production in combination with mitochondrial permeability transition pore (mPTP) opening, highlighting the importance of mitochondria in ischemic storage. There has recently been a major paradigm shift in the field, with emerging research supporting changes in traditional storage approaches. Novel research suggests achieving metabolic homeostasis instead of attempting to limit metabolic activity which reduces IR injury and improves graft preservation. Maintaining high ATP levels and circumventing cold organ storage would be a much more sophisticated standard for organ storage and should be the focus of future research in organ preservation. Given the link between mPTP, Ca2(+), and ROS, managing Ca2(+) influx into the mitochondria during conditioning might be the next critical step towards preventing irreversible IR injury.
Collapse
|
7
|
Ozer K, Rojas-Pena A, Mendias CL, Bryner BS, Toomasian C, Bartlett RH. The Effect of Ex Situ Perfusion in a Swine Limb Vascularized Composite Tissue Allograft on Survival up to 24 Hours. J Hand Surg Am 2016; 41:3-12. [PMID: 26710728 DOI: 10.1016/j.jhsa.2015.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/01/2015] [Accepted: 11/01/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE To test the potential for the ex situ limb perfusion system to prolong limb allograft survival up to 24 hours. METHODS We used 20 swine for the study. In group 1 (control), 4 limbs were perfused with heparin solution and preserved at 4°C for 6 hours. In group 2, 4 limbs were perfused with autologous blood at 27°C to 32°C for 24 hours. In both groups, limbs were transplanted orthotopically to recipients and monitored for 12 hours. In addition to perfusion parameters, we recorded perfusate gases and electrolytes (pH, pCO2, pO2, O2 saturation, Na, K, Cl, Ca, HCO3, glucose, and lactate) and obtained functional electrostimulation hourly throughout the experiment. Histology samples were obtained for TUNEL staining and single-muscle fiber contractility testing. RESULTS In both groups, hemodynamic variables of circulation remained stable throughout the experiment. Neuromuscular electrical stimulation remained intact until the end of reperfusion in group 2 vs no response in group 1. In group 2, a gradual increase in lactate levels during pump perfusion returned to normal after transplantation. Compared with the contralateral limb in group 2, single-muscle fiber contractility testing showed no significant difference at the end of the experiment. CONCLUSIONS We demonstrated extended limb survival up to 24 hours using normothermic pulsatile perfusion and autologous blood. CLINICAL RELEVANCE Successful prolongation of limb survival using ex situ perfusion methods provides with more time for revascularization of an extremity.
Collapse
Affiliation(s)
- Kagan Ozer
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI.
| | | | | | | | | | | |
Collapse
|
8
|
Minasian SM, Galagudza MM, Dmitriev YV, Karpov AA, Vlasov TD. Preservation of the donor heart: from basic science to clinical studies. Interact Cardiovasc Thorac Surg 2014; 20:510-9. [PMID: 25538253 DOI: 10.1093/icvts/ivu432] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The methods of donor heart preservation are aimed at minimizing graft dysfunction caused by ischaemia-reperfusion injury (IRI) which inevitably occurs during the ex vivo transport interval. At present, the standard technique of heart preservation is cardiac arrest followed by static cold storage in a crystalloid heart preservation solution (HPS). This technique ensures an acceptable level of heart protection against IRI for <6 h. In clinical trials, comparable levels of myocardial protection against IRI were provided by various HPSs. The growing shortage of donor hearts is one of the major factors stimulating the development of new techniques of heart preservation. Here, we summarize new HPS formulations and provide a focus for optimization of the composition of existing HPSs. Such methods of donor heart preservation as machine perfusion, preservation at sub-zero temperature and oxygen persufflation are also discussed. Furthermore, we review experimental data showing that pre- and post-conditioning of the cardiac graft can improve its function when used in combination with cold storage. The evidence on the feasibility of cardiac donation after circulatory death, as well as the techniques of heart reconditioning after a period of warm ischaemia, is presented. The implementation of new techniques of donor heart preservation may contribute to the use of hearts from extended criteria donors, thereby expanding the total donor pool.
Collapse
Affiliation(s)
- Sarkis M Minasian
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Michael M Galagudza
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Yuri V Dmitriev
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation
| | - Andrey A Karpov
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Timur D Vlasov
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| |
Collapse
|
9
|
Comparative analysis of preservation method and intermittent perfusion volume on the expression of endothelial and inflammatory markers by coronal artery and myocardium in porcine donor hearts. ASAIO J 2014; 60:681-7. [PMID: 25232770 DOI: 10.1097/mat.0000000000000148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although continuous perfusion of donor hearts for preservation during transportation has been widely applied, intermittent perfusion has been suggested as an alternative. The aim of this study was to identify the optimal intermittent perfusion protocol by investigating the effects of perfusion volume on endothelial and inflammatory marker expression by the coronary artery. Donor porcine hearts were perfused with various volumes of Celsior solution supplemented with diazoxide (50, 100, 150, 200, and 250 ml) every 2 h for 30 min each for a 10 h period. The effects on cardiomyocytes and vascular endothelial cell morphology and marker expression were compared to the immersion control group. Whereas an incomplete endothelial cell layer with disorganized connective tissue was observed in the control and 50, 100, and 150 ml intermittent perfusion groups, transmission electron microscopic analysis revealed a complete endothelial cell layer in the intima with an organized subendothelium. A perfusion volume-dependent increase in eNOS expression that coincided with a decrease in ET-1, ICAM-1, vWF, and P-selectin expression was detected (all p < 0.01). Intermittent perfusion with 200 ml of Celsior solution every 2 h conferred protective effects simultaneously to the coronary arteries and myocardium on the porcine donor heart over a clinically relevant preservation period.
Collapse
|
10
|
DePasquale EC, Schweiger M, Ross HJ. A contemporary review of adult heart transplantation: 2012 to 2013. J Heart Lung Transplant 2014; 33:775-84. [DOI: 10.1016/j.healun.2014.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/14/2014] [Accepted: 04/30/2014] [Indexed: 02/07/2023] Open
|
11
|
Invited commentary. Ann Thorac Surg 2013; 95:2035. [PMID: 23706426 DOI: 10.1016/j.athoracsur.2013.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 11/21/2022]
|