1
|
Dragunas G, Koster CS, de Souza Xavier Costa N, Melgert BN, Munhoz CD, Gosens R, Mauad T. Neuroplasticity and neuroimmune interactions in fatal asthma. Allergy 2025; 80:462-473. [PMID: 39484998 DOI: 10.1111/all.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/21/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Alteration of airway neuronal function and density and bidirectional interaction between immune cells and sensory peripheral nerves have been proposed to trigger and perpetuate inflammation that contribute to asthma severity. To date, few studies analysed neuroplasticity and neuroinflammation in tissue of asthmatic individuals. We hypothesized that the presence of these phenomena would be a pathological feature in fatal asthma. METHODS We have quantified the expression of the pan-neuronal marker PGP9.5 and the neuronal sensory-derived neuropeptide calcitonin gene-related peptide (CGRP) in the large airways of 12 individuals deceased due to an asthma attack and compared to 10 control lung samples. The proximity between nerve bundles to eosinophils, mast cells and CADM1+ cells was also quantified. We have additionally developed a hPSC-derived sensory neuron/mast cell co-culture model, from where mast cells were purified and differences in gene expression profile assessed. RESULTS Fatal asthma patients presented a higher PGP9.5 and CGRP positive area in the airways, indicating sensory neuroplasticity. Eosinophils, mast cells and CADM1+ cells were observed in close contact or touching the airway nerve bundles, and this was found to be statistically higher in fatal asthma samples. In vitro co-culture model showed that human mast cells adhere to sensory neurons and develop a distinct gene expression profile characterized by upregulated expression of genes related to heterophilic adhesion, activation and differentiation markers, such as CADM4, PTGS2, C-KIT, GATA2, HDC, CPA3, ATXN1 and VCAM1. CONCLUSIONS Our results support a significant role for neuroplasticity and neuroimmune interactions in fatal asthma, that could be implicated in the severity of the fatal attack. Accordingly, the presence of physical neuron and mast cell interaction leads to differential gene expression profile in the later cell type.
Collapse
Affiliation(s)
- Guilherme Dragunas
- Departamento de Farmacologia, Universidade de São Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Carli S Koster
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | | | - Barbro N Melgert
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Carolina D Munhoz
- Departamento de Farmacologia, Universidade de São Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Thais Mauad
- Departamento de Patologia, LIM-05, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Dallal-York J, Troche MS. Hypotussic cough in persons with dysphagia: biobehavioral interventions and pathways to clinical implementation. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1394110. [PMID: 38933659 PMCID: PMC11199739 DOI: 10.3389/fresc.2024.1394110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Cough is a powerful, protective expulsive behavior that assists in maintaining respiratory health by clearing foreign material, pathogens, and mucus from the airways. Therefore, cough is critical to survival in both health and disease. Importantly, cough protects the airways and lungs from both antegrade (e.g., food, liquid, saliva) and retrograde (e.g., bile, gastric acid) aspirate contents. Aspiration is often the result of impaired swallowing (dysphagia), which allows oral and/or gastric contents to enter the lung, especially in individuals who also have cough dysfunction (dystussia). Cough hyposensitivity, downregulation, or desensitization- collectively referred to as hypotussia- is common in individuals with dysphagia, and increases the likelihood that aspirated material will reach the lung. The consequence of hypotussia with reduced airway clearance can include respiratory tract infection, chronic inflammation, and long-term damage to the lung parenchyma. Despite the clear implications for health, the problem of managing hypotussia in individuals with dysphagia is frequently overlooked. Here, we provide an overview of the current interventions and treatment approaches for hypotussic cough. We synthesize the available literature to summarize research findings that advance our understanding of these interventions, as well as current gaps in knowledge. Further, we highlight pragmatic resources to increase awareness of hypotussic cough interventions and provide support for the clinical implementation of evidence-based treatments. In culmination, we discuss potential innovations and future directions for hypotussic cough research.
Collapse
Affiliation(s)
- Justine Dallal-York
- Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, United States
| | | |
Collapse
|
3
|
Xu Y, Cao S, Wang SF, Ma W, Gou XJ. Zhisou powder suppresses airway inflammation in LPS and CS-induced post-infectious cough model mice via TRPA1/TRPV1 channels. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117741. [PMID: 38224794 DOI: 10.1016/j.jep.2024.117741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhisou Powder (ZSP), a traditional Chinese medicine (TCM) prescription, has been widely used in the clinic for the treatment of post-infectious cough (PIC). However, the exact mechanism is not clear. AIM OF THE STUDY The aim of this study was to investigate the ameliorative effect of ZSP on PIC in mice. The possible mechanisms of action were screened based on network pharmacology, and the potential mechanisms were explored through molecular docking and in vivo experimental validation. MATERIALS AND METHODS Lipopolysaccharide (LPS) (80μg/50 μL) was used to induce PIC in mice, followed by daily exposure to cigarette smoke (CS) for 30 min for 30 d to establish PIC model. The effects of ZSP on PIC mice were observed by detecting the number of coughs and cough latency, peripheral blood and bronchoalveolar lavage fluid (BALF) inflammatory cell counts, enzyme-linked immunosorbent assay (ELISA), and histological analysis. The core targets and key pathways of ZSP on PIC were analyzed using network pharmacology, and TRPA1 and TRPV1 were validated using RT-qPCR and western blotting assays. RESULTS ZSP effectively reduced the number of coughs and prolonged the cough latency in PIC mice. Airway inflammation was alleviated by reducing the expression levels of the inflammatory mediators TNF-α and IL-1β. ZSP modulated the expression of Substance P, Calcitonin gene-related peptide (CGRP), and nerve growth factor (NGF) in BALF. Based on the results of network pharmacology, the mechanism of action of ZSP may exert anti-neurogenic airway-derived inflammation by regulating the expression of TRPA1 and TRPV1 through the natural active ingredients α-spinastero, shionone and didehydrotuberostemonine. CONCLUSION ZSP exerts anti-airway inflammatory effects through inhibition of TRPA1/TRPV1 channels regulating neuropeptides to alleviate cough hypersensitivity and has a favorable therapeutic effect on PIC model mice. It provides theoretical evidence for the clinical application of ZSP.
Collapse
Affiliation(s)
- Yuan Xu
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China; School of Pharmacy, Shaanxi Univesity of Chinese Medicine, Shaanxi, Xianyang 712046, China
| | - Shan Cao
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Shu-Fei Wang
- School of Pharmacy, Shaanxi Univesity of Chinese Medicine, Shaanxi, Xianyang 712046, China
| | - Wei Ma
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China.
| | - Xiao-Jun Gou
- Respiratory Department and Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China.
| |
Collapse
|
4
|
Zhou Y, Zhang Y, Xu J, Wang Y, Yang Y, Wang W, Gu A, Han B, Shurin GV, Zhong R, Shurin MR, Zhong H. Schwann cell-derived exosomes promote lung cancer progression via miRNA-21-5p. Glia 2024; 72:692-707. [PMID: 38192185 DOI: 10.1002/glia.24497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Schwann cells (SCs), the primary glial cells of the peripheral nervous system, which have been identified in many solid tumors, play an important role in cancer development and progression by shaping the tumor immunoenvironment and supporting the development of metastases. Using different cellular, molecular, and genetic approaches with integrated bioinformatics analysis and functional assays, we revealed the role of human SC-derived exosomal miRNAs in lung cancer progression in vitro and in vivo. We found that exosomal miRNA-21 from SCs up-regulated the proliferation, motility, and invasiveness of human lung cancer cells in vitro, which requires functional Rab small GTPases Rab27A and Rab27B in SCs for exosome release. We also revealed that SC exosomal miRNA-21-5p regulated the functional activation of tumor cells by targeting metalloprotease inhibitor RECK in tumor cells. Integrated bioinformatic analyses showed that hsa-miRNA-21-5p is associated with poor prognosis in patients with lung adenocarcinoma and can promote lung cancer progression through multiple signaling pathways including the MAPK, PI3K/Akt, and TNF signaling. Furthermore, in mouse xenograft models, SC exosomes and SC exosomal hsa-miRNA-21-5p augmented human lung cancer cell growth and lymph node metastasis in vivo. Together our data revealed, for the first time, that SC-secreted exosomes and exosomal miRNA-21-5p promoted the proliferation, motility, and spreading of human lung cancer cells in vitro and in vivo. Thus, exosomal miRNA-21 may play an oncogenic role in SC-accelerated progression of lung cancer and this pathway may serve as a new therapeutic target for further evaluation.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianlin Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiqin Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baohui Han
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Runbo Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Trevizan-Bau P, Mazzone SB. Neuroimmune pathways regulating airway inflammation. Ann Allergy Asthma Immunol 2023; 131:550-560. [PMID: 37517657 DOI: 10.1016/j.anai.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Airways diseases are typically accompanied by inflammation, which has long been known to contribute to obstruction, mucus hypersecretion, dyspnea, cough, and other characteristic symptoms displayed in patients. Clinical interventions, therefore, often target inflammation to reverse lung pathology and reduce morbidity. The airways and lungs are densely innervated by subsets of nerve fibers, which are not only impacted by pulmonary inflammation but, in addition, likely serve as important regulators of immune cell function. This bidirectional neuroimmune crosstalk is supported by close spatial relationships between immune cells and airway nerve fibers, complementary neural and immune signaling pathways, local specialized airway chemosensory cells, and dedicated reflex circuits. In this article, we review the recent literature on this topic and present state-of-the-art evidence supporting the role of neuroimmune interactions in airway inflammation. In addition, we extend this evidence to synthesize considerations for the clinical translation of these discoveries to improve the management of patients with airway disease.
Collapse
Affiliation(s)
- Pedro Trevizan-Bau
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Weng A, Rabin EE, Flozak AS, Chiarella SE, Aillon RP, Gottardi CJ. Alpha-T-catenin is expressed in peripheral nerves as a constituent of Schwann cell adherens junctions. Biol Open 2022; 11:bio059634. [PMID: 36420826 PMCID: PMC9793867 DOI: 10.1242/bio.059634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
The adherens junction component, alpha-T-catenin (αTcat) is an established contributor to cardiomyocyte junction structure and function, but recent genomic studies link CTNNA3 polymorphisms to diseases with no clear cardiac underpinning, including asthma, autism and multiple sclerosis, suggesting causal contributions from a different cell-type. We show Ctnna3 mRNA is highly expressed in peripheral nerves (e.g. vagus and sciatic), where αTcat protein enriches at paranodes and myelin incisure adherens junctions of Schwann cells. We validate αTcat immunodetection specificity using a new Ctnna3-knock-out fluorescence reporter mouse line yet find no obvious Schwann cell loss-of-function morphology at the light microscopic level. CTNNA3/Ctnna3 mRNA is also abundantly detected in oligodendrocytes of the central nervous system via public databases, supporting a general role for αTcat in these unique cell-cell junctions. These data suggest that the wide range of diseases linked to CTNNA3 may be through its role in maintaining neuroglial functions of central and peripheral nervous systems. This article has a corresponding First Person interview with the co-first authors of the paper.
Collapse
Affiliation(s)
- Anthea Weng
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Erik E. Rabin
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Annette S. Flozak
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sergio E. Chiarella
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Raul Piseaux Aillon
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cara J. Gottardi
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Cell & Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Pérez MM, Pimentel VE, Fuzo CA, da Silva-Neto PV, Toro DM, Fraga-Silva TFC, Gardinassi LG, Oliveira CNS, Souza COS, Torre-Neto NT, de Carvalho JCS, De Leo TC, Nardini V, Feitosa MR, Parra RS, da Rocha JJR, Feres O, Vilar FC, Gaspar GG, Constant LF, Ostini FM, Degiovani AM, Amorim AP, Viana AL, Fernandes APM, Maruyama SR, Russo EMS, Santos IKFM, Bonato VLD, Cardoso CRB, Sorgi CA, Dias-Baruffi M, Faccioli LH. Acetylcholine, Fatty Acids, and Lipid Mediators Are Linked to COVID-19 Severity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:250-261. [PMID: 35768148 DOI: 10.4049/jimmunol.2200079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
Lipid and cholinergic mediators are inflammatory regulators, but their role in the immunopathology of COVID-19 is still unclear. Here, we used human blood and tracheal aspirate (TA) to investigate whether acetylcholine (Ach), fatty acids (FAs), and their derived lipid mediators (LMs) are associated with COVID-19 severity. First, we analyzed the perturbation profile induced by SARS-CoV-2 infection in the transcriptional profile of genes related to the ACh and FA/LM pathways. Blood and TA were used for metabolomic and lipidomic analyses and for quantification of leukocytes, cytokines, and ACh. Differential expression and coexpression gene network data revealed a unique transcriptional profile associated with ACh and FA/LM production, release, and cellular signaling. Transcriptomic data were corroborated by laboratory findings: SARS-CoV-2 infection increased plasma and TA levels of arachidonic acid, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid, 11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid, and ACh. TA samples also exhibited high levels of PGE2, thromboxane B2, 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid, and 6-trans-leukotriene B4 Bioinformatics and experimental approaches demonstrated robust correlation between transcriptional profile in Ach and FA/LM pathways and parameters of severe COVID-19. As expected, the increased neutrophil-to-lymphocyte ratio, neutrophil counts, and cytokine levels (IL-6, IL-10, IL-1β, and IL-8) correlated with worse clinical scores. Glucocorticoids protected severe and critical patients and correlated with reduced Ach levels in plasma and TA samples. We demonstrated that pulmonary and systemic hyperinflammation in severe COVID-19 are associated with high levels of Ach and FA/LM. Glucocorticoids favored the survival of patients with severe/critical disease, and this effect was associated with a reduction in ACh levels.
Collapse
Affiliation(s)
- Malena M Pérez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinícius E Pimentel
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto São Paulo, Brazil
| | - Carlos A Fuzo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pedro V da Silva-Neto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Biociências e Biotecnologia Aplicadas à Farmácia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Diana M Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Biociências e Biotecnologia Aplicadas à Farmácia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Thais F C Fraga-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz G Gardinassi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Camilla N S Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto São Paulo, Brazil
| | - Camila O S Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto São Paulo, Brazil
| | - Nicola T Torre-Neto
- Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jonatan C S de Carvalho
- Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thais C De Leo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marley R Feitosa
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rogerio S Parra
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José J R da Rocha
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Omar Feres
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando C Vilar
- Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gilberto G Gaspar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Leticia F Constant
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Fátima M Ostini
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Augusto M Degiovani
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Alessandro P Amorim
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Angelina L Viana
- Departamento de Enfermagem Materno-Infantil e Saúde Pública, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana P M Fernandes
- Departamento de Enfermagem Geral e Especializada, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandra R Maruyama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Elisa M S Russo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isabel K F M Santos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Vânia L D Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Cristina R B Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A Sorgi
- Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil;
| | | | | |
Collapse
|
8
|
Romanova J, Rydlovskaya A, Mochalov S, Proskurina O, Gorokh Y, Nebolsin V. The Effect of Anti-Chemokine Oral Drug XC8 on Cough Triggered by The Agonists of TRPA1 But Not TRPV1 Channels in Guinea Pigs. Pulm Ther 2022; 8:105-122. [PMID: 35133638 PMCID: PMC8824739 DOI: 10.1007/s41030-022-00183-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Chronic cough heavily affects patients’ quality of life, and there are no effective licensed therapies available. Cough is a complication of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection, asthma, and other diseases. Patients with various diseases have a different profile of tussive responses to diverse cough triggers, thereby suggesting sundry mechanisms of neuronal dysfunctions. Previously, we demonstrated that the small molecule drug XC8 shows a clinical anti-asthmatic effect. The objective of the present study was to investigate the effect of XC8 on cough. Methods We studied the antitussive effect of XC8 on cough induced by agonists activating human transient receptor potential (TRP) cation channels TRPA1 or TRPV1 in guinea pigs. We checked the agonistic/antagonistic activity of XC8 on the human cation channels TRPA1, TRPV1, TRPM8, P2X purinoceptor 2 (P2X2), and human acid sensing ion channel 3 (hASIC3) in Fluorescent Imaging Plate Reader (FLIPR) assay. Results XC8 demonstrated clear antitussive activity and dose-dependently inhibited cough in guinea pigs induced by citric acid alone (up to 67.1%) or in combination with IFN-γ (up to 76.4%). XC8 suppressed cough reflexes induced by the repeated inhalation of citric acid (up to 80%) or by cinnamaldehyde (up to 60%). No activity of XC8 against cough evoked by capsaicin was revealed. No direct agonistic/antagonistic activity of XC8 on human TRPA1, TRPV1, TRPM8, P2X2, or hASIC3 was detected. Conclusions XC8 acts against cough evoked by the activation of TRPA1 (citric acid/cinnamaldehyde) but not TRPV1 (capsaicin) channels. XC8 inhibits the cough reflex and suppresses the cough potentiation by IFN-γ. XC8 might be of significant therapeutic value for patients suffering from chronic cough associated with inflammation.
Collapse
Affiliation(s)
- Julia Romanova
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation.
| | - Anastasia Rydlovskaya
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Stepan Mochalov
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Oxana Proskurina
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Yulia Gorokh
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Vladimir Nebolsin
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| |
Collapse
|
9
|
Yu H, Zhou Y, Wang R, Qian Z, Knibbs LD, Jalaludin B, Schootman M, McMillin SE, Howard SW, Lin LZ, Zhou P, Hu LW, Liu RQ, Yang BY, Chen G, Zeng XW, Feng W, Xiang M, Dong GH. Associations between trees and grass presence with childhood asthma prevalence using deep learning image segmentation and a novel green view index. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117582. [PMID: 34438500 DOI: 10.1016/j.envpol.2021.117582] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Limitations of Normalized Difference Vegetation Index (NDVI) potentially contributed to the inconsistent findings of greenspace exposure and childhood asthma. The aim of this study was to use a novel greenness exposure assessment method, capable of overcoming the limitation of NDVI to determine the extent to which it was associated with asthma prevalence in Chinese children. During 2009-2013, a cross-sectional study of 59,754 children aged 2-17 years was conducted in northeast China. Tencent street view images surrounding participants' schools were segmented by a deep learning model, and streetscape greenness was extracted. The green view index (GVI) was used to assign exposure and higher value indicates more green coverage. Mixed-effects logistic regression models were used to calculate the adjusted odds of asthma per interquartile range (IQR) increase of GVI for trees and grass. Participants were further stratified to investigate whether particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) was a modifier. An IQR increase in GVI800m for trees was associated with lower adjusted odds of doctor-diagnosed asthma (OR: 0.76; 95%CI: 0.72-0.80) and current asthma (OR: 0.82; 95%CI: 0.75-0.89). An IQR increase in GVI800m for grass was associated with higher adjusted odds of doctor-diagnosed asthma (OR: 1.04; 95%CI: 1.00-1.08) and current asthma (OR: 1.08; 95%CI: 1.02-1.14). After stratification by PM2.5 exposure level, the negative association between trees and asthma, and the positive association between grass and asthma were observed only in low PM2.5 exposure levels (≤median: 56.23 μg/m3). Our results suggest that types of vegetation may play a role in the association between greenness exposure and childhood asthma. Exposure to trees may reduce the odds of childhood asthma, whereas exposure to grass may increase the odds. Additionally, PM2.5 may modify the associations of trees and grass with childhood asthma.
Collapse
Affiliation(s)
- Hongyao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Ruoyu Wang
- Institute of Geography, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Bin Jalaludin
- Centre for Air Quality and Health Research and Evaluation, Glebe, NSW, 2037, Australia; IIngham Institute for Applied Medial Research, University of New South Wales, Sydney, 2170, Australia
| | - Mario Schootman
- Department of Clinical Analytics, System Data & Analytics, SSM Health, Saint Louis, MO, 63132, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Steven W Howard
- Department of Health Management and Policy, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peien Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Drake MG, Cook M, Fryer AD, Jacoby DB, Scott GD. Airway Sensory Nerve Plasticity in Asthma and Chronic Cough. Front Physiol 2021; 12:720538. [PMID: 34557110 PMCID: PMC8452850 DOI: 10.3389/fphys.2021.720538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Airway sensory nerves detect a wide variety of chemical and mechanical stimuli, and relay signals to circuits within the brainstem that regulate breathing, cough, and bronchoconstriction. Recent advances in histological methods, single cell PCR analysis and transgenic mouse models have illuminated a remarkable degree of sensory nerve heterogeneity and have enabled an unprecedented ability to test the functional role of specific neuronal populations in healthy and diseased lungs. This review focuses on how neuronal plasticity contributes to development of two of the most common airway diseases, asthma and chronic cough, and discusses the therapeutic implications of emerging treatments that target airway sensory nerves.
Collapse
Affiliation(s)
- Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Cook
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Gregory D. Scott
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
11
|
Sensory modulation of airways immunity. Neurosci Lett 2021; 760:136042. [PMID: 34118306 DOI: 10.1016/j.neulet.2021.136042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
The airways are constantly exposed to a multitude of inhaled particles and, as such, require a finely tuned discrimination between harmful or potentially threatening stimuli, and discrete responses to maintain homeostasis. Both the immune and nervous systems have the ability to sense environmental (and internal) signals, to integrate the obtained information and to initiate a protective reaction. Lung immunity and innervation are known to be individually involved in these processes, but it is becoming clear that they can also influence one another via a multitude of complex mechanisms. Here, we specifically describe how sensory innervation affects airways immunity with a focus on pathological conditions such as asthma or infections, describing cellular and molecular mechanisms, and highlighting potentially novel therapeutic targets.
Collapse
|
12
|
Neurotrophin-4 is essential for survival of the majority of vagal afferents to the mucosa of the small intestine, but not the stomach. Auton Neurosci 2021; 233:102811. [PMID: 33932866 DOI: 10.1016/j.autneu.2021.102811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/03/2021] [Accepted: 04/14/2021] [Indexed: 01/06/2023]
Abstract
Vagal afferents form the primary gut-to-brain neural axis, communicating signals that regulate gastrointestinal (GI) function and promote satiation, appetition and reward. Neurotrophin-4 (NT-4) is essential for the survival of vagal smooth muscle afferents of the small intestine, but not the stomach. Here we took advantage of near-complete labeling of GI vagal mucosal afferents in Nav1.8cre-Rosa26tdTomato transgenic mice to determine whether these afferents depend on NT-4 for survival. We quantified the density and distribution of vagal afferent terminals in the stomach and small intestine mucosa and their central terminals in the solitary tract nucleus (NTS) and area postrema in NT-4 knockout (KO) and control mice. NT-4KO mice exhibited a 75% reduction in vagal afferent terminals in proximal duodenal villi and a 55% decrease in the distal ileum, whereas, those in the stomach glands remained intact. Vagal crypt afferents were also reduced in some regions of the small intestine, but to a lesser degree. Surprisingly, NT-4KO mice exhibited an increase in labeled terminals in the medial NTS. These findings, combined with previous results, suggest NT-4 is essential for survival of a large proportion of all classes of vagal afferents that innervate the small intestine, but not those that supply the stomach. Thus, NT-4KO mice could be valuable for distinguishing gastric and intestinal vagal afferent regulation of GI function and feeding. The apparent plasticity of central vagal afferent terminals - an increase in their density - could have compensated for loss of peripheral terminals by maintaining near-normal levels of satiety signaling.
Collapse
|
13
|
Singh N, Driessen AK, McGovern AE, Moe AAK, Farrell MJ, Mazzone SB. Peripheral and central mechanisms of cough hypersensitivity. J Thorac Dis 2020; 12:5179-5193. [PMID: 33145095 PMCID: PMC7578480 DOI: 10.21037/jtd-2020-icc-007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic cough is a difficult to treat symptom of many respiratory and some non-respiratory diseases, indicating that varied pathologies can underpin the development of chronic cough. However, clinically and experimentally it has been useful to collate these different pathological processes into the single unifying concept of cough hypersensitivity. Cough hypersensitivity syndrome is reflected by troublesome cough often precipitated by levels of stimuli that ordinarily don't cause cough in healthy people, and this appears to be a hallmark feature in many patients with chronic cough. Accordingly, a strong argument has emerged that changes in the excitability and/or normal regulation of the peripheral and central neural circuits responsible for cough are instrumental in establishing cough hypersensitivity and for causing excessive cough in disease. In this review, we explore the current peripheral and central neural mechanisms that are believed to be involved in altered cough sensitivity and present possible links to the mechanism of action of novel therapies that are currently undergoing clinical trials for chronic cough.
Collapse
Affiliation(s)
- Nabita Singh
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Alexandria K. Driessen
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Alice E. McGovern
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Michael J. Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Stuart B. Mazzone
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
14
|
Lammers A, Janssen NAH, Boere AJF, Berger M, Longo C, Vijverberg SJH, Neerincx AH, Maitland-van der Zee AH, Cassee FR. Effects of short-term exposures to ultrafine particles near an airport in healthy subjects. ENVIRONMENT INTERNATIONAL 2020; 141:105779. [PMID: 32402984 DOI: 10.1016/j.envint.2020.105779] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Recent studies reported elevated concentrations of ultrafine particles (UFP) near airports. Little is known about the health effects of UFP from aviation. Since UFP can deposit deep into the lungs and other organs, they may cause significant adverse health effects. OBJECTIVE We investigated health effects of controlled short-term human exposure to UFP near a major airport. METHODS In this study, 21 healthy non-smoking volunteers (age range: 18-35 years) were repeatedly (2-5 visits) exposed for 5 h to ambient air near Schiphol Airport, while performing intermittent moderate exercise (i.e. cycling). Pre- to post-exposure changes in cardiopulmonary outcomes (spirometry, forced exhaled nitric oxide, electrocardiography and blood pressure) were assessed and related to total- and size-specific particle number concentrations (PNC), using linear mixed effect models. RESULTS The PNC was on average 53,500 particles/cm3 (range 10,500-173,200). A 5-95th percentile increase in exposure to UFP (i.e. 125,400 particles/cm3) was associated with a decrease in FVC of -73.8 mL (95% CI -138.8 - -0.4) and a prolongation of the corrected QT (QTc) interval by 9.9 ms (95% CI 2.0 - 19.1). These effects were associated with particles < 20 nm (mainly UFP from aviation), but not with particles > 50 nm (mainly UFP from road traffic). DISCUSSION Short-term exposures to aviation-related UFP near a major airport, was associated with decreased lung function (mainly FVC) and a prolonged QTc interval in healthy volunteers. The effects were relatively small, however, they appeared after single exposures of 5 h in young healthy adults. As this study cannot make any inferences about long-term health impacts, appropriate studies investigating potential health effects of long-term exposure to airport-related UFP, are urgently needed.
Collapse
Affiliation(s)
- A Lammers
- Amsterdam UMC, University of Amsterdam, Department of Respiratory Medicine, Meibergdreef 9, Amsterdam, The Netherlands
| | - N A H Janssen
- National Institute for Public Health and the Environment (RIVM), Centre for Sustainability, Environment and Health, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - A J F Boere
- National Institute for Public Health and the Environment (RIVM), Centre for Sustainability, Environment and Health, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - M Berger
- Amsterdam UMC, University of Amsterdam, Department of Respiratory Medicine, Meibergdreef 9, Amsterdam, The Netherlands
| | - C Longo
- Amsterdam UMC, University of Amsterdam, Department of Respiratory Medicine, Meibergdreef 9, Amsterdam, The Netherlands
| | - S J H Vijverberg
- Amsterdam UMC, University of Amsterdam, Department of Respiratory Medicine, Meibergdreef 9, Amsterdam, The Netherlands
| | - A H Neerincx
- Amsterdam UMC, University of Amsterdam, Department of Respiratory Medicine, Meibergdreef 9, Amsterdam, The Netherlands
| | - A H Maitland-van der Zee
- Amsterdam UMC, University of Amsterdam, Department of Respiratory Medicine, Meibergdreef 9, Amsterdam, The Netherlands
| | - F R Cassee
- National Institute for Public Health and the Environment (RIVM), Centre for Sustainability, Environment and Health, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences at the Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
15
|
|
16
|
Paciência I, Rufo JC, Silva D, Martins C, Mendes F, Rama T, Rodolfo A, Madureira J, Delgado L, de Oliveira Fernandes E, Padrão P, Moreira P, Severo M, Pina MF, Teixeira JP, Barros H, Ruokolainen L, Haahtela T, Moreira A. School environment associates with lung function and autonomic nervous system activity in children: a cross-sectional study. Sci Rep 2019; 9:15156. [PMID: 31641175 PMCID: PMC6805928 DOI: 10.1038/s41598-019-51659-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/04/2019] [Indexed: 01/10/2023] Open
Abstract
Children are in contact with local environments, which may affect respiratory symptoms and allergic sensitization. We aimed to assess the effect of the environment and the walkability surrounding schools on lung function, airway inflammation and autonomic nervous system activity. Data on 701 children from 20 primary schools were analysed. Lung function, airway inflammation and pH from exhaled breath condensate were measured. Pupillometry was performed to evaluate autonomic activity. Land use composition and walkability index were quantified within a 500 m buffer zone around schools. The proportion of effects explained by the school environment was measured by mixed-effect models. We found that green school areas tended to be associated with higher lung volumes (FVC, FEV1 and FEF25-75%) compared with built areas. FVC was significantly lower in-built than in green areas. After adjustment, the school environment explained 23%, 34% and 99.9% of the school effect on FVC, FEV1, and FEF25-75%, respectively. The walkability of school neighbourhoods was negatively associated with both pupil constriction amplitude and redilatation time, explaining -16% to 18% of parasympathetic and 8% to 29% of sympathetic activity. Our findings suggest that the environment surrounding schools has an effect on the lung function of its students. This effect may be partially mediated by the autonomic nervous system.
Collapse
Affiliation(s)
- Inês Paciência
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal.
- Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal.
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| | - João Cavaleiro Rufo
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
- Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Diana Silva
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | - Carla Martins
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | - Francisca Mendes
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | - Tiago Rama
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | - Ana Rodolfo
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | - Joana Madureira
- Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal
| | - Luís Delgado
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | | | - Patrícia Padrão
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Pedro Moreira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Milton Severo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública da Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Maria Fátima Pina
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Health Communication and Information Institute, Fundação Oswaldo Cruz (ICICT/FIOCRUZ), Rio de Janeiro, Brazil
| | - João Paulo Teixeira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Environmental Health Department, Portuguese National Institute of Health, Porto, Portugal
| | - Henrique Barros
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública da Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lasse Ruokolainen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - André Moreira
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Antunes GL, Silveira JS, Kaiber DB, Luft C, da Costa MS, Marques EP, Ferreira FS, Breda RV, Wyse ATS, Stein RT, Pitrez PM, da Cunha AA. Cholinergic anti-inflammatory pathway confers airway protection against oxidative damage and attenuates inflammation in an allergic asthma model. J Cell Physiol 2019; 235:1838-1849. [PMID: 31332773 DOI: 10.1002/jcp.29101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Asthma is characterized by the influx of inflammatory cells, especially of eosinophils as well as reactive oxygen species (ROS) production, driven by the release of the T helper 2 (Th2)-cell-associated cytokines. The cholinergic anti-inflammatory pathway (CAP) inhibit cytokines production and controls inflammation. Thus, we investigated the effects of pharmacological activation of CAP by neostigmine on oxidative stress and airway inflammation in an allergic asthma model. After the OVA challenge, mice were treated with neostigmine. We showed that CAP activation by neostigmine reduced the levels of pro-inflammatory cytokines (IL-4, IL-5, IL-13, IL-1β, and TNF-α), which resulted in a decrease of eosinophils influx. Furthermore, neostigmine also conferred airway protection against oxidative stress, attenuating ROS production through the increase of antioxidant defense, evidenced by the catalase (CAT) activity. We propose, for the first time, that pharmacological activation of the CAP can lead to new possibilities in the therapeutic management of allergic asthma.
Collapse
Affiliation(s)
- Géssica Luana Antunes
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Josiane Silva Silveira
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Daniela Benvenutti Kaiber
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Carolina Luft
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Eduardo Peil Marques
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Fernanda Silva Ferreira
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Ricardo Vaz Breda
- Laboratory of Neurosciences, Brain Institute - BraIns, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Renato Tetelbom Stein
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Paulo Márcio Pitrez
- Laboratory of Pediatric Respirology, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Hospital Moinhos de Vento, HMV, Porto Alegre, Brazil
| | - Aline Andrea da Cunha
- Laboratory of Pediatric Respirology, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Hospital Moinhos de Vento, HMV, Porto Alegre, Brazil
| |
Collapse
|
18
|
Snow SJ, Henriquez AR, Costa DL, Kodavanti UP. Neuroendocrine Regulation of Air Pollution Health Effects: Emerging Insights. Toxicol Sci 2019; 164:9-20. [PMID: 29846720 DOI: 10.1093/toxsci/kfy129] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Air pollutant exposures are linked to cardiopulmonary diseases, diabetes, metabolic syndrome, neurobehavioral conditions, and reproductive abnormalities. Significant effort is invested in understanding how pollutants encountered by the lung might induce effects in distant organs. The role of circulating mediators has been predicted; however, their origin and identity have not been confirmed. New evidence has emerged which implicates the role of neuroendocrine sympathetic-adrenal-medullary (SAM) and hypothalamic-pituitary-adrenal (HPA) stress axes in mediating a wide array of systemic and pulmonary effects. Our recent studies using ozone exposure as a prototypical air pollutant demonstrate that increases in circulating adrenal-derived stress hormones (epinephrine and cortisol/corticosterone) contribute to lung injury/inflammation and metabolic effects in the liver, pancreas, adipose, and muscle tissues. When stress hormones are depleted by adrenalectomy in rats, most ozone effects including lung injury/inflammation are diminished. Animals treated with antagonists for adrenergic and glucocorticoid receptors show inhibition of the pulmonary and systemic effects of ozone, whereas treatment with agonists restore and exacerbate the ozone-induced injury/inflammation phenotype, implying the role of neuroendocrine activation. The neuroendocrine system is critical for normal homeostasis and allostatic activation; however, chronic exposure to stressors may lead to increases in allostatic load. The emerging mechanisms by which circulating mediators are released and are responsible for producing multiorgan effects of air pollutants insists upon a paradigm shift in the field of air pollution and health. Moreover, since these neuroendocrine responses are linked to both chemical and nonchemical stressors, the interactive influence of air pollutants, lifestyle, and environmental factors requires further study.
Collapse
Affiliation(s)
- Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina, 27711
| | - Daniel L Costa
- Emeritus, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| |
Collapse
|
19
|
Bronchial asthma control degree and the temperament structure according to the Eysenck model. Postepy Dermatol Alergol 2019; 37:559-565. [PMID: 32994779 PMCID: PMC7507172 DOI: 10.5114/ada.2019.83216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Introduction Asthma is a disease of a psychosomatic nature. The control of asthma is still poor in approximately 5% of patients, despite introduction of modern inhalant drugs and psychotherapeutic interventions. Aim To evaluate whether the degree of bronchial asthma control is related to the characteristics of temperament according to Eysenck’s concept. Material and methods The study was conducted on a group of 111 bronchial asthma patients and 44 healthy subjects. In all of them, the Eysenck temperament questionnaire was administered and the level of asthma control was determined. Results Increase in the scale of neuroticism was associated with an 1.83-fold increase in the likelihood of poor asthma control. Increase in the result on the psychoticism scale and lie scale of about one point was associated with a slightly smaller increased risk of poor asthma control (respectively: 1.49-fold and 1.61-fold). Conclusions The structure of temperament of a person with poor control of bronchial asthma can be characterized. Patients with poor asthma control have a higher level of neuroticism, psychoticism and propensity to lie, compared with the healthy population and subjects with good or partial bronchial asthma control.
Collapse
|
20
|
Chesné J, Cardoso V, Veiga-Fernandes H. Neuro-immune regulation of mucosal physiology. Mucosal Immunol 2019; 12:10-20. [PMID: 30089849 DOI: 10.1038/s41385-018-0063-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Mucosal barriers constitute major body surfaces that are in constant contact with the external environment. Mucosal sites are densely populated by a myriad of distinct neurons and immune cell types that sense, integrate and respond to multiple environmental cues. In the recent past, neuro-immune interactions have been reported to play central roles in mucosal health and disease, including chronic inflammatory conditions, allergy and infectious diseases. Discrete neuro-immune cell units act as building blocks of this bidirectional multi-tissue cross-talk, ensuring mucosal tissue health and integrity. Herein, we will focus on reciprocal neuro-immune interactions in the airways and intestine. Such neuro-immune cross-talk maximizes sensing and integration of environmental aggressions, which can be considered an important paradigm shift in our current views of mucosal physiology and immune regulation.
Collapse
Affiliation(s)
- Julie Chesné
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisboa, Portugal
| | - Vânia Cardoso
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisboa, Portugal
| | | |
Collapse
|
21
|
McGovern AE, Short KR, Kywe Moe AA, Mazzone SB. Translational review: Neuroimmune mechanisms in cough and emerging therapeutic targets. J Allergy Clin Immunol 2018; 142:1392-1402. [DOI: 10.1016/j.jaci.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
|
22
|
Abstract
The interplay between the immune and nervous systems has been acknowledged in the past, but only more recent studies have started to unravel the cellular and molecular players of such interactions. Mounting evidence indicates that environmental signals are sensed by discrete neuro-immune cell units (NICUs), which represent defined anatomical locations in which immune and neuronal cells colocalize and functionally interact to steer tissue physiology and protection. These units have now been described in multiple tissues throughout the body, including lymphoid organs, adipose tissue, and mucosal barriers. As such, NICUs are emerging as important orchestrators of multiple physiological processes, including hematopoiesis, organogenesis, inflammation, tissue repair, and thermogenesis. In this review we focus on the impact of NICUs in tissue physiology and how this fast-evolving field is driving a paradigm shift in our understanding of immunoregulation and organismal physiology.
Collapse
Affiliation(s)
- Cristina Godinho-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal; , ,
| | - Filipa Cardoso
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal; , ,
| | | |
Collapse
|
23
|
Fujimoto K, Yamazaki H, Uematsu A. Instability of nocturnal parasympathetic nerve function in patients with chronic lung disease with or without nocturnal desaturation. Int J Chron Obstruct Pulmon Dis 2018; 13:2841-2848. [PMID: 30237708 PMCID: PMC6138958 DOI: 10.2147/copd.s170163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective/background This study was performed to evaluate the association of nocturnal autonomic nerve (AN) dysfunction, especially parasympathetic nerve (PN) function instability, and nocturnal oxygen desaturation (NOD) in patients with chronic lung diseases (CLD). Patients and methods Twenty-nine stable CLD patients with irreversible pulmonary dysfunction and mild-to-moderate daytime hypoxemia, 13 CLD patients receiving long-term oxygen therapy (LTOT) with maintained SpO2 >90%, and 17 senior healthy volunteers underwent two-night examinations of nocturnal AN function by pulse rate variability (PRV) instead of heart rate variation using a photoelectrical plethysmograph simultaneously monitoring SpO2 and the presence of sleep disordered breathing at home. AN function was examined by instantaneous time–frequency analysis of PRV using a complex demodulation method. Results There were no significant differences in mean low frequency/high frequency (HF) ratio (index of sympathetic nerve activity) or mean HF amplitude (index of PN activity) among controls and CLD patients with and without NOD (defined as SpO2 <90% for at least 3% of total recording time at night). However, the relative times over which the same main HF peak was sustained for at least 20 seconds (%HF20sec) and 5 minutes in total recording time, indexes of PN function stability, were significantly reduced in CLD patients compared with controls, and further decreased in CLD patients with NOD compared with non-NOD. %HF20sec was significantly higher in the LTOT group than the NOD group. Furthermore, PaO2 at rest and nocturnal hypoxia were significantly correlated with PN function instability in CLD patients. Conclusion PN function is unstable at night associated with nocturnal hypoxemia in CLD patients, which may reflect poor quality of sleep.
Collapse
Affiliation(s)
- Keisaku Fujimoto
- Department of Clinical Laboratory Sciences, Shinshu University School of Health Sciences, Matsumoto, Nagano, Japan,
| | - Haruna Yamazaki
- Department of Biomedical Laboratory Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Akikazu Uematsu
- Department of Biomedical Laboratory Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| |
Collapse
|
24
|
Zhou Y, Shurin GV, Zhong H, Bunimovich YL, Han B, Shurin MR. Schwann Cells Augment Cell Spreading and Metastasis of Lung Cancer. Cancer Res 2018; 78:5927-5939. [PMID: 30135194 DOI: 10.1158/0008-5472.can-18-1702] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/12/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
Although lungs are densely innervated by the peripheral nervous system (PNS), the role of the PNS in the progression of lung cancer is unknown. In this study, we report that mouse adult Schwann cells (SC), the principal glial cells of the PNS, can regulate the motility of lung cancer cells in vitro and the formation of metastases in vivo SCs promoted epithelial-to-mesenchymal transition (EMT) and the motility of two lung cancer cell lines by increasing expression of Snail and Twist in tumor cells; blocking of Snail and Twist expression abolished SC-induced motility of tumor cells. SC-derived CXCL5 was responsible for EMT in lung cancer cells, as the inhibition of CXCL5 or its receptor CXCR2 reduced SC-induced expression of Snail and Twist and reduced motility in tumor cells. CXCL5/CXCR2 binding activated the PI3K/AKT/GSK-3β/Snail-Twist signaling pathway in lung cancer cells, and the PI3K inhibitor blocked CXCL5-dependent phosphorylation of AKT and GSK-3β, reduced expression of Snail/Twist, and limited tumor cell invasiveness. SC conditioning of tumor cells prior to their injection into mice significantly increased the formation of metastases in the regional lymph nodes. In summary, SCs can regulate the CXCL5/CXCR2/PI3K/AKT/GSK-3β/Snail-Twist pathway to promote EMT, invasiveness, and metastatic potential of lung cancer cells. Our results reveal a new role of the PNS in the functional organization of the tumor microenvironment and tumor progression.Significance: This study increases our understanding of how nerves and, in particular, specific glial cells, Schwann cells, in the peripheral nervous system, may help promote tumor growth and metastasis. Cancer Res; 78(20); 5927-39. ©2018 AACR.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hua Zhong
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Baohui Han
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. .,Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
The therapeutic potential of purinergic signalling. Biochem Pharmacol 2018; 151:157-165. [DOI: 10.1016/j.bcp.2017.07.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023]
|
26
|
Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2018; 29:247-261. [PMID: 28814067 DOI: 10.1093/intimm/dxx040] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have highlighted an emerging role for neuro-immune interactions in mediating allergic diseases. Allergies are caused by an overactive immune response to a foreign antigen. The peripheral sensory and autonomic nervous system densely innervates mucosal barrier tissues including the skin, respiratory tract and gastrointestinal (GI) tract that are exposed to allergens. It is increasingly clear that neurons actively communicate with and regulate the function of mast cells, dendritic cells, eosinophils, Th2 cells and type 2 innate lymphoid cells in allergic inflammation. Several mechanisms of cross-talk between the two systems have been uncovered, with potential anatomical specificity. Immune cells release inflammatory mediators including histamine, cytokines or neurotrophins that directly activate sensory neurons to mediate itch in the skin, cough/sneezing and bronchoconstriction in the respiratory tract and motility in the GI tract. Upon activation, these peripheral neurons release neurotransmitters and neuropeptides that directly act on immune cells to modulate their function. Somatosensory and visceral afferent neurons release neuropeptides including calcitonin gene-related peptide, substance P and vasoactive intestinal peptide, which can act on type 2 immune cells to drive allergic inflammation. Autonomic neurons release neurotransmitters including acetylcholine and noradrenaline that signal to both innate and adaptive immune cells. Neuro-immune signaling may play a central role in the physiopathology of allergic diseases including atopic dermatitis, asthma and food allergies. Therefore, getting a better understanding of these cellular and molecular neuro-immune interactions could lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Tiphaine Voisin
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Amélie Bouvier
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
27
|
Alves M, Beamer E, Engel T. The Metabotropic Purinergic P2Y Receptor Family as Novel Drug Target in Epilepsy. Front Pharmacol 2018; 9:193. [PMID: 29563872 PMCID: PMC5851315 DOI: 10.3389/fphar.2018.00193] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Epilepsy encompasses a heterogeneous group of neurological syndromes which are characterized by recurrent seizures affecting over 60 million people worldwide. Current anti-epileptic drugs (AEDs) are mainly designed to target ion channels and/or GABA or glutamate receptors. Despite recent advances in drug development, however, pharmacoresistance in epilepsy remains as high as 30%, suggesting the need for the development of new AEDs with a non-classical mechanism of action. Neuroinflammation is increasingly recognized as one of the key players in seizure generation and in the maintenance of the epileptic phenotype. Consequently, targeting signaling molecules involved in inflammatory processes may represent new avenues to improve treatment in epilepsy. Nucleotides such as adenosine-5′-triphosphate (ATP) and uridine-5′-triphosphate (UTP) are released in the brain into the extracellular space during pathological conditions such as increased neuronal firing or cell death. Once released, these nucleotides bind to and activate specific purinergic receptors termed P2 receptors where they mediate the release of gliotransmitters and drive neuronal hyperexcitation and neuroinflammatory processes. This includes the fast acting ionotropic P2X channels and slower-acting G-protein-coupled P2Y receptors. While the expression and function of P2X receptors has been well-established in experimental models of epilepsy, emerging evidence is now also suggesting a prominent role for the P2Y receptor subfamily in seizure generation and the maintenance of epilepsy. In this review we discuss data supporting a role for the P2Y receptor family in epilepsy and the most recent finding demonstrating their involvement during seizure-induced pathology and in epilepsy.
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edward Beamer
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
28
|
Folmsbee SS, Gottardi CJ. Cardiomyocytes of the Heart and Pulmonary Veins: Novel Contributors to Asthma? Am J Respir Cell Mol Biol 2017; 57:512-518. [PMID: 28481622 DOI: 10.1165/rcmb.2016-0261tr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent genome-wide association studies have implicated both cardiac and pulmonary vein-related genes in the pathogenesis of asthma. Since cardiac cells are not present in lung airways or viewed to affect the immune system, interpretation of these findings in the context of more well-established contributors to asthma has remained challenging. However, cardiomyocytes are present in the lung, specifically along pulmonary veins, and recent murine models suggest that cardiac cells lining the pulmonary veins may contribute to allergic airway disease. Notably, the cardiac cell-junction protein αT-catenin (αT-cat, CTNNA3), which is implicated in occupational and steroid-resistant asthma by clinical genetic data, appears to play an important role in regulating inflammation around the cardiac cells of pulmonary veins. Beyond the potential contribution of pulmonary veins, clinical data directly examining cardiac function through echocardiography have found strong associations between asthmatic phenotypes and the mechanical properties of the heart. Together, these data suggest that targeting the function of cardiac cells in the pulmonary veins and/or heart may allow for novel and potentially efficacious therapies for asthma, particularly in challenging cases of steroid-resistant asthma.
Collapse
Affiliation(s)
- Stephen Sai Folmsbee
- Departments of 1 Pulmonary and Critical Care Medicine.,2 The Driskill Graduate Training Program in Life Sciences, and
| | - Cara J Gottardi
- Departments of 1 Pulmonary and Critical Care Medicine.,3 Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
29
|
Keller JA, McGovern AE, Mazzone SB. Translating Cough Mechanisms Into Better Cough Suppressants. Chest 2017; 152:833-841. [DOI: 10.1016/j.chest.2017.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
|
30
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
31
|
Xu B, Zhang L, Che Y, Song C, Jiang W, Fan J, Tian D. Cerebral ischemia/reperfusion injury induces airway mucus hypersecretion in rats and activates IL-13-associated inflammatory mechanisms. Mol Med Rep 2017; 16:7577-7584. [DOI: 10.3892/mmr.2017.7516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
|
32
|
Payne P, Fiering S, Leiter JC, Zava DT, Crane-Godreau MA. Effectiveness of a Novel Qigong Meditative Movement Practice for Impaired Health in Flight Attendants Exposed to Second-Hand Cigarette Smoke. Front Hum Neurosci 2017; 11:67. [PMID: 28270757 PMCID: PMC5318411 DOI: 10.3389/fnhum.2017.00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
This single-arm non-randomized pilot study explores an intervention to improve the health of flight attendants (FA) exposed to second-hand cigarette smoke prior to the smoking ban on commercial airlines. This group exhibits an unusual pattern of long-term pulmonary dysfunction. We report on Phase I of a two-phase clinical trial; the second Phase will be a randomized controlled trial testing digital delivery of the intervention. Subjects were recruited in the Northeastern US; testing and intervention were administered in 4 major cities. The intervention involved 12 h of training in Meditative Movement practices. Based on recent research on the effects of nicotine on fear learning, and the influence of the autonomic nervous system on immune function, our hypothesis was that this training would improve autonomic function and thus benefit a range of health measures. Primary outcomes were the 6-min walk test and blood levels of C-reactive protein. Pulmonary, cardiovascular, autonomic, and affective measures were also taken. Fourteen participants completed the training and post-testing. There was a 53% decrease in high sensitivity C-Reactive Protein (p ≤ 0.05), a 7% reduction in systolic blood pressure (p ≤ 0.05), a 13% increase in the 6-min walk test (p ≤ 0.005), and significant positive changes in several other outcomes. These results tend to confirm the hypothesized benefits of MM training for this population, and indicate that autonomic function may be important in the etiology and treatment of their symptoms. No adverse effects were reported. This trial is registered at ClinicalTrials.gov (https://clinicaltrials.gov/ct2/show/NCT02612389/), and is supported by a grant from the Flight Attendant Medical Research Institute (FAMRI).
Collapse
Affiliation(s)
- Peter Payne
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| | - James C Leiter
- Department of Molecular and System Biology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| | | | - Mardi A Crane-Godreau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| |
Collapse
|
33
|
Barrios-Payán J, Revuelta A, Mata-Espinosa D, Marquina-Castillo B, Villanueva EB, Gutiérrez MEH, Pérez-Sánchez G, Pavón L, Hernandez-Pando R. The contribution of the sympathetic nervous system to the immunopathology of experimental pulmonary tuberculosis. J Neuroimmunol 2016; 298:98-105. [PMID: 27609282 DOI: 10.1016/j.jneuroim.2016.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022]
|
34
|
Ordovas-Montanes J, Rakoff-Nahoum S, Huang S, Riol-Blanco L, Barreiro O, von Andrian UH. The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends Immunol 2016; 36:578-604. [PMID: 26431937 DOI: 10.1016/j.it.2015.08.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
The nervous system and the immune system are the principal sensory interfaces between the internal and external environment. They are responsible for recognizing, integrating, and responding to varied stimuli, and have the capacity to form memories of these encounters leading to learned or 'adaptive' future responses. We review current understanding of the cross-regulation between these systems. The autonomic and somatosensory nervous systems regulate both the development and deployment of immune cells, with broad functions that impact on hematopoiesis as well as on priming, migration, and cytokine production. In turn, specific immune cell subsets contribute to homeostatic neural circuits such as those controlling metabolism, hypertension, and the inflammatory reflex. We examine the contribution of the somatosensory system to autoimmune, autoinflammatory, allergic, and infectious processes in barrier tissues and, in this context, discuss opportunities for therapeutic manipulation of neuro-immune interactions.
Collapse
Affiliation(s)
- Jose Ordovas-Montanes
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Seth Rakoff-Nahoum
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Siyi Huang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Olga Barreiro
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
35
|
Gao N, Yan C, Lee P, Sun H, Yu FS. Dendritic cell dysfunction and diabetic sensory neuropathy in the cornea. J Clin Invest 2016; 126:1998-2011. [PMID: 27064280 DOI: 10.1172/jci85097] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/24/2016] [Indexed: 12/11/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) often leads to neurotrophic ulcerations in the cornea and skin; however, the underlying cellular mechanisms of this complication are poorly understood. Here, we used post-wound corneal sensory degeneration and regeneration as a model and tested the hypothesis that diabetes adversely affects DC populations and infiltration, resulting in disrupted DC-nerve communication and DPN. In streptozotocin-induced type 1 diabetic mice, there was a substantial reduction in sensory nerve density and the number of intraepithelial DCs in unwounded (UW) corneas. In wounded corneas, diabetes markedly delayed sensory nerve regeneration and reduced the number of infiltrating DCs, which were a major source of ciliary neurotrophic factor (CNTF) in the cornea. While CNTF neutralization retarded reinnervation in normal corneas, exogenous CNTF accelerated nerve regeneration in the wounded corneas of diabetic mice and healthy animals, in which DCs had been locally depleted. Moreover, blockade of the CNTF-specific receptor CNTFRα induced sensory nerve degeneration and retarded regeneration in normal corneas. Soluble CNTFRα also partially restored the branching of diabetes-suppressed sensory nerve endings and regeneration in the diabetic corneas. Collectively, our data show that DCs mediate sensory nerve innervation and regeneration through CNTF and that diabetes reduces DC populations in UW and wounded corneas, resulting in decreased CNTF and impaired sensory nerve innervation and regeneration.
Collapse
|
36
|
Bozkurt TE, Larsson O, Adner M. Stimulation of cannabinoid CB1 receptors prevents nerve-mediated airway hyperreactivity in NGF-induced inflammation in mouse airways. Eur J Pharmacol 2016; 776:132-8. [DOI: 10.1016/j.ejphar.2016.02.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
|
37
|
Ha D, Fuster M, Ries AL, Wagner PD, Mazzone PJ. Heart Rate Recovery as a Preoperative Test of Perioperative Complication Risk. Ann Thorac Surg 2015; 100:1954-62. [PMID: 26410158 DOI: 10.1016/j.athoracsur.2015.06.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 12/25/2022]
Abstract
The autonomic nervous system plays important physiologic roles in a variety of organ systems. Autonomic dysfunction has been shown to be predictive of increased mortality in patients with cardiovascular disease. Its importance in patients with chronic respiratory disorders has been described in recent years. Here, we summarize the prognostic value of autonomic dysfunction, as reflected by impaired heart rate recovery (HRR), in patients with chronic respiratory disorders, including chronic obstructive pulmonary disease, interstitial lung disease, and lung cancer. We suggest that HRR may be clinically useful in the preoperative physiologic evaluation, specifically in lung cancer patients being considered for surgery.
Collapse
Affiliation(s)
- Duc Ha
- Pulmonary and Critical Care Medicine Division, University of California, San Diego, La Jolla, California.
| | - Mark Fuster
- VA San Diego Healthcare System, San Diego, California; Pulmonary and Critical Care Medicine Division, University of California, San Diego, La Jolla, California
| | - Andrew L Ries
- Pulmonary and Critical Care Medicine Division, University of California, San Diego, La Jolla, California
| | - Peter D Wagner
- Pulmonary and Critical Care Medicine Division, University of California, San Diego, La Jolla, California
| | | |
Collapse
|
38
|
Jänig W. Sympathetic nervous system and inflammation: a conceptual view. Auton Neurosci 2014; 182:4-14. [PMID: 24525016 DOI: 10.1016/j.autneu.2014.01.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/27/2022]
Abstract
The peripheral sympathetic nervous system is organized into function-specific pathways that transmit the activity from the central nervous system to its target tissues. The transmission of the impulse activity in the sympathetic ganglia and to the effector tissues is target cell specific and guarantees that the centrally generated command is faithfully transmitted. This is the neurobiological basis of autonomic regulations in which the sympathetic nervous system is involved. Each sympathetic pathway is connected to distinct central circuits in the spinal cord, lower and upper brain stem and hypothalamus. In addition to its conventional functions, the sympathetic nervous system is involved in protection of body tissues against challenges arising from the environment as well as from within the body. This function includes the modulation of inflammation, nociceptors and above all the immune system. Primary and secondary lymphoid organs are innervated by sympathetic postganglionic neurons and processes in the immune tissue are modulated by activity in these sympathetic neurons via adrenoceptors in the membranes of the immune cells (see Bellinger and Lorton, 2014). Are the primary and secondary lymphoid organs innervated by a functionally specific sympathetic pathway that is responsible for the modulation of the functioning of the immune tissue by the brain? Or is this modulation of immune functions a general function of the sympathetic nervous system independent of its specific functions? Which central circuits are involved in the neural regulation of the immune system in the context of neural regulation of body protection? What is the function of the sympatho-adrenal system, involving epinephrine, in the modulation of immune functions?
Collapse
Affiliation(s)
- Wilfrid Jänig
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
| |
Collapse
|